
VICTOR MITRANA

NEW DEVELOPMENTS
IN FORMAL LANGUAGE THEORY

INSPIRED FROM BIOLOGY

Editura Universităţii din Bucureşti

https://biblioteca-digitala.ro / https://unibuc.ro

VICTOR MITRANA

NEW DEVELOPMENTS
IN FORMAL LANGUAGE THEORY

INSPIRED FROM BIOLOGY

Editura Universităţii din Bucureşti
-2001-

https://biblioteca-digitala.ro / https://unibuc.ro

ţ-~-- ... ·-· . --. .c-..,,-:,o:-.r-~.&,.;;C.:.~..........,,,.- --·

• • - !'A _ I, f ~). L' UN.\'ERSITAftl
i.' r I ,., EŞfl

11 3o501/,f
·· _.;,, · · ····· ······ ······· ··········--··-

Referenţi ştiinţifici : Cercetător pr. gr. I Gheorghe PĂUN
Conf. dr. Alexandru MATEESCU

© Editura Universităţii din Bucure~ti
Sos. Panduri 90-92, Bucuresti - 76235; Tel./Fax: 410.23.84
' E-mail: edit~ra@unibuc.ro

Internet: www.editura.unibuc.ro

B.C.U. Bucuresti

III
C20015439

Descrierea CIP a Bibliotecii Naţionale
MITRANA, VICTOR

New developments in formal language theory inspired
from biology / Victor Mitrana - Bucureşti, Editura Universităţii din
Bucureşti , 200 I

p.; 21cm
Bibliogr.
ISBN: 973-575-535-1

519.765

https://biblioteca-digitala.ro / https://unibuc.ro

Contents

1 Introd uction 5
1.1 The Basic Inspirations 6

1.1.1 Chomsky's Initiative in Linguistics 8
1.1.2 Inspirations from the Filamental Growth 10
1.1.3 Language-Theoretic Models of Molecular Com-

puting . 12
1.1.4 Language-Theoretic Models of Genome Evolution 14
1.1.5 The Artificial Life Challenge 16

1.2 Basic Definitions 20
1.2.1 Formal Language Prerequisites
1.2.2 Closure Properties
1.2.3 Decidability
1.2.4 A Structural Language of Nucleic Acids

20
25
27
28

2 Genome Evolution: Operations 31
2.1 Inversions, Transpositions, Duplications 31

2.1.1 Relationships Between the Above Operations 32
2.2 A Generalization 41

2.2.1 Inclusions
2.2.2 Strictness of Some lnclusions

2.3 The Duplication Root ..
2.4 Multiple Crossing-over
2.5 Two Crossover Distances . . .

2.5.1 Singleton Target Sets
2.5.2 Arbitrary Target Sets

42
52
63
67
79

83
88

https://biblioteca-digitala.ro / https://unibuc.ro

4 CONTENTS

3 Language Generating Devices 93

3.1 Evolutionary Grammars 94
3.1.1 Decision Problems 97
3.1.2 A Growth Function for Genomes 102

3.2 Context-Free Evolutionary Grammars 104
3.2.1 Computational Power .. 106
3.2.2 Decidabili ty Properties 113
3.2.3 Some Closure Properties 116
3.2.4 Evolutionary Grammars and the Structural Lan-

guage of Nucleic Acids 118
3.2.5 Descriptional Complexity .. 120
3.2.6 The Differentiation Function 123
3.2.7 Adult Languages .. 129

3.3 Duplication Grammars 133
3.3.l A Short Comparison 136
3.3.2 Observations on the Generative Power 139
3.3.3 Decision Problems 144

3.4 Self Crossover Systems 147

4 Other Operations 157
4.1 The PA-Matching Operation 157

4.1.l The Non-Iterated Case . 158
4.1.2 The Iterated Case 163

4.2 The Overlapping Operation 167
4.3 Gene Assembly in Ciliates 173

4.3.1 The ld Operation .. 174
4.3.2 The hi Operation .. 183
4.3.3 The dlad Operation 186

4.4 Evolutionary Systems ... 190
4.4.1 Language of Species 195
4.4.2 Population of Evolutionary Systems 199
4.4.3 Some Growth Relation Considerations 202

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 1

Introduction

The 20th century contributed to the development of human civiliza­
tion in two main directions, namely the scientific understanding of
universe and of human being as its part, and shifting technical, en­
gineered devices into the interplanetary space, into the human body,
and into the processes reserved before for the activities of human
minds only. Cross-fertilization of different branches of science and
technology has been running during the last hundred years very
rapidly and it appeared very productive in many directions. The
most interesting for our further intentions are the mutual influences
of biology and the mathematical study of computing and natural
language.

Symbols like letters in alphabets, words in languages, symbols
used in chemistry, pictograms which orient us in railway-stations or
airports, and many other symbols play an important role in our every­
day life. Generally speaking, we live in a world of symbols similarly
as we live in the real physical world. A very important feature of
our intellect is that it can recognize and manipulate symbols in very
different contexts. The patterns of ink in a sheet of paper we consider
as letters which refer to some sounds produced by us, for instance.
The sequences of such letters - words - refer to all of real or imagined
things, events, or states in our real or virtual world which we are able
to communicate. Complicated chemical structures can be usefully
condensed into the form of short and clear structures of symbols.

https://biblioteca-digitala.ro / https://unibuc.ro

6 CHAPTER 1. INTRODUCTION

Ali human problem solving capability can be considered in a certain
sense as a manipulation with symbols and structures composed with
them [99), (98].

In a rather general sense, symbols are patterns which are rela­
tively stable in space-time with the ability to designate things other
than themselves only. There are many possibilities to "materialize"
symbols (ink-lines in the paper sheet, structures in the memory of
a computer, etc.) but all "materializations" must have some basic
properties like (relative) stability in space-time, possibility to be a
part of more complicated structures - symbol structures - to be "cre­
ated" and "discharged" if necessary, etc. Symbols can be organized
into symbol structures - letters into words, words into sentences, pic­
tograms into maps leading us from the entrance of an airport through
the check-in desk further to the boarding-gate, the symbols A, C, G,
and T, denoting the basic nucleotides, into DNA sequences which
eneode the genetic information of organisms, etc. We are able to des­
ignate things by using symbols or symbol structures, which represent
an important attribute of symbols.

We can also recognize such structures, this is another very im­
portant attribute, and to process them in certain ways. There are
different theoretically investigated and well understood possibilities
of how to organize symbols into more complicated structures. The
simplest structures, in a certain sense, are the strings of symbols.
The formal definition of a string of symbols from a finite set of sym­
bols, called alphabet, can be given. Also other types of structures
can be defined in a formal and correct way (graphs, pictures, etc.).
In a more general setting, we always are confronted with mappings
between symbol systems and other systems, which can also be symbol
systems.

1.1 The Basic Inspirations
(Linguistics, DNA, and Computing)

Language - in its two basic forms: natural and artificial - is a par­
ticular case of symbol system. More and more approaches in science
corresponds to a general process of transferring methods and tools

https://biblioteca-digitala.ro / https://unibuc.ro

1.1. THE BASIC INSPIRATIONS 7

from mathematical linguistics to other areas of research. An early
and deep investigation of this phenomenon can be found in [87].

1n following sections, we are going to discuss about the formal
language paradigm as a possible basic link between DNA, as a part
of the genetic language, computation and artificial systems. More
specifically, we present some developments in the framework of for­
mal lariguage theory suggested by genetics and molecular biology as
well as artificial life. First, we start with some considerations about
the origins of the ·aforementioned sciences which have influenced the
formal language theory.

A very significant scientific event of the 20th century was the
discovery of the structure of deoxyribonucleic acid (DNA) by James
D. Watson and Francis Crick in the first half of the century; a good
easy-to read presentation of the story of this discovery is described
in [131]. The huge macromolecules of DNA were found tobe double
stranded strings composed of only four types of basic nucleotides
called adenine, cytosine, guanine, and thymine, abbreviated usually
by the letters A, C, G and T, respectively.

Genetics is concerned in the study of the biologica! information of
a living organism, the heredity material of all species. This informa­
tion turned out to be stored in macromolecule of nucleic acids called
genes and in their composition in chromosomes. Molecular biology
is concerned in the relationships between nucleic acids and amino
acids, between genes and proteins known to be the molecules which
are responsible for almost all the functions of a living organism.

One among the most important technical achievements of the
20th century was the construction of the first electronic computers
at the end of 40s. These computers were huge, of the size of a large
room. The processors were based on vacuum tubes and were very
expensive. So, the only way of using these machines was to execute
basic computations step-by-step on a single processor. The idea of
sequential computing using one processor had been supported also
by prevailing theoretical results on computing theory reported dur­
ing thirties and forties by Alan Turing, Emil Post, Kurt Gădel, A.
Church. Despite that the notion of an algorithm has been used since
Euclid and Archimedes, this notion was not macle mathematically

https://biblioteca-digitala.ro / https://unibuc.ro

8 CHAPTER 1. INTRODUCTION

rigorous and nobody knew whether this would ever be clone.
Turing imagined a device, called later Turing machi ne, w hich at

every moment is in a state, from a finite set of states, and can scan a
a cell on a arbitrarily long tape. Depending on the current state and
the scanned symbol, it writes a symbol on the cell scanned, moves to
the next cell to the right or to the left, and enters a new, possibly the
same, state. It is easy to note that an algorithm in this approach is
a sequence of symbol manipulations in a deterministic way.

1.1.1 Chomsky's Initiative in Linguistics
(The Origin of Formal Grammars
and Languages)

The study of symbols and symbol structures has been revolutionized
by the pioneering work of Noam Chomsky. Chomsky's contribution to
the study of natural languages and his invention of the notion of gen­
erative grammars ,[16], [17], the precise mathematical formalization
of notions like language and grammar, [18], and the discovery of rela­
tions between formal languages, grammars and the (mathematically
described) models of computing engines (like the Turing machine and
numerous variants of automata) were reflected very early [63]. The
way în which Chomsky's ideas influenced computer science and engi­
neering in the sixties and seventies illustrated very impressively the
power of the basic paradigm of early cybernetics.

Chomsky's view on natural languages opened a new way to con­
sider

- words and more complicated parts of phrases as abstract sym­
bols,

- sentences of languages as strings of symbols,
- modes of forming new strings from other oness through concate-

nation, and
- rules for replacement or rewriting symbols or strings by other

syrnbols or strings.
Prograrnrning languages - artificially engineered tools for commu­

nication with computers - were designed using ideas previously con­
sidered in the study of human (natural) languages, formulated with
mathematical precision, and elaborated using tools and techniques

https://biblioteca-digitala.ro / https://unibuc.ro

1.1. THE BASIC INSPIRATIONS 9

of mathematics and skills of computer programmers. lt happened
that the theory of formal grammars and languages loosed its original
roots in traditional linguistics and raised up as a branch of theoretical
computer science - as the theory of formal grammars and languages.
Starting with the book [52] through the "classics" like [117], or [56] up
to [114] and [126], for instance, the theory of formal grammars and
languages became the traditional core of the theoretical computer
science.

A good example is the use of formal grammar and language theory
oriented techniques in pattern recognition [46], e.g. in recognition of
different types of chromosomes [80], [81]; more on the importance
of chromosomes forms from biological point of view see in [27]. In
this approach, patterns are viewed as strings of symbols and the
recognition process consists in an effective generation of an answer to
the question whether or not a given string (representing a pattern)
can or cannot be generated by a given grammar. In the positive case,
the analyzed pattern belongs to the corresponding class of patterns,
in the negative one it does not belong to it. We shall return to this
topic in a forthcoming section.

Another interesting way of using grammars and languages was
related to the learning process. It îs also of practical interest how
are human beings able to learn grammars from finite samples of the
language they are using. The theory of syntactic inference repre­
sents an approach to this question amenable to be investigated with
tools and techniques of the theory of formal grammars and languages
[3]. It consists of presenting samples (finite or potentially infinite se­
quences) of sentences (words) with an additional information regard­
ing the membership of just presented sentence (word) to a language
in order to infer the grammar generating that language (generating
all the words/sentences belonging to that language and no others), if
possible. (See e.g. [2], [115])

Ali the mentioned approaches of using the basic grammatical
paradigm to study different phenomena, were bâsed on the sequential
application of the grammar rules for generating or analysing (parsing)
words in the corresponding languages.

https://biblioteca-digitala.ro / https://unibuc.ro

10 CHAPTER 1. INTRODUCTION

1.1.2 Inspirations from the Filamental Growth
(Lindenmayer Systems)

The idea of sequential rewriting used in the theory of formal lan­
guages was very productively modified for needs of describing parts
of processes studied in biology. Complete parallel rewriting was ini­
tiated by the work of Aristid Lindenmayer, a biologist interested in
the phenomenon of biologica! growth. Aristid Lindenmayer himself
explained his motivation in the interview [72] as follows:

After my Ph. D. in 1956 from the University of Michi­
gan, Ann Arbor, I spent an academic year with Woodger
in London, England, learning logic from him [133] and
on an axiom system for life cycles [82]. (...) During
these years, until 1968, I was also engaged in experimen­
tal work on development in Philadelphia and New York.
Against this background came my first acquaintance with
au tomata theory. This happened in the (academic) year
1962-63 which I spent in the biomathematics group at
North Carolina State University, during which time I had
the opportunity to have frequent discussions with the em­
bryologist J. R. Gregg of Duke U niversity. He had also
worked previously with Woodger and had written papers
on set-theoretical foundations of taxonomy and embry­
ology. By this time he had discovered automata theory
(which was initiated in 1956 by Moore and Mealy) and
together we studied the first systematic account of this
theory by Ginsburg [51]. About the same time a book [7]
came out which macle control theory accessible to non­
mathematicians (I was already using this book in teach­
ing a course to biologists in 1963). Our training in logic
with Woodger was indispensable for us, as biologists, to
be able to enter automata theory at that time.

The discovery of L systems was due to a problem in
Ashby's book. ln a chapter on finite automata he asked
the question (Exercise 4/7 /7): What behavior would one
expect from a long chain of coupled finite automata, re-

https://biblioteca-digitala.ro / https://unibuc.ro

1.1. THE BASIC INSPIRATIONS

ceiving inputs from each other? The Kleene's paper from
1956 on nerve nets has of course given the answer con­
cerning a constant size network of finite automata - it has
as complex behavior as a single finite automaton. But
I wonder how everywhere expanding arrays of finite au­
tomaton would behave. Such arrays could provide re­
alistic simulations of growing cellular filaments such as
found în algae, mosses and fungi. The ramifications of
this exercise were more extensive than I expected. But
in any case, L systems came to be defined în 1968 [83]
as interacting, linear, growing arrays of finite automata.
(...) They are basically different from cellular automata
of von N eumann and tesselation systems in that they grow
not only at the edge. Eventually we came to realize that
we work with grammar-like constructions. This realiza­
tion resulted in an intensive cooperation with G. Rozen­
berg, G. Herman, and D. van Dalen after my move from
New York to Utrecht în 1968. Instead of speaking of lin­
ear arrays of automata with states, inputs and outputs,
and of transforming these arrays in discrete time steps to
other arrays of possible different length, we then treated
these structures as words over given alphabets (the set of
states) and formulated context-free or context-sensitive
productions which, when applied in parallel to the words,
produced the following words, without distinguishing be­
tween terminal and non-terminal symbols.

11

Note that this motivation leads directly to parallelism. From
the biologica! point of view, it cannot he expected that a growth
runs sequentially, that the cells reproduce in some sequential order.
More expectable is that reproduction runs in parallel; in each moment
severa! cells can reproduce. So, the initiative of Lindenmayer started
from the study of parallelism through the optics rooted in cybernetics
and resulted in introducing parallel rewriting into the theory of formal
grammars and languages.

ln the theory of L systems, a colony of biologica! cells is repre­
sented by a string of symbols: one appearance of a symbol states for

https://biblioteca-digitala.ro / https://unibuc.ro

12 CHAPTER 1. INTRODUCTION

each individual cell, and different states of cells are represented by
different symbols. Changes of the cell states are modeled by rewriting
rules replacing symbols by other symbols or by several symbols (this
is the case of reproduction) like in formal grammars. The parallel
nature of the changes of cell states and cell division is modeled by
the parallel execution of rewriting according to the rules in each place
where symbols which can be rewritten appear. This special kind of
rewriting appeared as theoretically highly interesting and was devel­
oped to a large and interesting theory of L systems as presented in,
e.g. [111], (61], (113], [112].

Besides, L systems have been used in computer graphics for de­
picting imaginary "gardens of L" full of imaginary life forms [107].
By their simplicity and flexibility, L systems appear tobe suitable to
model different phenomena of artificial life.

1.1.3 Language-Theoretic Models of Molecul~r
Computing

The idea that molecular complexes can be viewed as components of an
information processing device dates back to the late 1950's when R.
Feynman discussed the possibility of building "sub-microscopic" com­
puters. Despite huge advances in computer miniaturization, the un­
derlying von Neumann computational architecture has still remained
the same together with its boundaries (speed, memory, etc.)

In the last decade many researchers have looked beyond these
boundaries and investigated new media and computational models
as quantum, optical and molecular-based computers.

ln the last years it was observed an increasing interest of com­
puter scientists for the structure of biological molecules and the way
in which they can be manipulated in vitro in the aim of defining
theoretical models of computation based on the genetica! engineering
tools.

The fundamental mechanism by which genetic material is merged
is recombination. DN A sequences are recombined under the effect of
enzymatic activities. 1n 1987, T. Head [59] introduced the splicing
operation as a language theoretical approach of the recombinant be­
havior of DNA under the influence of restriction enzymes and ligases.

https://biblioteca-digitala.ro / https://unibuc.ro

1.1. THE BASIC INSPIRATIONS 13

Roughly speaking, the main idea of the splicing operation is that
two sequences are cut at specified sites, and the first substring of one
sequence is pasted to the secon1 segment of the other and vice versa.

A new type of computability model - called H systems - based
on the splicing operations has been considered. Many variants of
H systems have been invented and investigated (regulated H sys­
tems, distributed H systems, H system_s with multisets, etc.) U nder
certain circumstances, the H systems are computationally complete
and universal. This resuit suggests the possibility to consider the H
systems as theoretical models of programmable universal DNA com­
puters based on the splicing operation. Furthermore, a hybrid model
involving grammars and splicing, connecting in a certain way the the­
ory of grammar systems with the theory of the splicing operation was
considered in (30). Other operations on strings inspired from genetic
engineering like annealing, PA-match, cut and paste, etc. have led to
computational grammatical models. The monograph [104] presents
the majority of achievements in this direction.

Another interesting model is the supercell system model (called
also P-system) based on the cell membrane which serves as an in­
terface between the interior and the exterior environments of a cell
within a multicellular structure. Many and sound theoretical results
have been reported. P systems are a class of distributed parallel
computing devices of a biochemical inspiration borrowing ideas from
Lindenmayer systems, grammar systems, the chemical abstract ma­
chine, multisets rewriting, etc.

However, it was L. Adleman who described in 1995 how a small
instance of a computationally intractable problem known as the di­
rected Hamiltonian Path Problem might be solved using molecu­
lar methods. The information is encoded as sequences of bases in
DNA molecules, the algorithm employing a massively parallel ran­
dom search in a test tube. Both enthusiastic and pessimistic views
have been expţessed, see, e.g. [104], [58], but this new idea has opened
new directions of research both for computer scientists and biologists.

Significant efforts are being macle now towards finding computa­
tions with practicai importance which can be carried out in a molec­
ular framework in a better way than using classical cornputers.

https://biblioteca-digitala.ro / https://unibuc.ro

14 CHAPTER 1. INTRODUCTION

1.1.4 Language-Theoretic Models of Genome
Evolution

Much of the current data for genomes· is in the form of maps which
are now becoming available and permit the study of the evolution of
such organisms at the scale of genome for the first time ([21]).

On the other hand, there is an increasing trend throughout the
field of computational biology toward abstracted, hierarchical views
of biologica! sequences, which is very much in the spirit of computa­
tional linguistics. The last decades pointed out results and methodes
in the field of formal language theory which might be applied to bi­
ologica! sequences. For instance, the structural representation of the
syntactic information used by any parsing algorithm is a parse tree,
which would appear to any biologist to be a resonable representation
of the hierarchical construction of a typical gene.

We can fairly ask to what extent a grammar-based approach could
be usefully generalized. Moreover, is this approach sui table to be used
for computing? To further explore this question at a pragmatic level
we need to implement the model and check its relevance.

Also, it may be supposed that the distinction between structural
and functional or informational view of biologica! sequences corre­
sponds to the conventional one drawn between syntax and semantics.
The functional view will allow us to expand our horizons beyond the
local phenomena of syntactical structure to large regions of DN A. lt
appears very important, in this respect, to define the _semantics of
DNA, which is mainly based on evolutionary selection, in such a way
to reason linguistically about the processes of evolution as well as
about the computational capacity.

The genomes of complex organisms are organized into chromo­
somes which contain genes arranged in linear order. It is rather com­
monly asserted that DNA and RNA structures can be described to a
certain extent as words; for instance a DN A strand can be presented
as a word over the alphabet of the four complementary pairs of nu­
cleotides (A,T), (T,A), (C,G), (G,C). Thus DNA may be wieved
as a language for specifying the structures and processes of life.

Treating chromosomes and genomes as languages raises the pos­
sibility to generalize and investigate the structural information con-

https://biblioteca-digitala.ro / https://unibuc.ro

1.1. THE BASIC INSPIRATIONS 15

tained in biologica! sequences. Despite of this view, biological se­
quences have not been investigated very vividly so far by methodes
developed in the field of formal language theory. A pioneer's work
has been reported in [11] where very simple genes were described
by means of regular grammars, though different features of nucleic
acids cannot be modelled by regular expressions (see the paragraph
devoted to the structural language of nucleic acids at the end of this
section).

Since then severa! approaches have been proposed so far, most
investigations along these lines dealing with grammar formalisms,
see, e.g., [19, 20, 53, 116, 121, 122]. Collado-Vides [19] has consid­
ered transformational grammars for modelling the gene regulations,
Grate et al. [53] and Sakakibara et al. [116] ~onsidered stochastic
context-free grammars for modelling RNA, and more recently, Searls
[121, 122] has used definite clause grammars and cut grammars for
investigating gene structure and expression or different forms of mu­
tation and rearrangement.

The present work starts from the premise that genomes can be
interpreted as languages, hence are amenable to be studied by means
of the formal language theory. In the course of its evolution, the
genome of an organism mutates by different processes. At the level
of individual genes the evolution proceeds by local operations (point
mutations) which substitute, insert and delete nucleotides of the DN A
sequence. Evolutionary and functional relationships between genes
can be captured by taking into considerations only local mutations
([120]). These operations viewed as operations on strings and lan­
guages have been considered from different points of view [121, 134]
and the their references.

However, the analysis of the genomes of some viruses (Epstein­
Barr and Herpes simplex viruses, see for instance [49], [71]) have
revealed that the evolution of these viruses involved a number of
large-scale rearrangements in one evolutionary event. On the other
hand, comparing plant and animal mitochondrial DNA, the point
mutation is estimated to be 100 times slower in plant than in animal,
many genes are nearly identica! (more than 99% of them are identica!)
in related species [100]. See also [49], for further discussions on this

https://biblioteca-digitala.ro / https://unibuc.ro

16 CHAPTER 1. INTRODUCTION

topic.
Chromosomal rearrangements include pericentric and paracentric

inversions, intrachromosomal and interchromosomal transpositions,
translocations, etc. For a description of these rearrangements, the
reader is referred to [127]. The formal linguistic formulations of some
known modes of rearrangements at a genomic level might be consid­
ered as follows:

• Inversion replaces a segment of a chromosome with its reverse
DNA sequence.

• Transposition moves a segment to a new location in chromo­
some.

• Duplication copies a segment to a new location.

• Deletion cancels a segment of a chromosome.

• Crossover results in recombination of genes in a pair of homol­
ogous chromosomes by exchanging segments between parental
chromatides. Crossover can be modelled as a process that ex­
changes segments at the end of two chromosomes.

1.1.5 The Artificial Life Challenge
(Eco-Grammar Systems)

"Can we build a gradualist bridge from simple amoeba-like automata
to highly purposive intentional systems, with identifiable goals, be­
liefs, and so forth ?" asks Daniel Dennett contemplating about the
philosophical background of the meaning of "artificial life" [41). Stu­
art Wilson [132] proposed a research methodology for understanding
intelligence through simulations of artificial life in progressively more
challenging environments while retaining characteristics of holism,
pragmatism, perception, and other phenomena that remain often
underrepresented in traditional approaches of Artificial Intelligence
(AI).

According to the pioneer of artificial life (AL) Christopher Lang­
ton [78], artificial life îs the study of man-macle systems that exhibit

https://biblioteca-digitala.ro / https://unibuc.ro

1.1. THE BASIC INSPIRATIONS 17

behaviors characteristic for natural living systems. It is concerned
mainly with the formal basis of the life, and with tuning the behaviors
of simple, low-level components - the behavors in Langton 's terminol-_
ogy - upwards, constructing large aggregates of simple rule governed
components which interact with one another non-linearly in the sup­
port of the global and complex dynamics so that the behavior that
emerges at the global level of interactions of the behavors is essentially
the same behavior exhibited by the natural living systems. For more
information on motivations for, goals of, and techniques used in AL
see (79] and (10]. Thejust mentioned kind offunctionality ofliving be­
ings is examined from different perspectives, through different optics,
and using different conceptual frameworks. The field of AL concen­
trates towards understanding (and technical reconstruction) of the
information-processing aspects of the life. 1n other words, it focuses
to the phenomena which are identified as information-processing in
their virtue.

The essential features of AL models are usually (78] summarized
as follows:

- The models consist in population of simple components (pro­
grams or some formal specifications).

- There is no single program in the model that controls the inter­
action, cooperation or communication of all of the other programs.

- Each program in the model details the way in which a simple en­
tity reacts to local situations in its environment, including encounters
with other entities.

- There are no rules in the model that prescribe the global be­
havior of the modeled system.

- Any behavior of the modeled system at higher than the in­
dividual component level emerges from the lowest level individual
behaviors of components.

Life and living systems (systems ofliving agents) form some struc­
ture. So, it can be taken somehow literally the first (of the eight)
criteria associated with life in (44]: "Life is a pattern in space-time,
rather than a specific material object". Accepting this, we have then
to ac~ept the idea that life, living organi~ms and J!s,tefr/Si 19~]ving
orgamsms can be approached at a symbolic level, r,v1ţ~_CelnN1a~fs~on

https://biblioteca-digitala.ro / https://unibuc.ro

18 CHAPTER 1. INTRODUCTION

syntax of the above mentioned structure. This is nothing else than
to say that (one of) the main framework for studying life at this level
is mathematics in general and formal language theory in particular.
This last assertion has also a convincing a posteriori justification:
several syntactic models, such as von Neumann's cellular automata,
Lindenmayer systems or Chomsky grammars in general, proved to be
both adequate and relevant tools used in modeling various real life
aspects.

We should stress in this place the substantial difference between
the adequacy of a conceptual tool (understood as its capability of a
model to fit the features of the modeled object) and its relevance (the
possibility to obtain non-trivial insights about the object by study­
ing the model, insights which cannot be obtained without using the
model). In general, and roughly speaking, the adequacy is ensured
by a good-inspired definition, but the relevance needs efforts in order
to be proved, needs mathematical investigations which may last a
significant period.

Formally, our approach fits very well with the main goal of AL, as
stated in [78]: "the study of man-macle systems that exhibits behav­
iors characteristic to natural living systems", by synthesizing "life-like
behaviors within computers and other artificial media", putting em­
phasis on the "logical dynamics" of living systems, not necessarily on
their actual chemical-physical functioning. (By the way, in spite of
the debates seeming to push AL to the opposite direction, we think
that AL should remain as much as possible focused on the "logical"
or "syntactical", "symbolic" aspects of life, if it has to survive as an
independent scientific area, not as a part of, say, biochemistry.)

In [24] the living system is modeled using the conceptual frame­
work of the theory of formal languages and consists of several agents
"living" (sensing and acting) together in a shared environment (sirri­
ilarly asin the case of grammar systems). However, the environment
has its own dynamics. This is the reason, why ecosystems becomes
in our mind as a good illustration and typical example. However,
the same structure can be met in many other circumstances, as eco­
nomic, social, even in artificial intelligence and computer science (col­
lective robotics, distributed computer architectures, etc.). Therefore,

https://biblioteca-digitala.ro / https://unibuc.ro

1.1. THE BASIC INSPIRATIONS 19

the system proposed in the above mentioned article is called an eco­
grammar (or EG in short) system. In this model we assume that both
the agents and the environment develop (the environment indepen­
dently of the agents, the agents in dependence on the environment),
but the agents are able to sense and to make changes in environment.

An EG system consists of several agents described by strings of
symbols, developing according to rules applied as in L systems and
acting on the environment by pure rewriting rules applied sequen­
tially, and of an environment described by a string of symbols and
developing according to rules like in L systems, too. The rules used by
each agent for development depend on the state of the environment.
The rules used for acting on the environment depend on the state of
the agent. Further features can be introduced, such as agent-to-agent
action, birth and death of agents, etc. In such a way, a lot of real
life-like features can be captured: changes of seasons, overpopulation,
pollution, stagnation, cyclic development, immigration, hibernation,
carnivorous animals, and so on and so forth. Some of the technical
approaches can be found in [101].

Now, a few words about the overall organization of the book.
In the next section we recall the basic concepts and notations used
throught the book. Then, employing formal language theoretic frame­
work, we consider the aforementioned operations as operations on
strings and languages and investigate them with respect to some
usual problems· in formal language theory. It is worth mentioning
here that these operations on languages have been considered in [121]
and [134] as well. The operatîons investigated in the present book
are generalizations of the operations studied in [121] but restrictions,
by dîscarding the contexts, of those studied in [32]. Furthermore, the
iterated versîons of operations in debate are also consîdered.

Afterwards, we present a language generating mechanism based
on the operations suggested by all the mutations mentioned above,
following [34] în a more comprehensive way. Our results address to
some classical problems in formal language theory, such as generative
power, closure propertîes, decidability, descriptional complexity, etc.
Nevertheless, some of these matters might also have biologica! signif­
icance. We mention that our model may be not satisfactory în order

https://biblioteca-digitala.ro / https://unibuc.ro

20 CHAPTER 1. INTRODUCTION

to describe the process of evolution because we take into considera­
tion all genomes .created by the given mutations whereas only some
of them can or might support life. Two other language generating
devices based on particular types of genome operations are further
presented.

The last chapter is dedicated to other operations appearing in
biochemistry, either in vivo or in vitro for which we apply the "clas­
sical" program in formal language theory: closure properties, com-
pu tational power, decidability, etc. •

1.2 Basic Definitions

1.2.1 Formal Language Prerequisites

We now recall some notation from formal language theory. This
section offers to the reader the basic notions and notations from the
formal language theory which will be used throught the book. For
all undefined notions the reader is refereci to [114].

An alphabet is always a finite set of letters (symbols). For an
alphabet V we denote by V* the free monoid generated by V under
concatenation; by € the empty string, and by v+ the free semigroup
generated by V, i.e. v+ =V*\{€}. The elements of V* are called
words (strings). The length of the string x is denoted by lxl, and
lxla. delivers the number of occurrences of the letter a in x. The
cardinality of a finite set A is denoted by card(A).

Each subset of V* is called language over V. For each word x E

V*, V= {a1,a2,--·,an}, we define:

• The Parikh mapping '1jJ defined by

• The set of all the prefixes of x, denoted by Pref(x).

• The set of all the suffixes of x, denoted by Suf(x).

• The mirror image of x, denoted by mi(x). If x = a1a2 .. . an,

ai EV for 1 :S: i :S: n, then mi(x) = anan_1 ... a1.

https://biblioteca-digitala.ro / https://unibuc.ro

1.2. BASIC DEFINITIONS 21

• The set of all permutations of x E •V*, Perm(x) = {y I 1P(Y) =
?j;(x)}.

Furthermore, for a set of words A we write a(A) = UxEAa(x) for all
a E {Pref,Suf,mi,Perm}.

Let U and V be two alphabets, with each letter a from V one
can associate a language, denoted by s(a), over U. One gets an
application s : V ----+ P(U) which can be extended to V* as follows:

s(xy) = s(x)s(y), x, y Ev•

This application is called substitution. Depending on the languages
s(a), one gets different types of substitutions. For instance, if the
languages s(a), for all a from V, are finite, s is called a finite sub­
stitution. In particular, those substitutions s for which the image of
every letter is a word are called (homo)morphisms. If no language
s(a) contains the empty word, the morphism is called non-eraszng.
Every substitution may be extended to languages as

s(L) = LJ {s(x)}.
xEL

If L ~ V*, k 2: 1, and h : V* ----+ U* is a homomorphism such that
h(x) -/- € for all the substrings x of any string in L, lxl = k, then
we say that h is k-restricted on L. A homomorphism is said to be
restricted if it is k restricted on some language, for some k 2: 1.

A finite automaton is an accepting device consisting of an input
tape, a reading head able toscan the cells of the input tape from right
to left. The device can be at any moment in a state from a finite set
of states. Initially, a word is placed on the input tape, the reading
head is positioned on the first letter of the word, and the automaton
is in its initial state. A move of the automaton consists in reading
the currently scanned symbol, changing the current state (the new
state may be the former one) and moving the reading head to the
next cell to the right. The input word is accepted if the automaton
reads entirely this word and reaches a final state.
Formally, a nondeterministic finite automaton is a structure A =
(Q, V, J, qo, F), where Q is a finite and non-empty set of states, V is

https://biblioteca-digitala.ro / https://unibuc.ro

22 CHAPTER 1. INTRODUCTION

an alphabet, q0 is the initial state, F is the set of final states, and f
is a mapping f: Q x V----+ P(Q). A configuration of the automaton
A is determin ed by a pair formed from a state and a word over V.

The configuration (q,ax) moves to (s,x) if s E f(q,a), written in
the form (q, ax) I- (s, x). The reflexive and tranzitive closure of the
relation I- is denoted by 1-*.

The language recognized by the automaton A is

Rec(A) = {x E V*l(qo,x) I-* (s,t:),s E F}

Any language recognized by a finite automaton is call.ed regular. A fi­
nite automaton A = (Q, V, f, q0 , F) is deterministic if card(!(q, a)) :'.S
1 for all q E Q and a E V. It is known that for each nondeterministic
finite automaton one can construct a deterministic finite automaton
such that both automata recognize the same language.

There exist important languages, as the set of all the words formed
by brackets which match correctly, which are not regular. A correct
word is that word which can be reduced to the empty word by itera­
tively removing adjacent pairs of brackets. The reader can easily find
an argument for proving that the aforementioned language is not reg­
ular. However, these languages can be accepted by other automata,
more powerful than finite automata, namely pushdown automata. A
pushdown automaton is a finite automaton endowed with a push­
down memory, the next configuration of the automaton depends on
the current state, input symbol currently scanned and the top sym­
bol of the pushdown memory. Formally, a pushdown automaton is
a structure A = (Q, V, U, f, qo, Z0 , F), where Q is a finite and non­
empty set of states, V is the input alphabet, U is the pushdown
memory alphabet, qo is the initial state, Z0 is the initial content of
the stack (pushdown) memory, F is the set of final states, and f is
a mapping f : Q X (V U {c}) x U ----+ P{(Q x U*). A configuration
of the automaton A is determined by a triple formed from a state, a
word over V, and a word over U.

The configuration (q, ax, Aa) moves to (s, x, {3a) if (s, /3) E /(q, a, A),
written in the form (q,ax,Aa) I- (s,x,{3a). The reflexive and tranz­
itive closure of the relation I- is denoted by I-*.

https://biblioteca-digitala.ro / https://unibuc.ro

1.2. BASIC DEFINITIONS 23

The language recognized by the automaton A is

Rec(A) = {x E V*l(qo,x,Zo) f--* (s,t:,a),s E F}.

An even more powerful accepting device is the linear bounded au­
tomaton which has a tape whose length is linearly bounded with
respect to the length of the input string, a head which is able to read
a symbol from the input tape, write a symbol in the same cell, and
move back and forth within the input tape. A string is accepted if
the automaton starts with that string on its input tape and reaches
a final state. The class of languages recognized by linear bounded
automata is called the class of context-sensitive languages.

Now, we define some generative devices, called grammars.
A grammar is a four-tuple

G = (N,T,S,P),

where

• N and T are two disjoint alphabets whose symbols are called
nonterminals and terminals, respectively.

The nonterminal alphabet contains a distinguished nonterminal
denoted by S, called the axiom of the grammar.

• P is a finite set of production rules written in the form x -> y,
with x E (NU T)* N(N U T)* and y E (NU T)*.

The derivation relation is defined for two words a, /3 E (NU T)* by:

/3
'ff a = uxv, /3 = uyv

a ==i>G 1
X-> y E P.

The index G will be omitted when it is self-understood. The
language generated by G is

Gen(G) = {x E T*IS ==i>c; x }.

If each rule of a grammar contains just one nonterminal in its
left-hand side, the grammar is called context-free while the language

https://biblioteca-digitala.ro / https://unibuc.ro

24 CHAPTER 1. INTRODUCTION

generated by such a grammar is called also context-free. The family
of languages generated by context-free grammars is exactly the family
of languages accepted by pushdown automata.

For example, the next context-free grammar (we listed the pro­
ductions only, the other parameters can_ be infered immediately) gen­
erates the language of all the correctly bracketed words mentioned
above:

S--tSS

S --t (S)

s --t €

The next lemma is a necessary (but not sufficient) condition for a
language to be context-free.

Lemma 1.2.1 (Pumping lemma) For every context-free language
L there exist two natural constants p, q, such that for any z E L with
lzl > p, z = uvwxy satisfying the following conditions:

(i) luvwl::; q

(ii) iuvl > O

(iii) uviwxiy EL, for all i ~ O.

By this lemma one can prove that the languages

Li {anbncn I n ~ 1},

L2 = {a2nln~O},

are not context-free.
The languages generated by the arbitrary grammars are called

recursively enumerabile. This class of languages is exactly the class
of languages accepted by Turing machines.

The next results will be very useful in what follows:

Theorem 1.2.1 (Geffert Normal Form) For each arbitrary gram­
mar there exists an equivalent grammar (they generate the same lan­
guage) G = ({S, A, B, C}, T, $, P) having productions of the
following forms, only

S --t x,x E ({S,A,B,C}UT)*

ABC --t E.

https://biblioteca-digitala.ro / https://unibuc.ro

1.2. BASIC DEFINITIONS 25

Let G = (N,T,S,P) be an arbitrary grammar; for a derivation

D : S = Wo ===> W1 ===> ... ===> Wn = Y, Y E T*

we define WS(D,G) = max{jwjl 11 S: j S: n}. For y E Gen(G) we
write

WS(y,G) = min{WS(D,G) ID is a derivation for yin G}.

Theorem 1.2.2 (Working Space Theorem) IJWS(x,G) for all
x E Gen(G), then Gen(G) is a context-sensitive language.

1.2.2 Closure Properties

Let C and Q be two families of languages. We say that the operation

op: cn---+ Q

is dos ed under op if, for any sequence of languages L1, L2, ... , Ln E C,
op(L1, L2, ... , Ln) E C holds.

We shall esspecially consider the following operations:

• Usual operations on sets: union, intersection, complementation.

• Substitutions.

• Inverse morphisms: if h : V* ---+ U* is a morphism, the the
inverse morphism associated with h is h-1 : U* ---+ P(V*)
defined by h- 1(x) = {y E V*jh(y) = x}, for any x E U*.
Moreover

h- 1(L) = LJ h-1(x),
xEL

for any language L.

• The Kleene closure L * of a language L is define recursi vely as
follows:

Lo {c}
Lk+l L-Lk

L* u Lk
k>O

https://biblioteca-digitala.ro / https://unibuc.ro

26 CHAPTER 1. INTRODUCTION

• For two words x, y E V*, we define the shuffie operation

Shuf(x,y) = {x1Y1X2Y2 .. . XpYp Ix= X1 .. . xp,Y = YI .. ·Yp,
p 2: 1,x;,y; EV*, 1::; i::; p}.

Furthermore, for two languages L1 , L2 ~ V*, we define

LJ Shuf(x, y).

• The next operation is very similar to the previous one, defined
for words of equal length only:

SShuf(x,y) = a1b1a2b2 . .. apbp,a;,b; E V,1::; i::; p,

where x = a1 ... ap, y = b1 ... bp. Naturally,

• A generalized sequential machine, shortly gsm, is a construct

M = (Q, V,U,f,qo,F),

where Q, V, qo, F have the same meaning as for finite automata,
U is the output alphabet, and f : (Q X V) ------, P1(Q X U*).
The relation f- defined for finite automata is extended to gsm's
by

(q,ax,y) f- (s,x,yz) dac'a (s,z) E J(q,a).

For x E V* we write

TM(x)={ E, ifx=E
y, if (qo,x,E) f-* (s,E,y),s E F,

As usual, for any language L,

TM(L) = U TM(x).
xEL

A family is closed under gsm mappings if it is closed under the
operation TM, for any gsm M.

https://biblioteca-digitala.ro / https://unibuc.ro

1.2. BASIC DEFINITIONS 27

The family of regular languages is closed under all operations from
above while the family of context-free languages îs not closed under
intersection, complementation, Shuf and SShuf.

The families in the Chomsky hierarchy are denoted by FIN,
REG, LIN, CF, CS, RE: the families of finite, regular, linear,
context-free, context sensitive and recursively enumerable languages,
respectively. Moreover, we recall that a family F of languages is called
a trio, if F is closed under c-free homomorphisms, inverse homomor­
phisms and intersections with regular sets. It is well-known that any
trio is closed under restricted homomorphisms, too (see [114]).

1.2.3 Decidability

There are lots of questions requiring algorithmic answers. A very im­
portant questions asks whether or not a word belongs to a language.
This problem is known as the membership problem. A language for
which this problem is algorithmically solvable is called recursive. The
family of recursive languages is a proper subfamily of the family of
recursively enumerable languages.

Other important decidabilty problems in the formal language the­
ory are:

• Equivalence problem: Are the languages L1 and L2 equal?

• Finiteness problem: Is the language L finite?

• lnclusion problem: ls the language L1 a subset of L2?

• Emptyness problem: Is the language L empty?

The finiteness and emptyness problems are decidable for the class
of context-free languages, but the equivalence problem is undecidable.
This problem, as well as the inclusion problem, are decidable for
regular languages.

The undecidability status of some problems is proved by reducing
them to a famous combinatorial problem known to be undecidable.
This is the Post Correspondence Problem (PCP for short): let V an
alphabet with at least two letters, n 2'. 1, and x, y two n-tuples of

https://biblioteca-digitala.ro / https://unibuc.ro

28 CHAPTER 1. INTRODUCTION

non-empty words over V. If

Y = (YI, Yz, · • ·, Yn),

is an instance of PCP, we say that PC P(x, y) has a solution if there
exist k 2'. 1 and ij E {1,2, ... ,n},j = 1,2, ... ,n, such that

The sequence ij E {1,2, ... ,n} is called a solution. There 1s no
algorithm for deciding whether or not PCP has any solution.

1.2.4 A Structural Language of Nucleic Acids

In this section we will establish some notations and recall some prop­
erties of nucleic acids complementarity [121]. The uniformly con­
sidered alphabet îs the alphabet consisting of the four bases (nu­
cleotides), namely adenine, cytosine, guanine, and thymine, abbrevi­
ated usually by the letters A, C, G and T, respectively, •

VvNA = {A,C,G,T}

and the homomorphism (called complementarity) - : VDNA ----.

VvN A, defined by:

A=T, G=C, T=A

that corresponds to simple base complementarity.
For a DNA string w its opposite strand is mi(w) because they

are the strands of a double helix complementary oriented in opposite
directions. We shall consider here some interesting features of DNA
encoding secondary and recursive secondary RNA structure, respec­
tively. Secondary structure we consider here îs a simplification of the
base-pairing within the same strand, namely a substring and its re­
verse complement, which are both found nearby on the same strand,
fold back to base-pair with itself and form a steam-and-loop struc­
ture. We associate a linear string with each double helix, whenever a

https://biblioteca-digitala.ro / https://unibuc.ro

1.2. BASIC DEFINITIONS 29

secondary structure is identified, as follows (the orientation custom­
arily indicated by 5' and 3' is largely irrelevant for our purposes):

5' - xaymi(a)z - 3'
==} ami(a)

3' - xfrf}mi(a)z - 5'

As one can see, from a "stem-and-loop" structure we keep the
stern pattern and ignore the loop one. The set of all these linear
strings consists of those strings w E V!JN A such that

w = mi(w)

or, equivalently
w = umi(u), for some u.

The above equivalence is a simple linguistic expression of the notion
of dyad symmetry.

In a more general form, recursive secondary structures are com­
mon in RNA, hence in DNA which eneode them, as shown in Figure
3.1.

n
i(X3) X4

mi(x2)

Figure 1.1.

A linear string identifying this structure can be defined as a string
that leads to the empty string E by cancelling any adjacent comple­
mentary pair (a,ii). These strings are called orthodox in [121] Denote

https://biblioteca-digitala.ro / https://unibuc.ro

30 CHAPTER 1. INTRODUCTION

by LDNA the set of all strings defined as above. Clearly, LDNA is a
context-free language as shown by the context-free grammar

S ----. S SlaSalaa

for all a E VDNA• (This is the well-known grammar for the Dyck
language.)

Furthermore, we define the reduced word of a string x E VDNA as
being obtained by erasing any adjacent complementary pair from x.
Obviously, the reduced string of any string is unique and the reduced
string of any word in LDNA is €.

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 2

Operations Suggested by
the Genome Evolution

2.1 lnversions, Transpositions, Duplications

This section is dedicated to the study of some operations on strings
and languages suggested by the arrangements in genomes. These
operations are investigated in the frame of formal language theory;
we investigate the interrelationships among them and some necessary
conditions for classes oflanguages tobe closed under these operations.

We shall not consider the crossover operation in this section be­
cause this operation, viewed as a formal operation (regardless its bio­
logical motivation and significance) is actually the splicing operation
which will be investigated in more detail in a forthcoming section.

For formal language theoretic considerations with respect to dele­
tion we refer to [70]. Some relations between inversion, transpositions
and duplications very similar to those presented below are shown in
[32], where lexical contexts are considered.

Let O be a pair O = (V, O'), where V is an alphabet and O' is
a finite subset of v+. For a string x E v+ we define the following
operations with respect to the pair O = (V, O'):

• Inversion: Io(x) = {x1mi(x2)x3 Ix = X1X2X3, X2 E O', X1,

x3 EV*}. In this case O is called inversion scheme.
https://biblioteca-digitala.ro / https://unibuc.ro

32 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

• Transposition: To(x) = {x1x3x2X4 I x = X1X2X3X4, X2 E
O' or x 3 E O', x1 , x 3 E V*}. In this case O is said to be a
transposition scheme.

• Duplication: Vo(x) = {x1x2x2x3 I x = x1x2x3, X2 E O', x1,

x 3 E V*}. In this case O is called duplication scheme.

If the pair O is obvious from the context, we write I, T, and V
instead of Io, To, and 'Do, respectively.

For each 5 E {I, T, V}, the operation S can naturally be extended
to languages by

S(L) = LJ S(x).
xEL

The iterated versions of the above operations are naturally defined
as follows. For SE {I, T, V} we set

S0(L)
5i+1(L)

S*(L)

L,

S(S;(L)),

LJS;(L).
i>O

2.1.1 Relationships Between the Above Operations

ln this section we investigate some relationships between the afore­
mentioned operations. We shall distinguish two cases: non-iterated
and iterated versions. A family F of languages is closed under the
operation 5 E {I, T, V}, if So(L) E F holds for all LE F and any
scheme O.

Non-iterated Versions

The inversion operation looks similar to the mirror image operation
mi defined in the introductory section. lt consists in the application
of mi to a subword. However, the two operations are quite different
as shown in the following proposition.

Theorem 2.1.1. There are families of languages closed under the
mirror image but not closed under inversions and vice versa.

https://biblioteca-digitala.ro / https://unibuc.ro

2.1. INVERSIONS, TRANSPOSITIONS, DUPLICATIONS 33

Proof. A DOL system is a triple G = (V, h, w), where Vis an alphabet,
w E v+, and h is an endomorphism on V. The language generated
by G is L(G) = {w} U {hi(w) Ii 2: l}. lt is known that the farnily of
DOL languages is closed under mi.

Consider the DOL language

and the inversion scheme

I= ({a,b},{ab}).

The language
I1(L) = {a2"-1 bab2"-l I n 2: O}

cannot be generated by a DOL system. Indeed, let us suppose that
there exists a DOL systern G = ({ a, b }, w, h) such that L(G) = I1(L).
Since h(a2"- 1bab2"-1) E I1(L), for sorne n 2: 2, it follows that
lh(a)lb = lh(b)la = O. Therefore, h(a) = ak and h(b) = bP for sorne
k,p 2: l.

If k = p = l, then L(G) is finite, which contradicts the infinity of
I1(L) = L(G).

If k > lor p > l, then h(a2"-1 bab2"-1) contains a substring of the
form bPak, which contradicts the form of the words in I1(L) = L(G).

Now, we shall provide a family of languages closed under inver­
sions but not closed under the mirror image. To this end, take the
language

Lo = {anbn I n 2: 1}

and construct recursively the following sequence of language classes:

Fo {Lo},

Fk+1 {I1(L) I LE Fk,I is an inversion scheme}.

The family

F = U Fk
k>O

îs obviously closed under inversions.
The following fact is essential in our proof.

https://biblioteca-digitala.ro / https://unibuc.ro

34 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Fact. For every language L E F and any n ~ 1 there exists a
finite set A(L, n) ~ L such that every string x in L \ A(L, n) can be
expressed as x = aPybq with p, q ~ n and y E { a, b} *.

lf L = L0 , then the assertion is trivially true.
Assume that the assertion is true for any language L' E Fk and

take L E Fk+l. Then there ex.ists an inversion scheme I= ({ a, b}, I')
such that L = I1(L'). Let n ~ 1 bea given integer and m = max{lxl I
x E I}. By the induction hypothesis it follows that L' = A(L', n +
m) UL, where A(L', n + m) is a finite set and every string x in L can
be written as x = aPybq, p, q ~ n + m. Consequently,

L = I1(L') = I1(A(L', n + m)) u I1(L).

Note that I1(A(L',n + m)) is a finite set and any string w in T1(L)
can be decomposed as w = ar zb3 with r, s ~ n and z E { a, b }*, which
completes the proof of the fact.

Now it is clear that the mirror image of any language in F cannot
be in F because it does not satisfy the requirements of the aforemen­
tioned fact. O

We now prove that ·the three operations introduced above also
differ in that sense that the closure under one operation does not
imply the closure with respect to another one.

Theorem 2.1.2. For any pair (X, Y) with X, Y E {T, T, V}, X# Y,
there is a language family [, such that [, is closed under X and is nat
closed under Y.

Prnof. First we consider the family F defined in the second part
of the proof of Theorem 2.1.1. By construction :F is closed under
mvers10n. On the other hand, if we apply the transposition scheme

T = ({a,b},{aa})

to the language L0 E :F we obtain a language, which contains the
set of all words an- 2 bn- 1aab with n ~ 2. This contradicts the fact
showu in the proof of Theorem 2.1.1. Therefore :F is not closed under
transposi tion.

https://biblioteca-digitala.ro / https://unibuc.ro

2.1. INVERSIONS, TRANSPOSITIONS, DUPLICATIONS 35

Let V be an alphabet. Then we consider the family [, consisting
of all languages L such that there is an integer n 2'. 1 with L ~ vn.
Obviously, [, is closed under inversion and transposition since these
operations do not change the length of a word.

On the other hand, applying the duplication scheme

(V,{a,aa}),

where a E V, to the language { a2} E [, yields the language { a3 , a4}
which is not in .C.

Let V = { a, b}. Then let [,' be the family of all languages L over
V such that each word in L can be expressed as x 1 ax2bx3 , i.e. any
word of L contains ab as a scattered subword. Obviously, [,' is closed
under duplication, since duplication adds additional subwords and
does not destroy scattered subwords.

On the other hand, the application of the inversion scheme (V, ab)
and the transposition scheme (V, {a}) to the language { ab} E [,'
yields {ba} fţ ,C', which proves the nonclosure of ,C' under inversion
and transposition.

It rernains to provide a family of languages closed under trans­
positions but not closed under inversions. To this end, let C be the
family which contains all languages {anbn}, n 2'. 1, and is closed un­
der transpositions. Applying the inversion scheme ({ a, b}, { ab}) to
the language {a3 b3

} one gets {a 2 bab 2

} which cannot be in C. □

However, the situation changes if we restrict the families of lan­
guages under consideration.

Theorem 2.1.3. Let ,C bea family of languages which is closed under
restricted homomorphisms and inverse homomorphisms. Then the
following statements hold.

i) ,C is closed under duplications if and only if it is closed under
inversions.

ii) The closure of .C under transpositions implies the closure of .C
under duplications.

iii) If .C is closed under union or intersection with regular sets
and inversions, then ,C is closed under transpositions.

https://biblioteca-digitala.ro / https://unibuc.ro

36 CHAPTER 2. GENO ME EVOLUTION: OPERATIONS

Proof. i) Let L be an arbitrary language in C over V and let I =
(V,{x 1,x2, ... ,xn}) be an arbitrary inversion scheme. Then we con­
sider 2n+ 1 additional letters c,c1,c2,•••,cn,d1, d2, ... ,dn and the
homomorphisms h1, h2, h3, h4 given by

h1 (VU{c1,c2,••·,cn})*-V*,

h1(a) = a for a EV, h1(ci) = x;, 1 S i S n,

h2 (V U { C1, C2, ... , Cn})* - (V U { C} U { C1, C2, • • •, Cn})*,

h2(a) = a for a EV, h2(c;) = c;c, 1 S i S n,

h3 (VU{c1,c2, ... ,cn}U{d1,d2,--·,dn})* -(VU{c}U

h3(a) = a for a EV, h3(c;) = c;c, h3(d;) = c;cc, 1 S i S n,

h4 : (Vu{c1,C2,--·,cn}U{d1,d2,--·,dn})*-V*,

h4(a) = a for a EV, h4(c;) = x;,h4(di) = mi(x;), 1 S i S n.

Then
I1(L) = h4(h31(VD(h2(h11(L))))),

where D is the duplication scheme which allows the duplication of
the letter c only. This proves that I1(L) E [, holds. The converse
part can be obtained in a similar way being left to the reader.

ii) Let D = (V, {x; I 1 S i S n}) be a duplication schem~. We
consider the homomorphisms

h1 (V U { c; I 1 :s; i S n})* - V*,

h1 (a) = a for a E V, h1 (c;) = x;, for 1 S i S n,

h2 (V U { Cj [1 :s; i S n})* - (V U { C} U { C1, C2, ... , Cn})*,

h2(a) = a for a EV, h2(c;) = c;cc,for 1 S i S n,
n

h3 (VU LJ{c;,d;})* -(VU{c}U{c1,c2, ... ,cn})*,
i=l

n

i=l

https://biblioteca-digitala.ro / https://unibuc.ro

2.1. INVERSIONS, TRANSPOSITIONS, DUPLICATIONS 37

and the transposition scheme

T = (V U { C} U { C1, C2, ... , Cn}, { c; J 1 :s; i :s; n}).

Thus we get

Dn(L) = h4(h31(Tr(h2(h11(L))))).

iii) We shall give the proof in the case when .C is closed under
union. The reader can easily infer a similar construction when .C
is closed under intersection with regular sets. Obviously, if T =
(V,{ti,t 2 , ... ,tn}) is a transposition scheme and T; = (V,{t;}) for
1 :s; i :s; n, then

By supposition, .C is closed under union, and thus it is sufficient to
show that .C is closed under applications of transpositions schemes of
the form f = (V, { x}) for some x E v+. We consider the homomor­
phisms

h (V u { c, d})* --+ V*,

fi(a) = a for a EV, fi(c) = x, fi(d) = c:,
h (V u { c, d})* --+ (V u { c, d, c', d'})*,

h(a) = a for a EV, h(c) = cc', h(d) = dd',

h (V u {q,q',p,p'})*---> (V u {c,d,c',d'})*,

h(a) = a for a EV, h(q) = cc', h(q') = dd',

h(p) = c'c, h(p') = d'd,
f (V U {p,p'q, q'})* --+V*,

f(a) = a for a EV, f(q') = f(p) = c:, f(q) = J(p') = x,

and the inversion schemes

li = (V U {c, d, c', d'}, {cc'}) and h = (V u {c, d, c', d'}, {dd'})

and obtain

Tt(L) = J(f3- 1(I1JI1i(h(f1-l(L)))))).

Note that all homomorphisms used in this proof were restricted ones.
o

https://biblioteca-digitala.ro / https://unibuc.ro

38 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Closure Properties of Some Families

We first study the closure under (non-iterated) inversion, duplication,
and transposition of some language families.

Theorem 2.1.4. Any trio is closed under duplications, transposi­
tions and inversions.

Proof. Let F be a trio. By the previous theorem it suffices to prove
the closure of :F under inversions only. We recall that all trios are
closed under restricted homomorphisms [114].

Let L <:;; V* be a language in :F and

be an inversion scheme. We consider the homomorphisms

h1: (V U {c; 11 s; i s; n})*----, V*, h1(a) = a for a EV,
h1(c;) = x; for 1 s; i :s; n,

h2 : (V U { c; I 1 :s; i :s; n})* ----, V*, h2 (a) = a for a E V,
h2(c;) = mi(x;) for 1 :s; i :s; n

and the regular set
n

R = LJ V*{c;}V*
i=l

and obtain

which proves the closure of :F under inversion. □

Corollary 2.1.1. Alt families in the Chomsky hierarchy are closed
under duplications, transpositions and inversions. -

Iterated Versions

We now start the study of closure under iterated versions. The fol­
lowing lemma is a helpful tool.

https://biblioteca-digitala.ro / https://unibuc.ro

2.1. INVERSIONS, TRANSPOSITIONS, DUPLICATIONS 39

Lemma 2.1.1. Every family of languages closed under iterated in­
versions or iterated transpositions is closed under permutations.

Proof. For any language L E V* let us construct the inversion scheme

I = (V, { ab I a, b E V, a -:J b})

and the transposition scheme

The relations
Ij(L) = Tf(L) = Perm(L)

follow immediately. o

Theorem 2.1.5. The families of regular and context-free languages
are closed neither under iterated inversions nor under iterated trans­
positions.

Proof. Since the families of regular and context-free languages are not
closed under permutations, the nonclosure with respect to iterated
inversions and iterated transpositions follows by Lemma 2.1.l. O

It remains an open problem which of these two families are closed
under iterated duplications.

Theorem 2.1.6. The families of context-sensitive and recursively
enumerable languages are closed under iterated inversions, iterated
transpositions and iterated duplications.

Proof. Let L bea context-sensitive language generated by the context­
sensitive grammar G = (N,T,S,P) and let I= (T,I') be anin­
version scheme. We construct the context-sensitive grammar G'
(N', T, S, P'), where

N' NU {Xa I a E T},

P' {Xa 1 Xa 2 ••• Xak ---+ Xak ... Xa 2 Xa 1 I a1 a2 ... ak E I'}

U {Xa ---+ a I a E T}
u { h(Q) ---+ h(/3) I Q ---+ /3 E P,}

https://biblioteca-digitala.ro / https://unibuc.ro

40 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

and h : (NU T)* ____. N'* is the homomorphism defined by

h(A) = A for A E N and h(a) = Xa for a E T.

The equality Gen(G') = Ij(L) can be easily checked.
Now, we are going to prove that Tx(L) is a context-sensitive lan­

guage for any transposition scheme X = (T, { x; 11 s; i s; n}), n 2: l.
To this end, we construct the phrase-structure grammar

G = (N,T,S,f>)

where

fi= NU {S, Y} U { < Y;, y >I y E Suf(x;), 1 s; i s; n}

and f> contains - besides all rules of P - the following rules (the rules
are accompanied by some informal explanations).

S ____. YS,

Y a ____. aY, and aY ____. Y a, a E T.

Obvioulsly, a string of the form Yw with w E L is obtained in G.
The symbol Y scan the string w from left to right in order to perform
nondeterministically a transposition of some x;. If the substring x; is
identified in w, it is erased, and it will be moved to another location.
This process can be clone by using the following rules:

y - < Y;,x; >, 1s;is;n

< Y;, ax> a - < Y;,x >, 1 s; i :S n, a E T

<Y;,E>a - a<Y;,E>, and

a<Y;,E> - <Y;,c>a, 1 s; i s; n, a E T

< Y;, € > - Yx;, 1 s; i s; n.

By the last set of rules, the process may be iterated. Clearly, we need
also rules for finishing the process, namely Y ____. €. With the above
explanations we infer that Gen(G) = Tf(L). Since the grammar G

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 41

has a linear bounded working space ([114]), it follows that Tf(L) is
a context-sensitive language.

By a similar proof one can show the closure under iterated du­
plications. The closure of the recursively enumerable languages class
under these operations follows immediately. D

2.2 A Generalization

In [36] the non-iterated variants of the operations presented in the
previous section are investigated in a more general framework. The
results presented here are taken from [36].

Let O = (V, O') bea scheme in which we allow O' tobe an infinite
language over V. For OE {I, T, D} and two families of languages ,C

and ,C' we define

O(.C,[,') = {Oo(L) I LE ,C and O= (V,O'),O' <;;;; V*,O' E ,C'}.

For sake of simplicity we shall write O(L1 ,L2) instead of Oo(L1)

with O = (V, L2).
Obviously, since we can only reverse, transpose and duplicate sub­

words of the basic language, we obtain the following statement.

Lemma 2.2.1 For any operation O E {I, T, D} and any two lan­
guages L1 and L2, O(L1, L2) = O(L1, L2 n sub(L1)).

Lemma 2.2.2 IJ L is a language over a unary alphabet and L' is an
arbitmry non-empty language, then I(L, L') = T(L, L') = L.

Proof. By Lemma 2.2.1, it is sufficient to consider reversals and
transpositions of unary words which does not change the word. D

Lemma 2.2.3 For any O E {I, T, D}, any finite language L and
any language L', O(L, L') is finite.

Proof. Since an arbitrary word w has only a finite number of sub­
words which can be used for the operation, O(w, L') is finite for any
language L'. Because L is finite and O(L, L') = UwEL O(w, L'), the
finiteness of O(L, L') follows. □

The following resuit follows from the definition.
https://biblioteca-digitala.ro / https://unibuc.ro

42 CHAPTER 2. GEN0ME EVOLUTION: 0PERATI0NS

Lemma 2.2.4 For any languages families .C1,.C2,.c;,.c; with .C1 C
.c; and .C2 ~ .c; and any operation O E {I, T, D}, O(.C1, .C2) C
O(.C;, .c;).

2.2.1 Inclusions

The aim of this section is to prove some relations of the form .C ~
O(.C, .C') or O(.C, .C') ~ .C' for some language families .C and .C' and
some operation O.

We start with a direct corollary of Lemma 2.2.3.

Corollary 2.2.1 For O E {I, T, D} and any language family .C,
O(FIN,.C) ~ FIN.

This result can he extended to other families if we require some
conditions for .C.

Lemma 2.2.5 For any O E {I, T, D} and any language families .C
and .C' such that {c} E .C', .C ~ O(.C,.C').

Proof. Ohviously, for O E {I, T, D} and any language L, L =
O(L,{c}). Hence, LE .C implies LE O(.C,.C'). o

Clearly, there can he given other conditions in order to get .C ~
O(.C, .C'). As an example we mention that V E .C' ensures .C ~
I(.C,.C').

Lemma 2.2.6 If .C is closed under morphisms, inverse morphisms
and intersections with regular sets, then O(.C, FIN) ~ .C for any
O.EU.

Proof. O = I. Let L over the alphahet V he an arhitrary language
in .C, and let L' = { w1, w2, ... , Wr} be an arhitrary finite language.
Then we consider r additional letters a1, a2, ... , ar and the morphisms
h1 and h2 given hy

h1 (a) = a for a E V,

h2(a)=aforaEV,

h1(a;) = w; for 1 :S i :S r,

h2(a;) = mi(w;) for 1 :S i :S r.
https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 43

Then

I(L, L') = h2(h11(L) n LJ V*aiV*)
i=l

which proves that I(L, L') E .C holds.

O = T. Let L, L' and a1 , a2 , ... , ar as in the preceeding con­
siderations. Further, let b1 , b2 , ... , br be additional letters. Then we
define the morphisms h1 and h2 by

Then

h1(a) = a for a EV, h1(ai) = Wi for 1 ~ i ~ r,
h1(bi) =€for 1 ~ i ~ r,

h2 (a) = a for a E V, h2 (ai) = € for 1 ~ i ~ r,

h2(b;) = w; for 1 ~ i ~ r.

T

I(L, L') = h2(h11(L) n LJ(V*a;V*biV* U V*b;V*a;V*))
i=l

which proves T(L, L') E .C.

An analogous proof can be given for O= V. o

Lemma 2.2.7 For O E {I, T}and a language family [E {REG,
CF}, O(REG,[) ~ .C.

Proof. We give the proof only for[, = CF, O= I and [, = REG,
O = T. The necessary (small) modifications for the other cases can
be seen from the given proofs and are left to the reader.

L = C F, O = I. Let L and L' be a regular and context-free
language, respectively. Let L be accepted by the deterministic finite
automaton A= (Z,X,8,z0 ,F) and M = (Q,X,f,8',q0 , 1o,F') be
the pushdown automaton accepting mi(L') Then we construct the
pushdown automaton

K = (Zx(Zu{t})x(Zu{t})x(Qu{t'}),X,r,o",(z0 ,t,t,q0),

10,F X {t} X {t} X {t'})
https://biblioteca-digitala.ro / https://unibuc.ro

44 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

where t and t' are additional symbols and, for z1,z2,z3 E Z, x EX,

1 E f, q E Q and qF E F', o" is defined as follows:

o"((z1,t,t,qo),x,,o) = {((z~,t,t,qo),,o) Iz~ E o(z1,x)}

(in this first phase characterized by the presence of t and the absence
oft', in the first component of the state of J(we simulate the work
of the finite automaton A),

o"((z1,t,t,qo),t:,,o) = {((z1,z,z,qo),,o) Iz E Z}

(we guess that the word w under consideration under consideration
can be written as w = w1vw2 with mi(v) E L' where w1 is the
subword we have already consumed; we switch to the second phase
characterized by absence oft and t'),

o"((z1,z2,z3,q),x,,) {((z1,z2,z~,q1),,') I Z3 E o(z~,x),

(q',,') E o'(q,x, 1)},

o"((z1,z2,z3,q),c,,) = {((z1,z2,z3,q1),,') I (q',,') E o'(q,x,1')},

(in the second phase K sirnulates the work of M în the fourth com­
ponent of the state andin its stack; at the sarne tirne J(sirnulates the
work of A backwards in the third component of the state; the first
component of the state is not changed, i.e. it stores o(z0, w1) during
this phase),

(the word v read in the second ph ase belongs to mi(L') and z2

o(z1, mi(v)) holds, i.e.

we switch to the third phase characterized by the presence of t and
t'),

o"((z1,t,t,t'),x,,) = {((z~,t,t,t'),1') Iz~ E o(z1,x)}

(again, we simulate the work of A). Therefore J(accepts w if and
only if w can be written as w = w1vw2 such that v E mi(L') and

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 45

[, = REG, O = T Let L and L' be two regular languages which
are accepted by the deterministic finite automata

respecti vely.
We first show that the language

is regular. In order to do this we construct the nondeterministic finite
automaton

where

(t1, t2, t3, t 4 denote the work on u1, u2, v, u3, respectively; the second
component is used to simulate the work of A on u1 and u3 in case of
presence of t1 or t4 and to store the state obtained after reading u1 in
the other cases; the third component guesses the state of A obtained
after reading u1 v and stores it; the fourth component simulates the
work of A on u2 starting with the guessed state; the fifth component
simulates the work on v starting with the state stored in the second
component; the sixth component simulates the work of Bon v),

Fc = {(t3,z1,z2,z3,z2,z4): z1,z2,E ZA,Z3 E FA,z4 E FB}

U{(t4,z1,z2,z3,z2,z4): z2,z3,E ZA,z1 E FA,z4 E FB}

(words with U3 = € are accepted by the first set, the other words by
the second set), and

{(t1, 0A(z1, x),zA, ZA, ZA, ZB)}

U{ (t2, Z1, Z2, O A (z2, X), ZA, ZB)}
https://biblioteca-digitala.ro / https://unibuc.ro

46 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

for z1 E ZA, x E X (M simulates the work of A on a letter x of u1 in
the second component or it reads the first letter of u2 starting with
z2 in the fourth component and stores the state z1 obtained after
reading u1 and the start state z2 in the second and third component,
respecti vely),

bc((t2, z1, z2, z3, ZA, ZB), x) { (t2, z1, z2, bA (z3, x), ZA, ZB)}

U { (t3, z1, z2, z3, b A (z1, x), b B(ZB, x))}

for z1, z2, z3 E ZA, x E X (M simulates the work of A on a letter x of
u2 in the fourth component or it reads the first letter of v in the fifth
component starting with the state stored in the second component),

for z1,z2,z3,z4 E ZA, zs E ZB, x E X, z2 i- z4 or q ~ FB (M
simulates the work on letters of v),

bc((t3, z1, z2, z3, z2, zs), x) = { (t3, z1, z2, z3, bA(z2, x), 0B(zs, x)) }

u{(t 4, bA(z3, x), z2, z3, z2,, zs))}

for z1,z2,z3 E ZA, zs E FB, x EX (M simulates the work on vor
reads the first letter of u3),

bc((t4,z1,z2,z3,z2,zs),x) = {(t4,0A(z1,x),z2,z3,z2,zs)}

for z1,z2,z3 E ZA, zs E ZB, x EX (M simulates the work of A on
u3).

By the given explanations we obtain the equivalence of the fol­
lowing statements for a word w = u1 u 2vu3 with u3 #- €

a) M accepts w,

b) bA(zA,u1) = z1, bA(z2,u2) = z3, bA(z1,v) = z2, bA(z3,u3) E FA
and 0B(ZB,v) E FB, for some states z1,z2,z3 E ZA,

c) bA(zA,u1vu2u3) E FA and bB(zB,v) E FB,

d) u1vu2u3 EL and v EL',

e) w E L1.

Analogously we can show that M accepts w' = u 1 u2v if and only
if w' E L1

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION

Thus M accepts L1 which proves the regularity of L1.
By a similar construction we can show that

L2 = {u1vu2u3 [U1U2VU3 E L,v E L',v -f:. c:,u2 -f:. c}

is regular, too.
Since

T(L,L') =Lu L1 u L2

47

and L, L1 , L2 E REG, we obtain the regularity of T(L, L'). □

For duplications the analogon of Lernma 2.2. 7 does not hold, be­
cause

V($V*$, $V*$) = {$w$$w$ I w E V*}

implies the existence of a non-context-free language în V(REG, REG).
Therefore we present another upper bound.

First we recall the definition of simple matrix grammars and their
languages. A k-simple matrix gram mar (with regular cornponents) is
a (k + 3)-tuple

where

• N1, N2, ... , Nk and T are pairwise disjoint alphabets (the sets
N;, 1 :S i :S k, are the sets of nonterrninals, T is the set of
terminals),

• S ~TU N1 U N2 U ... U Nk (is the axiom),

• M is a finite set of productions of the following forms:

S ---. w with w E T*,
S---. A1A2 .. . Ak where A; E N; for 1 :S i :S k,
(A1 ____, w1B1,A2---. w2B2, ... ,Ak---. wkBk) with w; E T*,B; E
N; for 1 :S i :S k,
(A1 ____, w1,A2 ____, Wz, ... ,Ak---. wk) with w; E T* for 1 :S i :S k.

For x, y E {S} U T* U T* N 1T* N 2 ... T* Nk, we say that x directly
derives y (written as x ==> y) if and only if either

x = S and S ---. y E M
https://biblioteca-digitala.ro / https://unibuc.ro

48 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

or

y = X1 V1XzV2 .•. XkVk,

(A1 --> v1 , A2 --> v2, ... , Ak --> vk) E M.

The language L(G) generated by G is defined as

L(G) ;=: {z Iz E T*,S ===>* w}.

A language L is called a simple matrix language if there is an integer
k and a k-simple matrix grammar G such that L = L(G). By SM we
denote the family of simple matrix languages. We note that { anbn I
n ~ 1} E SM.

Lemma 2.2.8 D(REG,REG) ~ SM.

Proof. Let Land L' be two regular languages L and L'. Moreover,
let G = (N,T,P,S) and G' = (N',T,P',S') be the regular grammars
(with the sets N and N' of nonterminals, the set T of terminals, the
sets P and P' of productions and the axioms S and S') generating L
and L', respectively. Without loss of generality we can assume that
all productions in P and P' are of the form A--> xB or A --> € where
A and B are nonterminals and x is a terminal.

We consider the 5-simple matrix grammar

where, for i E {1, 2, 3, 5},

and
N(4) = {A(4) I A E N'} U {X(4)}

are pairwise disjoint sets (with additional letters X(i) and y(i), 1 :S
i :S 5), and PH consists of the following rules

Group 1
https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 49

sH - x(1)x(2)x(3Jx(4)x(s),

(X{l) - 5(1),x(2) - x(2),x(3) - x(3),x(4) - x(4),x(5) - x(s)),

Group 2
(A(l) - vB(l),x(2) - x(2),x(3) - x(3),x(1) - x(4),x(5) -

X(5l) for A - vB E P,
(A(1) - y{l),x(2) - A(2),x(3) - x(3),x(4) - (S')(1 l,x(5) -

X(5l) for A E N,

Group 3
(Y(l) - y(ll,A(2) - vB(2),x(3) - x(3),c(4) - vD(4),x(s) -

x(s))

for A - vB E P,C - vD E P',
(Y(l) _ y(1),A(2) _ y(2),x(3) _ A(3),c(4) - y(4),x(s) - x(s))

for C - t: E P',

Group 4
(Y(l) - y(1),y(2) - y(2),A(3) - vB(3),y(4) - y(1),x(s) - x(s))

for A - vB E P,
(Y(1) _ y(1J,y(2J _ y(2J,A(3) _ y(3l,y(4J _ y(1J,x(s) _ A(sJ)

for A E N,

Group 5.
(Y(l) _ y(1), y(2) _ y(2), y(3) _ y(3); y(1) _ y(1), A (s) _ vB(s))

for A- vB E P,
(Y(l) _ y(1),y(2) _ y(2)

1
y(3) _ y(3),y(1) _ y(1),A(s) _ y(s))

for A- t: E P,
(Y(l) _ E:, y(2) _ E:, y(3) _ E:, y(1) _ E:, y(s) _ c:).

The application of the two rules of Group 1 yields the derivation

Any of the first given rules of phase 2 simulates a derivation step in
G and such steps can be iterated, i.e. a derivation S ===}* w1Fi in G
is simulated. Thus we obtain the derivation

5(1) x(2) x(3) x(4) x(s) ===}* W1 (Fdl) x(2) x(3) x(4) x(s)

===} W1y{l)(F1)(2)x(3\S')(4)x(s)

https://biblioteca-digitala.ro / https://unibuc.ro

50 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

in H. Now by iterated use of the first given rules of group 3 we simu­
late simultaneously a derivation F 1 ==>* w2F2 in G and a derivation
S' ==>* w2F in G' because the terminals in the rules for A and C
coincide. Hence we get

W1y(l)(Fi)(2) x(3l(s')(4) x(5) ==>" W1 y(l)w2(F2)(2)(F2)(3)w2

F(4) x(s) ==> W1y(l)w2Y(2l(F2)(3)w2Y(4) x(s),

By the first given rules of group 4 we simulate a derivation F2 ==>*
w3F3 in G and obtain

W1 y(l) w2Y(2) (Fd3lw2Y(4) x(s) ==>" W1 y(l)W2 y(2lw3

(F3/3lw2Y(4) x(5) ==> w 1Y(1)w2Y(2)w3Y(3)w2Y(4)(F3/5l.

Finally, by the first given rules of group 5 we simulate a derivation
F3 ==>* w4F4 in G and terminate by the other rules which yields

w1Y(1)w2Y(2)w3Y(3)w2Y(4)w4(F4P) ==>* W1y(l)w2Y(2lw3

y(3)w2Y(4lw4y(5) ==> w1w2w3w2w4.

Therefore w1 w2w3w2w4 E L(H) if and only if there are derivations

5 ==>* W1F1 ==>* W1W2F2 ==>* W1W2W3F3 ==>*
W1 W2W3W4F4 ==> W1 W2W3W4

in G and S' ==>* w2 in G'. Thus

Analogously we can construct a 5-simple matrix grammar H' such
that

L(H') = {w1W3W2W3W4 I W1W2W3W4 E L,w3 EL'}.

Moreover, D(L, L') = L(H) U L(H'). The closure of SM under union
implies D(L, L') E SM. o

Lemma 2.2.9 Let OE {I,T,D}. Further, let [' E {CS,RE} and
let [,bea language family with [, s;; [,'. Then O(i,[') s;; ['.

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 51

Proof. We give the pro of only for {,' = C S. The same proofs wor k
for {,' = RE, too (one only has to omit the considerations on the
space corn plexi ty). Moreover, we give an informal proof; the formal
details are left to the reader.

O = I. It is sufficient to show that I(L, L') E C S holds for any
two context-sensitive languages L and L'.

We construct a Turing machine M accepting I(L, L'). M works
as follows on a given input word w:

1. M copies w on the first work tape, marks non-deterministically
a subword v of w and writes ·a copy of v on the second worktape.

2. M replaces the marked word v by mi(v) yielding w1mi(v)w2

on the first worktape.

3. M checks v E mi(L') by taking the word on the second work­
tape as input and simulating the linear-bounded automaton
accepting the context-sensitive language mi(L').

4. M checks w1mi(v)w2 EL by taking the word on the first work­
tape as input and simulating the linear-bounded automaton
accepting L.

M accepts w if and only if both checks in phases 3 and 4 are successful.
Thus w = w1 vw2 is accepted by M if and only if w1 mi(v)w2 E L and
v E L'. Hence w is accepted if and only if w E I(L, L').

Moreover, phase 1 needs space O(lwl+ Ivi). Phase 2 requires space
O(lvl). Phases 3 and 4 need O(lvl) and O(lwl), respectively. Because
Ivi :S lwl, M needs space O(lwl) on w. Since the languages accepted
by Turing machines with linear space are context-sensitive, I(L, L')
is context-sensitive.

O= T. We change the proof for O= I as follows: In phase 2, M
cancels the marked word v in the word w which yields w' and inserts
v at some place in w' w hich yields w". In ph ase 3, lvf checks v E L'.
In phase 4, M checks w" E L.

Then w E T(L, L') holds if and only if w is accepted by M.
Moreover, M only uses linear space.

https://biblioteca-digitala.ro / https://unibuc.ro

52 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

O = V. ln this case we copy two non-overlappings subwords v1

and v2 of the input word w on the second and third worktape. Then
we check whether or not v1 = v2 . If this is the case, then we copy w
to the first worktape and cancel either v1 or v2 in the word on the
first worktape. Finally, we check whether or not the word on the first
worktape belongs to L and the word on the second worktape belongs
to L'.

M only accepts if all checks give a positive answer. Again, we
need only linear space which proves V(L, L') E C S. O

2.2.2 Strictness of Some Inc1usions

The preceeding lemmas prove some inclusion of the form .L ~ O(.C, .C')
~ [,'. The following lemmas show the properness of the inclusions in
some cases. For this it is sufficient to show that there are languages
in [,' \ O(.C, [,') and O(.C, .C') \ .C, respectively.

Lemma 2.2.10 Let O E {I, T, V}. {anbn I n 2: 1} f:- O(R, Q) for
any regular language R and any language Q.

Proof. O = I. Let L = {anbn I n 2: l}. Let us assume that
L = I(R, Q) for some regular language R and some language Q.
Without loss of generality we assume that there is no language Q' C Q
such that L = I(R, Q'). This ensures that any word in Q is reversed
as a subword of some word in R.

If anbn E I(z, q) for some words z E R and q E Q, then one of
the following conditions holci:

- z = anbn and q E a+ or
- z = anbn and q E b+ or
- z = ani bi2 an3 bn4 , q = bn2 an3 and n1 + n3 = n2 + n4 = n.

Hence

I(R,Q) I(R n a+b+, Q na+) u I(R n a+b+, Q n b+) u
I(Rn a+b+a+b+,Q n b+a+). (2.1)

Because the reversal of subwords in a+ or b+ does not change the
word

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 53

and

where la and lb are the smallest lengths of words in Q na+ and Q n b+,
respectively. Therefore I(R n a+b+, Q na+) and I(R n a+b+, Q n b+)
are regular languages.

We now distinguish two cases.
Case 1: Q n b+a+ is finite. Then I(R n a+b+a+b+, Q n b+a+)

is regular by Lemma 2.2.6. Therefore, by (2.1), I(R, Q) is regular.
Since L is not regular, we get a contradiction to L = I(R, Q).

Case 2: Q n b+ a+ is infinite. Then by the well-known fact that
any set of Parikh vectors of an infinite set contains two comparable
elements we obtain the ex.istence of two different words bkak' and
bmam' with O < k ::; m and O < k' ::; m'. Because a•bmam' bt E R
where s + m' = m + t = n for some n (the reversal of bmam' leads to
anbn), we get by the reversal of bkak' that w = a•bm-kak'bkam'-k'bt

is in I(R, Q). However, since m - k > O or m' - k' > O has to hold,
w ~ L. This contradicts L = I(R, Q).

O = T. Let us assume that L = T(R, Q) for some regular
language R and some language Q. Again, we assume that there
is no language Q' C Q with L = T(R, Q'). Since L is not regu­
lar and T(R,{c}) = R, Q contains a non-empty word w. Now let
anbn E T(R, w). We distinguish three cases.

Case 1: w = am for some m 2: 1. Then an-mbnam E T(R, w) ~
T(R, Q). Since an-mbnam ~ I(we obtain a contradiction to I(=
T(R,Q).

Case 2: w = aibi for some i 2: 1,j 2: 1. Hence an-ibn-iaibi E
T(R, Q) which leads to a contradiction as above.

Case 3: w = bm for some m 2: 1. Hence bmanbn-m E T(R, Q)
which leads to a contradiction, again.

O= D. First we mention that Q cannot be finite, since D(REG,
FIN)~ REC by Lemma 2.2.6 and L is not regular. Furthermore, we
can assume that Q contains only words of a+ U b+ because otherwise
the duplication leads to words containing two times the subword ab
or ba and thus not contained in L. Therefore Q contains at least ai
and ai or at least bi and bi for some integers i and j with 1 ::; i < j.

https://biblioteca-digitala.ro / https://unibuc.ro

54 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Let ai, ai E Q and anbn E D(R, ai). Then an- 2(j-i)bn E D(R, ai).

This contradicts L = D(R, Q). Analogously we get a contradiction if
bi, bi E Q. □

Let h : { a, b} * -+ { a, b} * be the morphism defined by

h(a) = ab and h(b) =ba.

Then we set

T = LJ {hi(a)}.
i>l

It is known that T is not context-free does not contain subwords of
the form ww where lwl 2: 2 (see [15]) and that T is not context-free
(use a pumping lemma).

Lemma 2.2.11 For any context-free language L and any language
Q, T -::p D(L,Q) holds.

Proof. Let us assume that T = D(L, Q) for some context-free lan­
guage L and some language Q. Sin ce D(C F, FIN) ~ C F by Lemma
2.2.6, Q has to be infinite. Thus Q contains a word w with lwl 2: 2
and there is a word v E T such that v E D(L, w). Obviously,
v = u1 wu2wu3 with u1 wu2u3 E L or u1 u2wu3 E L. Hence v1 =
u1wwu2u3 E D(L,w) or V2 = u1u2wwu3 E D(L,w), and therefore
v 1 E D(L, Q) or v2 E D(L, Q). However, v1 , v2 ~ T, which 1s a
contradiction to T = D(L, Q). □

Lemma 2.2.12 For O E {I, T}, .C E K and .C' E {CS, RE} with
.C C .C', 0(.C,.C') C .C'.

Proof. By Lemma 2.2.9, O(.C, .C') ~ .C'. In order to show the strict­
ness of this inclusion we consider a unary language J(E .C' \ .C and
assume that I(E O(.C, .C'). Then 1(= O(L, L') for some languages
LE .C and L' E .C'. Ifalph(K) = {a}, then I(= O(Lna*,L'na*)
also holds. Since L n a* is a unary language in .C, by Lemma 2.2.2
we obtain I(= L n a*. This implies I(E .C in contradiction to its
choice. o

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 55

Lemma 2.2.13 Let .C,1, L2, .C,3 be language families such that REG ~
[,1, .C, 2 \.C,3 contains a non-empty language, .C, 2 is closed under reversal
and product with letters and .C,3 is closed under right and left quotient
with letters. Then I(.C,1, .C,2) \ .C,3 contains a non-empty language, too.

Proof. By s·upposition, there is a language L E L2 \ .C,3. Let V =
alph(L) and $ (ţ. V. Then $mi(L)$ E .C,2 by the required closure
properties of L2. Thus L = I($V*$,$mi(L)$) E I(.C,1,.C,2). Fur­
thermore, by the closure of .C,3 under quotients with letters L (ţ. .C,3
which proves the statement. O

Lemma 2.2.14 Let .C,1, .C,2, .C,3 be language families such that REG ~
[,1, [,2 \ .C,3 contains a non-empty language, .C, 2 is closed under prod­
uct with letters and .C,3 is closed under right and left quotient with
letters. Then T(.C,1, .C,2) \ .C,3 contains a non-empty language, too.

Proof. By supposition, there is a language L E L2 \ .C,3. Let V
alph(L) and $ (ţ. V. Then L E .C, 2 and L = T($V*$, L) E
T(.C,1, L2)- This leads to a contradiction as in the proof of Lemma
2.2.13. o

Lemma 2.2.15 For OE {I, T, D} and language families .C, and [,'
of K such that REG ~ .C, c .C,', .C, C O(.C,, .C,').

Proof. By Lemma 2.2.5, .C, ~ O(.C,, .C,'). We have to show the strict­
ness of the inclusion.

For O E {I, T}, this follows from Lemmas 2.2.13 and 2.2.14 with
[, = L1 = .C,3 and .C,' = .C,2.

Now, Jet LE .C,' \ .C,, V= alph(L) and $ (ţ. V. Then

L' = {$w$$w$ I w E L} E 0(L, $V*$).

Let us assume that L' E .C,.

If [, E { REG, C F, RE}, we can construct a generalized sequential
machine M such that its induced function fM satisfies !M(L') = L.
By the closure properties ofthe families under consideration fM(L') E
[, which gives L E .C, in contrast to the supposition.

https://biblioteca-digitala.ro / https://unibuc.ro

56 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

lf [= C S, we first construct the .s-free generalized sequential
machine N which induced function fN satisfies fN(L') = {wlwl+3 I
w EL}. Again, fN(L') E CS. Then there exists a Turing machine
P which accepts fN(L') with linear space. Now we construct the
Turing machine P' which works as follows on the input w. It copies
w to the first worktape and adds one symbol $ before w and lwl + 3
symbols $ after w on the first worktape. Then it simulates P where
the first worktape is considered as the input tape. P' accepts if and
only P accepts. Therefore P' accepts L. Moreover, P' needs only
linear space. Thus L E C S in contrast to the supposition. O

We list below a few further relations which are direct consequences
of the results presented so far.

• C F C I(C F, REG). The inclusion follows from Lemma 2.2.5
and strictness from

I({ww$: w EV*}(/: CF,

I(I({wmi(w)$: w E V*},{$w$: w EV*}) E

I(CF,REG)

where Vis an arbitrary alphabet with $ (ţ V.

• C F C T(C F, REG). Again, the inclusion follows from Lemma
2.2.5. In order to show the strictness we consider the language

If l(is context-free, then I('= I(n a+c+b+d+ is also context­
free. However, this contradicts

which can be shown easily by pumping techniques. Therefore
I(r/. C F is valid.

Finally in this section we note that, for OE {I, T}, the results of
the form O(I1, I2) C I2 with [1 C [2 are almost "optimal". This
follows from Lemma 2.2.13 and Lemma 2.2.14 which say that a family

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 57

[,3 with O(.C1, .C2) ~ L3 C .C2 cannot be closed under quotients with
[etters and the fact that most of the interesting language families are
closed under quotients with letters.

We mention that in the case of duplication we do not have such
"optimalities" as for inversion and transposition. Moreover, it is open
whether or not the inclusions C S ~ V(C S, RE) ~ RE are strict.

A similar investigation remains to be clone for iterated versions
of these operations. Along the same lines, the following problem
naturally arises. For a language L ~ V*, we set

D(L)

D0(L)
Di(L)

D*(L)

{uxxv I uxv E L,u,x,v EV*},

L,

D(Di-1(L)), i:::: 1,

LJ Di(L).
i2:0

Otherwise stated, D*(L) is the smallest language L' ~ V* such
that L ~ L' and whenever uxv EL', uxxv EL' holds for all u, x, v E
V*.

For singleton languages L = { w} and i :::: O, we write Di (w) and
D*(w) instead of Di({ w}) and D*({ w}), respectively.

The problem asks whether D*(L) is still regular/context-free pro-­
vided L is regular/ context-free. If one restricts to the two-letter al­
phabet, then the following result holds [39].

Theorem 2.2.1 If L is a regular language over the two-letter alpha­
bet, then D*(L) is also regular.

Proof. First, we prove that if w is a string over the two-letter al­
phabet, then D*(w) is a regular language. The assertion is trivial
provided that w is the empty string or w E a+.

Let V= {a,b} and w = a 1a 2 .. . an, where ai EV for 1 :S i :S n,
n ~ 2. We prove that

D*(w) = {w1a1w2a2w3a3 ... w,,_1an-1WnanWn+1 I W1 Ea;,

Wn+I Ea~, Wi Ea; for ai-I = ai, Wi E V*

(2.2)
https://biblioteca-digitala.ro / https://unibuc.ro

58 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

We first prove the inclusion ;2. Obviously W1 E ai can be gener­
ated by duplications of a1 . Analogously, Wn+l E a; can be generated
by duplications of an. If a;_ 1 = a;, then we can generated w; E a:

by duplicatios of a;.

Now let a;_ 1 f:- a;. Without loss of generality we assurne that
a;_ 1 = a and a;= b. We distinguish faur cases for w; E {a,b}*.

Case 1. w; = bi I ajI bi2 aj2 ... bik aJk.

Then we first duplicate k-tirnes the word ab = a;_1a; which
leads to the word

a1a2 ... a;-1(abl+
1
a;+1a;+2 ... an=

a 1 a2 ... a;~ 1 a;_ 1 (bal a;a;+1 a;+2 ... an-

The desired powers i1 and j,, 1 :S l :S k, can be obtained by
duplications of the corresponding letter.

Case 2. w; = bi I ajI bi 2 aj2 ... bik- I aJk- I bik.

Then we first duplicate a; = b ik-tirnes and proceed asin Case
1 to get bi I aJI bi2aJ2 ... bik-1aJk-1 _

Case 3. w; = ai I bhai2bh ... aikbJk.

We first duplicate a;_ 1 = a and a; = b ii-tirnes and]k-tirnes,
respectively and proceed as in Case 1 in order to get the string
bJ1 ai2 bh ... aik-1 bJk-1 aik.

Now we first duplicate a;_ 1 = a i1-tirnes and proceed then as
in Case 1 to obtain bJI ai2 bJ2 .•• aik-1 bJk-1 _

The converse inclusion is provecl by incluction. Denote by L the
language in the righthand side of equation 2.2. Obvioulsy, D0(w) ~
L. Assurne that D"(w) is included in L ancl take an arbitrary string
X from nn+l (w). Assurne that X is obtained frorn y E Dn(w) by
duplicating one of its substrings. Since y E L we can write:

I E * E • Y = W1a1w2a2w3a3 ... Wn-1an-1Wnanwn+1 W1 a1,Wn+l an,

w; Ea-; for a;-1 = a;, w; EV* for a;_ 1 f:- a;, 2 :S i :S n,

X W1 a1 W2a2 ... U1 U2a; ... V1 U2a; ... V1 V2aj ... an-I Wnan Wn+ 1,

https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 59

with

w; u1 u2, u1 u2 E V*,

Wj V1V2,V1V2EV*

for some j > i. In other words, the substring of y that has been du­
plicated was u 2a;w;+1 a;+l ... aj-l v1. Note that the string obtained
from y by duplicating a substring of some Ws is trivially in L. There­
fore we consider j > i.

If a;_1 and a; are distinct letters, then x can be written in the
form

I
x = W1a1 w2a2 ... w;a; ... Wjaj ... an-1 WnanWn+l,

where w; = w;a;w;+l a;+l ... v1 u 2 which is a string in { a, b }*, hence
X EL.

If a;_1 = a;, then we distinguish two cases:

Case 1. a; = a;+1 = ... aj. By the definition of L, it follows that x
is in L.

Case 2. a; = a;+1
written as

... ak-l :j; ak for some k > i. Then x can be

where wk = Wkak ... v1 u2a;w;+1 ... Wk which is in {a, b }*. Hence
x E L holds which completes the proof of our assertion.

Now, let M bea gsm which translates any string w = a1a 2 ... an E

{ a, b }* in TM(w) = b1 a1 b2a2 ... bnanbn+l, where

{

[a1], if i = 1,

b· _ [a11], if i = n + I,
,- [a;],ifa;_1 =a;,2~i~n,

(ab], if a;-1 -:/- a;, 2 ~ i ~ n.

Consider also the regular substitution s : { a, b, [a], [b], (ab]}* ----. 2{a,b}
defined by

s(a) = {a}, s(b) = {b}, s([a]) = a*, s([b]) = b*, s([ab]) = {a,b}*.
https://biblioteca-digitala.ro / https://unibuc.ro

60 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

As D*(L) = UwEL D*(w) and by the proof of the assertion from
above, we obtain D*(L) = s(TM(L)), which implies the regularity of
D*(L). o

The problem has been completely solved for singleton languages
over arbitrary alphabets by Ming in [92] in the following way.

Theorem 2.2.2 lf w is a string containing at least three different

symbols, then D*(w) is nat regular.

Proof. We assume that w = abc and V = { a, b, c} below. The general
case follows easily from this.

Fact 1. Suppose that u = abcu', where u' E V*; then there exists
v EV* such that uv E D*(w).

Proof of the fact. We show how to construct z = uv iteratively.
lnitially, we set z = abc. Suppose that u = a1a2 ... ak and z =
b1 b2 ... b1. First we have that a; = b; for 1 ~ i ~ 3. Then for each
4 ~ i ~ k, we do the following: we fil}d the largest index j < i such
that bj = a;. Then we duplicate the subword of z determined by the
indices j ... i -1. The effect of this duplication is to make the prefixes
of u and z agree on all indices up to and including i. For example,
suppose u = abcbacca; we construct z iteratively as follows, where
the underlined portion shows the subword which is tobe duplicated:

abc ---> abcbc ---> abcbabcbc ---> abcbafbabcbc --->

abcbaccbabcbc---> abcbaccaccbabcbc,

which concludes the proof of the first fact.

Fact 2. Let t(x) be the minimal number of duplications necessary
to get x from w. We have t(x) 2:: log2 (lxl/3).

Proof of the fact. Each duplication at most doubles the length of
the pi'evious word and the starting word is of length 3.

Fact 3. Suppose that u = abcu' E V* is square-free (it does not
con tain repetitions). Let v be the shortest word such that uv E D*(w).
Then Ivi 2:: log2(lul/3).

Proof of the fact. By the definition oft, uv is obtained from w

by a sequence of at least t(uv) duplications. Sin ce u is square-free,
https://biblioteca-digitala.ro / https://unibuc.ro

2.2. A GENERALIZATION 61

each of these duplications must result in at least one additional letter
outside u, i.e., in v. lt follows that

Ivi 2 t(uv) 2 log2(luvl/3) 2 log2(lul/3)

and the proof of the fact is complete.
We are now ready to prove the theorem using Myhill-Nerode's

characterization of regular languages. We construct an infinite se­
quence of pairwise inequivalent words as follows. We start by defining
W1 = abc. For i 2 1, we define W;+I inductively as follows: let V;
be such that W; V; E D* (w). Then we choose W;+ 1 to be a square­
free word starting with abc, such that log2(IW;+il/3) > 1½1- Such a
word exists because there are infinitely many square-free words over
a three-letter alphabet. This length condition ensures (by the third
fact) that W;+l Vj ~ D* (w) for all j :S i. lt follows that W; are
pairwise inequivalent, which implies that D*(w) is not regular. O

However,

Theorem 2.2.3 For allw EV* and alla1,a2, ... ,an EV, the lan­
guage D*(w) n a;: a; ... a; is regular.

Proof. Let U = {a1 ,az, ... ,an} ~ V and denote L = D*(w)n
aia2 .. . a;. Consider the set M of minimal vectors in Wu(L); accord­
ing to Ki:inig Lemma, this set is finite (all its elements are incompa­
rable). lt is easy to see that

L = {a?+i 1 a?+i2
... a~n+in I ij 2 O, 1 :S j :S n,(s1,s2, ... ,sn) E M}.

ln conclusion, L is a regular language. O
Here are some other combinatorial properties of languages D* (w).

Theorem 2.2.4 For all strings w E V*, the following assertions
hold:

{i} length(D*(w)) = {m E NI m 2 length(w)}.
{ii) D*(w) is Parikh linear.
{iii) (D*(w))+ = D*(w).

(iv) Sub(D*(w)) = alph(w)*, where alph(w) is the minimal al­
phabet V such that w E V• and Sub(L) denotes the set of alt sub­
strings of the strings in L.

https://biblioteca-digitala.ro / https://unibuc.ro

62 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Proof. Assertion (i) is obvious.
(ii) lfV = {a1,a2, .. -,an}, then \llv(D*(w)) = {vo+ I:7=1 v;j; I

]I, .. ,,jn E N}, where Vo = \llv(w) and v; = (0, ... ,0,1,o, ... ,o),
with 1 appearing on the i-th position, for all 1 ::; i ::; n.

(iii) Clearly

nii(w)Dh(w), .. nim(w) ~ ni1+ii+ ... +jm+m-l(w)

holds for all m ~ 1 and j; ~ O, 1::; i::; m. This implies (D*(w))+ ~
D*(w). The opposite inclusion is obvious.

(iv) The assertion follows from the more general fact that for each
string z = u1 au2f]u3 E D*(w), there is a string in D*(w) which con­
tains both af] and /Jo: as substrings, for all possible u1, u2, u3, a, f]. ln­
deed, by duplicating o:u2/J in zone gets the string z' = u1 au2/Jau2/Ju3,
then, by duplicating /Jo: in this latter string, one gets

z11 = u1 au2/Jaf]au2/Ju3,

which contains both af] and /Jo: as substrings. D

The third assertion of the last theorem implies the closure of the
family of all languages D*(w) under Kleene +, while the last assertion
of the same theorem implies the non-closure of this family under all
other AFL operations:

union: take D*(ab) U D*(ba),

concatenation: take D*(a)D*(b),

intersection with regular sets: take D*(ab) na+ b+ = a+ b+,

morphisms: take D*(ab), h(a) = aa and h(b) = bb,

inverse morphisms: for h(a) = h(b) = a we have h- 1 (a+) = {a,b}+.

Finally we remark that in this section the three operations inver­
sion, transposition and duplication have been studied isolated from
each other. Language generating devices based on different variants
of duplications have been also considered, see, e.g, [89, 94].

However, if we want to model the evolution it is necessary to con­
sider schemes which contain rules for inversion as well as for trans­
position, duplication and deletion. A grammatical approach in this
direction is presented in the next section.

https://biblioteca-digitala.ro / https://unibuc.ro

2.3. THE DUPLICATION ROOT 63

2.3 The Duplication Root

The following well-known lemma, with a very simple proof, will be
very useful in this section.

Lemma 2.3.1 The equation uv = vx has the solutions v = (af3)ka,

k 2'. O, u = a/3, x = f3a.

A square is an immediate repeated nonempty string, that is a
string x which can be written as x = yy, with y a nonempty string.
A string is called square-free if it has no square as a substring. Axel
Thue was the first who studied different problems related to square­
free strings, see, [128, 129].

Let V be an alphabet; for a string w E v+ we write w t> z if
w = uxxy and z = uxy, for some u, y E V*, x E v+. We say that
zis obtained from w by reducing the duplication (square) xx. The
reflexive and transitive closure of the relation t> is denoted by t>*. A
square-free string z is said to be a duplication root of w iff w t> * z. lt
is obvious that each string has a duplication root; a natural problem
concerns the uniqueness of this root and the complexity of computing
this root, provided that it is uniq ue.

Lemma 2.3.2 Let V be an alphabet and a E v+. Jf a t> f3 and a t> 1
for some strings /3, 1 E v+, then there exists a string a E v+ such
that f3 t>* a and I t>* a.

Proof. Assume that a contains two duplications which can be re­
duced; more precisely let xx and yy be two duplications which ap­
pear in a. Assume that /3 and I are obtained from a by reducing the
duplication xx and yy, respectively. We distinguish two main cases:

Case 1: The strings xx and yy do not overlap each other in
o:. Hence, a = uxxvyyz, /3 = uxvyyz, and 1 = uxxvyz, for some
u, v, y E V*. We take a = uxvyz; clearly /3 t> a and I t> a.

Case 2: The strings xx and yy do overlap each other. Severa!
subcases are considered.

Subcase 2a: The strings xx and yy overlap each other as shown
in Figure 2.

https://biblioteca-digitala.ro / https://unibuc.ro

64 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

X X

r
u I

T s] V

l ! I
.J

y y

Figure 2.1.

It follows that f3 = uxtyv, 1 = uxryv; furthermore x = rs and
y = st. Clearly,

f3 urstyv = uryyv t> uryv

1 uxryv = uxrstv = uxxtv t> uxtv = urstv = uryv

hence the assertion holds for a = uryv

Subcase 2b: The strings xx and yy overlap each other as shown
in Figure 3.

X X

r
w] u I T s

I
t z V

I I l ! J
y y

Figure 2.2.

It follows that f3 = urszv, 1 = urstv; furthermore rs = tw and
st = wz. From the last two equalities one obtains rsz = twz = tst.
If t = z, then f3 = 1 and the assertion is trivially true for a= f3 = 1 .

If t # z, then we firstly assume that lzl > ltl. Thus, z = z't
and t = rt' for some z', t' E v+. The equation r sz = tst becomes
sz' = t' s which implies that (see Lemma 2.3. l)

s (opto for some k 2: O,

z' po,

t' op

for some 8, p E v+. Let us suppose that k = O; equation st = wz
becomes 8r8p = wp8r8p, which is a contradiction.

https://biblioteca-digitala.ro / https://unibuc.ro

2.3. THE DUPLICATION ROOT 65

Consequently, k 2 1, t = rop, and z = porop, hence

/3 = ur(op/oporopv

for some k 2 1. Obviously, the assertion holds for a = 1 .
We now assume that lzl < ltl; from rsz = tst one infers that

t = t' z and r = tr'. lt follows that r' s = st' which leads to the
solutions

s (op)koforsomek20,

r' po,

t' op

for some o, p E y+. Hence t = poz and r = potop which imply that

By taking a= /3, the proof of this case is complete.

Subcase 2c: The strings xx and yy overlap each other as shown
in Figure 4.

X X

(

u Jr1Y1Y1tJ V

Figure 2.3.

It follows that /3 = uxv and 1 = urytxv with x = ryyt. We have

/3 uryytv t> urytv

1 urytryytv t> urytrytv t> urytv.

We now take a = urytv which concludes the proof of this subcase.

Subcase 2d: The strings xx and yy overlap each other as shown
in Figure 5.

https://biblioteca-digitala.ro / https://unibuc.ro

66 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

X X

(

u I r I I t I w I
z V

y y

Figure 2.4.

It follows that /3 = urytv, 1 = uryzv. Moreover, ryt = wz and
y = tw which imply rtwt = wz. Assume that z = z't for some
z' E v+; one gets the equation rtw = wz' having the solutions (see
Lemma 2.3.1)

z' po,

rt op

for some 8, p E v+. Consequently, z = pot. We infer that

f3 urtwtv = uop(op/otv,

Î urtwzv = uop(op/opotv

for some k 2: O. We take a = f3 which concludes the proof of this
sub case.

Since any other situation can be reduced to one of those consid-
ered above, the proof is complete. □

Lemma 2.3.3 IJ /3 is a square-free string, a t>* /3, and a t> 1 , then
Î e>* f3.

Proof. We prove this lemma by induction on n, the length of a. The
case n = 1 is vacuously true.

We now assume that the assertion is true for any string a of length
at most n and take the reduction a t> n' t>n f3 and a t> 1 . By Lemma
2.3.2, there exists a string a such that n' t>* a and I t>* a. Assume
that

https://biblioteca-digitala.ro / https://unibuc.ro

2.4. MULTIPLE CROSSING-OVER 67

for some k ~ l. By the induction hypothesis (la'I < lal), one can
infer that aj 1>* /3 for all 1 :S j :S k, hence , 1>* (3, too. O

A direct consequence of this lemma is the next resuit which states
the uniqueness of the duplication root.

Theorem 2.3.1 Each string has a unique duplication root.

Moreover, in the process of finding the duplication root at any
step it does not matter which duplication is reduced.

We now discuss an algorithm for finding the duplication root of a
given string. To this aim, we need an algorithm for finding a dupli­
cation in a string. There were reported several algorithms for finding
all duplications based on the suffix tree method [4, 22, 84). Other
algorithms can find just one duplication (85, 108]. The latter one
is based on the fingerprinting method and determines the shortest
duplication. Ali of them require O(n log n) time, where n is the
length of the string. However, if the alphabet is fixed, the algorithm
proposed in [85] can find a duplication intime O(n).

By Lemma 2.3.3, based on these algorithms one immediately in­
fers

Theorem 2.3.2 1. There is an algorithm for finding the duplication
root of a string y in O(jyj 2 log jyj), provided that the alphabet of y is
not fixed.

2. There is an algorithm for finding the duplication root of a
string y in O(jyj 2), provided that the alphabet of y is fixed.

We finish this section by an open problem: It is known that find­
ing all duplications in a string x cannot be clone in less time than
O(lxl log lxl) when the alphabet is not fixed. The algorithm an­
nounced in the previous theorem is based on such an algorithm. 1s
this algorithm optimal as well?

2.4 Multiple Crossing-over

One was observed that the linkage between genes were never complete
because of the exchange events between homologous chromosomes.

https://biblioteca-digitala.ro / https://unibuc.ro

68 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

This recombination process by exchanging of segments between ho­
mologous chromosomes is called crossing-over.

Each gene occupies a well-defined site or locus in its chromosome,
having corresponding locations in the pair of homologous chromo­
somes. Crossing-over has the following features:

1. The exchange of segments occurs after the chromosomes have
replicated.

2. The exchange process involves a breaking and rejoining of the
two chromatids, resulting in the reciprocal exchange of equal and
corresponding segments between them.

3. Crossing-over occurs more or less at random along the length
of a chromosome pair.

In [65], an operation on strings and languages having the same fea­
tures is introduced. The operation is applicable to a pair of strings of
equal length as the crossing-over between homologous chromosomes.

Each string is cut in several fragments, but in the same sites for
both of them, and crossing these fragments by ligases. A new string,
of the same length, is formed by starting at the left end of one parent,
copying a segment, crossing over to the next site in the other parent,
copying a substring, crossing back to the first parent and so on until
the right end of one parent is reached. Obviously, a new string can
be obtained by starting with the other parent.

Let us remark the similarity between the crossing-over on words
and the chromosome crossing-over:

- the words are of the same length;
- the corresponding segments which are interchanged between

them are of the same length;

- the number of sites in strings is arbitrarily large;
- the sites in strings are at random, along the strings.
In this section, we consider four crossing-over operations, which

are slight generalizations of those introduced in [65) and (93), and we
study the relation between these operations and other operations in
formal language theory, especially the shuffie operations.

Let M be a finite subset of V*#V*$V*#V*, #, $ (ţ. V, whose
elements are called crossover rules and w1 , w2 be two strings of equal
length in v·.

https://biblioteca-digitala.ro / https://unibuc.ro

2.4. MULTIPLE CROSSING-OVER 69

We define the relation

iff the following conditions hold:

(i)

(ii)

(iii) I u; I = I v;I , l ~ i ~ k + l ,
(iv) x;#x~$y;#Yi E M, 1 ~ i ~ k.

and

w={ u1 V2U3 ... u;v;+l ... Uk+1 if k is even,
u1 V2U3 ... u;v;+ 1 ... vk+1 if k is odd

Moreover, for two ar bi trary strings w1 , w2 ,

(W1, W2) ===} M W

iff the above conditions, excepting (iii), hold.
For a pair of strings (w1 , w2) we denote

and

For two languages L1 , L2 over V* we define:

https://biblioteca-digitala.ro / https://unibuc.ro

70 CI-IAPTER 2. GENOME EVOLUTION: OPERATIONS

(i) the (non-iterated) equal length crossing-over

u EqlCOM(w1, wz).

(ii) the (non-iterated) crossing-over

As we can see, in the above definitions, the strings can be cut
in arbitrarily many fragments. 1n the case of splicing operation the
number of segments is limited to one and in [93] to a given integer.

We shall consider a generalization of the operation studied in [93].
Let k 2'. 1 and M bea finite subset of(V*#V*$V*#V*l, #,$ ~

V, and w1 , w2 be two strings of equal length in V*. Both strings
are spli t in k + 1 segments at the sites indicated by the rules of M.
Formally, if

and

I U; I I Vi I, 1 s; i s; k + 1

then

()
k-Eql { u1 VzU3 ... u;v;+1 ... Uk+1 if k is even,

W1,W2 ==?M
u1 VzU3 ... u;v;+1 ... Vk+i if k is odd

The relation ==?'.w is defined by omitting the condition on the
segments u;, v;.

https://biblioteca-digitala.ro / https://unibuc.ro

2.4. MULTIPLE CROSSING-OVER 71

As for the previous operations, for a pair of strings (W1, w2) we
denote

and

Note here that for 1 - CO is actually the splicing operation.
For two languages L 1 , L 2 over V* we define:

(i) the (non-iterated) equal length k-crossing-over

u
(ii) the (non-iterated) k-crossing-over

Remember that a trio is a family of languages closed under c-free
homomorphisms, inverse homomorphisms, and intersection with reg­
ular sets. A full trio is a trio closed under arbitrary homomorphisms.

Lemma 2.4.1 If a trio is closed under SShuf operation, then it is
closed under EqlCO.

Proof. Consider an alphabet V, two languages L1 , L2 over V, in a
trio denoted by F, and a (finite) set of rules M = {x;#y;$z;#t;[l ~
i::; m}.

For any character a E V, we consider a new syrnbol a' (/_ V and
denote V'= {a' I a EV}. Consider also 2m new symbols c;,<,1 ~
i::; m.

https://biblioteca-digitala.ro / https://unibuc.ro

72 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

1n the following, by a primed word (language) we shall under­
stand that all symbols of the original word (language) are replaced
by primed symbols. For instance, if w = a1 a2 ... an E V*, then
w' = a;a; ... a~ and if A~ V*, then A'= {w' I w EA}.

Take the homomorphisms

h1 (V U {ci 11::; i::; m})*------, V*,

h1(a) = a, for any a EV,

h1(ci) = XiYi, for any 1 ~ i ~ m,

h2 (V U { c; 11 ::; i ::; m})* ------, (V U { c; I 1 ~ i ~ m})*,

h2(a) = a, for any a EV,

h2(ci) = x;c;yi, for any 1 ~ i ~ m,

h3 (V'u{c;11::;i::;m})*------,V",

h3(a') = a, for any a' EV',

h3(c:) = z;t;, for any 1 ~ i ~ m,

h4 (V' U { c; I 1 ::; i ::; m})* ------, (V' U { c; I 1 ~ i ~ m})*,
h4 (a') = a', for any a' E V',

h (1
) I

1i 1
.!' 1 < • 4 C; = Z;C; ;, !Of any _ t :::: m.

The language

i=I

is in F. A string in L has the form

a a' a a' ... a a' c. c' a a' , . ,
Pl,l q1,1 Pl,2 g1,2 Pl,n1 g1,n1 'I IJ P2,l g2,1 ••• aP2,n2 aq2,n2 C,2Ci2 •••

c· c' a a' ,
'k ik Pktl,l gktl,l '' 'aPktl,nktl aqktl,nk+l'

where, for any 1 ::; r::; k + 1, 1 ~ s ~ nr, aP,,s E V, a~, .• EV', and, for
any 2 ::; r ::; k + 1, there are some mr, lr, dr, er, 1 ::; mr, lr, dr, er ~ nr,
such that

aP,,1 aP,,2 ' ' 'aP,,m, = Yi,-1,
a' a' ... a' = t'

q,-,J qr,2 9r,lr 1r-l'

aPr-1,dr aPr-1,dr+l '· • aPr-1,nr-l = Xir-1,

a' a' ... a' = z'
9r·-l,er 9r-l,e,-+l Qr-1,nr-l 1r-l •

https://biblioteca-digitala.ro / https://unibuc.ro

2.4. MULTIPLE CROSSING-OVER 73

Construct an E-free gsm g which leads a string in L1 as above to the
string

In order to do that task, g works as follows:

• start scanning the string in the state so,

• leave unchanged all symbols aPr,,, a~r,, until either the right end
of the string is detected and, in this case, stop, or the next ci
is reached,

• leave Ci and < unchanged but change the state into s1 ,

• change any aPr,s into a;r,s and any a~r,, into aqr,, until either
the right end of the string is detected and, in this case, stop,
or the next Ci is reached,

• leave Ci and < unchanged but change the state into s0 ,

• restart the work from the second step for the remained part of
the initial string.

Remark that both states of g are final.
Consider now the homomorphism

hs : (V U V' U { Ci j 1 ::::; i ::::; m} U { < j 1 ::::; i ::::; m})* --+ V*,
h5 (a) = a, for any a E V,
h5(a') = E, for any a' EV',
hs(ci) = hs(c;) = E, for any 1::::; i::::; m.

Obviously, we have

EqlCOM(L1, L2) = hs(g(L)).

Because any trio is closed under c-free gsm mappings, it follows that
the language g(L) is in F. As it could be easily seen, h5 is 4-limited
erasing on g(L). Consequently, EqlCOM(L 1 , L2) is in the considered
trio and the proof is over. O

https://biblioteca-digitala.ro / https://unibuc.ro

74 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Lemma 2.4.2 Any trio closed unde, Eq/CO operation is closed un­

de, SShuf operation.

Proof. Let L1 ~ V(, L2 ~ V2• be two languages in a trio F. Consider
the alphabets

V1 {a1, a2, a3la E Vi},

v; {a' I a E Vi},
v; {a1,a2,a3laEV;}

and the following homomorphisms:

h1(a) = a1a2a3, for any a E V1,
h2(a') = a~ a;a;, for any a' E V{,
h3(a) = a', for any a E Vi,

h4 (v1 u v;r - (Vi u Vi)*,
h4(ai) = a, h4 (a2) = h4(a3) = €, for any a E Vi,

h4(a;) = a, h4(a~) = h4(a;) = €, for any a' E v;.

Consider also the set of rules M = {a 1#a2$b~#b;la E V1,b E
V2} U {a3#db;#c:la E Vi,b E Vi}- In these conditions, it is easy to
check that

Mentioning that the homomorphism h4 is 1-limited erasing we
conclude the proof. O

Theorem 2.4.1 A trio is closed unde, SShuf if and only if it is
closed unde, EqlCO.

We mention now a known result concerning the interdependence
between the S S huf and 5 huf operations in the frame of a trio, which
will turn to be very useful in the sequel.

https://biblioteca-digitala.ro / https://unibuc.ro

2.4. MULTIPLE CROSSING-OVER 75

Theorem 2.4.2 Any trio is closed under SShuf if and only if it is

closed under Shuf.

Theorem 2.4.3 Any Juli trio closed under the operation Shuf zs
closed under the operation CO.

Proof. By using the same construction asin Lemma 2.4.1, the lan­
guage

m

L = Shuf(h2(h11(L1)), h4(h3
1 (L2))) n (LJ(V*V'*){cic;})*(V*V'*)

i=l

is in the considered trio, if L1 and L2 are in the trio.
Take the gsm, g working as follows:

• start scanning the string in the state so,

• leave unchanged all non-primed symbols until a primed symbol
is reached,

• remove all primed symbols until a symbol c; is detected,

• change the state into s1 , erase the letters Ci, e; and replace all
primed symbols by non-primed symbols,

• remove all non-primed symbols until the next symbol Cj is de-
tected

• change the state into s0 and erase the letters Cj, ci

• go on until the end of the string is reached

Therefore, CO M(L 1 , L2) = g(L) and the proof is over. D

Theorem 2.4.4 Any full trio closed under EqlCO is closed under
CO.

Proof. The proof is a consequence of all the previous theorems. D

Next, we shall examine the case of the prescribed number of
crossing-overs.

https://biblioteca-digitala.ro / https://unibuc.ro

76 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Theorem 2.4.5 Any full trio closed under Shuf is closed under k­

CO, for any k 2:: 1.

Proof. The proof is a slight modification of the proof of Lemma 2.4.2.
Let k be a positive integer and L1 , L 2 be two languages over V in a
trio F; assume that

M = { (Xi1 #Yi1 $zi1 #ti1, Xi2 #Yi2 $zi2 #ti2, • • •, Xik #Yik $zik #tik)I
1::::;i::::;n}.

Consider kn new symbols Ci
1

, 1 ::::; i ::::; n, 1 ::::; J < k, and the
homomorphisms defined as follows:

h1 : (V U { Cii I 1 ::::; i ::::; n, 1 ::::; j ::::; k})* -+ V*,
h1(a) = a,a EV,
h1 (ci) = x; Yi , 1 < i < n, l < y· < k.

]]] -- --

h2 : (V U { Ci
1

I 1 ::::; i ::::; n, 1 ::::; j ::::; k})* -+ (V U { c;
1

I 1 ::::; i ::::;
n, 1 ::::; j ::::; k)*

h2(a) = a,

h2(c;J = x;icijYij, 1::::; i::::; n, 1::::; j::::; k}.

The language

L3 = h2(h11(L1)) n E

where E is the regular language

n

E = LJ V* {c;J V* {c;2} V* ... V* {c;J V*
i=l

is in F.
Analogously, the language

n

L4 = h4(h31(L;)) n U V'* { c:1} V'* { c:2} V'* ... V'* { c:J V'*
i=l

https://biblioteca-digitala.ro / https://unibuc.ro

2.4. MULTIPLE CROSSING-OVER 77

is also in F, where the hornomorphisms h3 and h4 work as h1 and h2,
respectively, but on primed symbols and strings.

From the closure properties of the family F we have that

n

L 5 = Shuf(L3, L4) n LJ V*V'* { c;1 c:J V*V'* ... V*V'* { c;kc:J V*V'*
i=l

is in F.
We have k - CO M(L 1, L2) = g(L5), where g is a gsm similar to

that constructed in Theorem 2.4.3. Because any full trio is closed
under arbitrary gsrn rnappings it follows that k - CO M(L1, L2) E F.

□

Theorem 2.4.6 If F is a full trio closed under union and EqlCO
operation, then F is closed under k - CO.

Proof. It follows from the previous theorern and Theorern 2.4.2. D

By cornbining the ideas used for proving Lernma 2.4.1 and Theorem
2.4.5 one can get

Theorem 2.4.7 Any trio closed under SShuf is closed under k -
EqlCO, for any k 2 1.

and, consequently

Corollary 2.4.1 Any trio closed under EqlCO is closed under k -
EqlCO, for any k 2 1.

We finish this section by pointing out some further directions of
research and open problems. Severa] natural questions which can
naturally arise, if we are looking to the above diagram, are:

1. Are there trios closed under k - EqlCO and not closed
under SShuf, for different values of k?

2. Are there trios closed under CO and not closed under
Shuf?

3. Are there trios closed under k - CO and not closed
under Shuf, for different values of k ?

https://biblioteca-digitala.ro / https://unibuc.ro

78 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

As far as the last question is concerned, a partial answer is

Theorem 2.4.8 There are trios closed under l - CO and 2 - CO
but not closed under Shuf.

Proof. Take the class of context-free languages which is a trio and is
closed under splicing (1- CO) [105] but it is not closed under Shuf.

On the other hand, the family of context-free languages is closed
under 2 - CO. Let 1 1 , L2 be two context-free language over V and
M be a set of 2-crossover rules. Assume that

M = { (x;1 #xi2 $y;1 #Yi2, Xi3 #xi4 $y;3 #y;JI

l:Si:Sn}.

Consider 4n new symbols Ci,j, and ci,j, 1 :S i :S n, j = 1, 2 and the
homomorphisms

h1: (VU {c;,j 11 :S i :S n,j = 1,2})* _. V*,

h1 (a) = a, a E V,

h1 (Ci,j) = Xi21-1 Xi2j,

h2: (V U {<,j I 1 :S i :S n,j = 1,2})* ._. V*,

h2 (a) = a, a E V,

h2(C:) = Yi2j-1Yi21 •

The languages

n

L3 = h~ 1(L1) n LJ V*{c;,r}V*{c;,2}V*
i=I

n

i=J

are context-free.
For a language L denote by Sub(L) the set of all subwords of the

words in L. Define the substitution

s: (Vu{ci,j 11 :S i :S n,j = 1,2})* ._. 2(Vu{c,.J, C:)ISiSn, j=I,2)}',

https://biblioteca-digitala.ro / https://unibuc.ro

2.5. TWO CROSSOVER DISTANCES 79

s(a)=a,aEV,
s(c;,2) = {c;,2},l :S i :S n,
s(c;,1) = c\,1 V*C:,2 n Sub(L4), 1 :S i :S n.

The above substitution is a substitution with context-free languages.
Indeed, Sub(L4) is a context-free language and C:, 1 V*C:,2 are regular
languages for al! 1 :S i :S n. Under these circumstances, we conclude
that s(L3) is context-free. Now, the words in s(L3) are of the form

I I t w = uc;,1 vc;,2 c;,2z

for some 1 :S i :S n, and u, v, t, z E V*.

We construct a gsm g which replaces the symbol C:,1 by x; 1 , re­
moves all symbols after C:,1 until c;,2, and replaces c;,2 by x;4 , for all
1 :S i :S n. lt follows that 2 - COM(L 1 , L2) = g(s(L3)) therefore, the
class of context-free languages is closed under 2 - CO. O

For al! operations considered here one can define, in a natural way,
the iterated case. What are the interdependence relations between
them in this case ?

2.5 Two Crossover Distances

A basic problem in the area of combinatorial algorithms for genome
evolution is to determine the minimum number of large scale evo­
lutionary events (genome rearrangements) that transform a genome
into another. The present section, based on [95], is a contribution
to the algorithmic study of genom evolution by crossovers (translo­
cations).
Two types of crossover distance between two sets of strings (genomes)
are introduced; we examine the complexity of computing these dis­
tances in the case of uniform crossover, that is at each step the strings
exchange prefixes of the same length. We present exact polynomial
algorithms based on the "greedy" strategy when the target set is a
singleton. When considering arbitrary target sets a 2-approximation
algorithm is provided for computing the sequential crossover distance.
Some open problems are also formulated.

https://biblioteca-digitala.ro / https://unibuc.ro

80 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Prior work dealing with the combinatorial analysis of genome op­
erations has focused on evolution distance in terms of inversions,
transpositions or crossovers for chromosomes formed from different
markers which correspond to unique segments of DNA. From the for­
mal point of view this means that all symbols of the strings represent­
ing the chromosomes are different. Thus Kececioglu and Sankoff [66],
[67] developed exact and approximation algorithms for two types of
inversion distance, Bafna and Pevzner reported approximation algo­
rithms for transposition distance [8]. More recently [68], Kececioglu
and Ravi discussed exact and approximation algorithms for distance
involving crossovers alone as well as together with inversions. Some
applications of these results to biologica! data are now underway [9],
[55].

Our work differs from these approaches in many respects: the
strings representing chromosomes may have multiple occurrences of
the same symbol, they may have common symbols, the number of
copies of all strings in the initial set is considered to be arbitrarily
large, the definition of the crossover distance.

Let V be a given alphabet (practically this alphabet is the DN A
alphabet {A, T, C, G}); chromosomes may be viewed as strings over
this alphabet. For each string x E v+, x[i,j] delivers the substring of
x that starts at position i and ends at position j in x, 1 :S i :S j :S lxl.
Conventionally, x[i,j] is the empty string in all cases j < i.

For two strings x, y over an alphabet V and two integers 1 :S i <
lxl, 1 :S j < IYI, we define the crossover operation

(x,y) f--(i,j) (z1,z2) iff x = tu,y = vw,z1 = tw,z2 = vu,

and ltl = i, Ivi = j.

The pair of natural numbers (i, j) indicates the length of the prefixes
they interchange with each other. When we are nat interested about
the length of these segments, we write simply f--. Let us note that,
from a chromosome and its replica, say xyz, one may get two other
chromosomes xyyz and xz. It is worth mentioning here that this type
of recombination is known as crossover between "sister" chromatids
and it is the main way of producing tandem repeats or block deletions
in chromosomes.

https://biblioteca-digitala.ro / https://unibuc.ro

2.5. TWO CROSSOVER DISTANCES 81

We extend the crossover operation to a finite set of strings A ~ v+
by

CO(A) = LJ {z, wl(x, y) I- (z, w)}.
x,yEA

Let A be a finite set of strings that appear arbitrarily many times in
A. Define, iteratively

COo(A)

COk+1(A)

CO,.(A)

A,

COk(A) U CO(COk(A)),

LJ COk(A).
k?_O

A crossover sequence in CO,.(A) is a sequence S = s1, s2, ... , sn,

where for each 1 ::; i ::; n s; = (x;, y;) 1-(k,,p,) (u;, v;), for some
x;,y;,u;,v; E CO,.(A) and 1 ::; k; < lx;I, 1 ::; Pi < IYil- Given a
crossover sequence as above S and as above and x E CO.(A) we
define

P;(S,x) --' card{j::; ilx = Xj or x = Yi} + card{j::; ilxi = Yi = x},

{

oo, if X EA,
F;(S,x) card{j::; ilu = Xj or v = Yi}+

card{j ::; ilui = Vj = x}

The length of a crossover sequence S = s1 , s2, ... , Sn îs denoted
by lg(S) and equals n. A crossover sequence S as above îs contiguous
îff the following two conditions are satisfied:

(i) X1,Y1EA,
(ii) F;-1(S,x;) > P;-1(S,x;), and F;_1(S,y;) > P;_1(S,y;),

for all 1 ::; i ::; n.

The second condition îs very natural if one considers that the copies
of the two strings that exchange prefixes are not available anymore
for further crossover steps; it claims that at each crossover step at
least one copy for any of the two strings involved in this step is
available. By CC S we mean a contiguous crossover sequence. Let B

https://biblioteca-digitala.ro / https://unibuc.ro

82 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

be a finite subset of CO.(A); a CC S S as above is B-producing if
Fn(S, z) > Pn(S, z) for all z E B. In other words, S is B-producing if
at the end of all crossover steps forrn S we have at least one copy at
each string in B. Roughly speaking, the sequential crossover distance
from A to B (SCOD(A, B) shortly) îs defined as the minimal nurnber
of steps strictly necessary to get B starting frorn A, providing that
at each step just one crossover takes place. Forrnally,

SCOD(A,B) = min{lg(S)IS îs a B - producing CCS în CO.(A)}.

The parai/el crossover distance from A to B (PCOD(A, B), shortly)
îs defined as the minimal nurnber of steps strictly necessary to get
B starting frorn A, provided that at each step all possible crossovers
take place. Formally,

PCOD(A, B) = max{rnin{klx E COk(A)}lx E B}.

Example 2.5.1. Let us consider the initial set A= {x1 ,x2,x3,x4 }

with

xi = abcbad, x2 = bbabd, x3 = accbabd, x4 = aaab,

and

z1 = bbcbad
zs = abbababd
Zg = bbbd

z2 = ababd z3 = ababad
z6 = aabad z7 = abababd

z10 = bbabad zu = bbbabad

Z4 = bbcbd
za= bbd

z12 = bbababd
Z13 = bababd z14 = accbd z15 = bbccbabd z16 = aababd
z1 7 = abcccbabd z1a = abad·

We provide below a B-producing CCS, B = {z4, z6, za, z11 , z15 ,

z16, z1a}.

(x1,x2) f-(2,2) (z2,z1), (z1,z2) f-(4,4) (z4,z3),

(x1, x2) f-(2,2) (z2, z1), (z2, x2) f-(4,2) (z1, za),

(z3, Z7) f-(2,1) (zs, z6), (x2, x3) f-(3,3) (z12, z14),

(za, Z12) f-(2,s) (zg, z10), (x2, x3) f-(3,3) (z12, Z14),

(x2, x3) f-(3,3) (z12, Z14), (z12, z10) f-(2,1) (zu, z13),

(z12,x3) f-(2,1) (z1s,z16), (x1,x3) f-(3,1) (z11,z1a).
https://biblioteca-digitala.ro / https://unibuc.ro

2.5. TWO CROSSOVER DISTANCES 83

Sometimes we refer to B as a target set. ln the sequel we are
dealing with the complexity of computing the crossover distances de­
fined above for the case of uniform crossover i.e. all strings exchange
prefixes of equal length. We distinguish two cases depending on the
cardinality of target sets: singleton target sets and arbitrary target
sets.

2.5.1 Singleton Target Sets

As we said above, by uniform crossover we mean a special type of
crossover so that prefixes which are to be exchanged are of the same
length. Formally, the crossover operation f-(i,j) is said to be uniform
iff i = j, so that we shall simply write f-; ..

1n the case of uniform crossover with a singleton target set, we
may assume that the initial set of strings contains only strings of the
same length, that is the length of the target string.

Lemma 2.5.1. Let A be a given finite set of strings and z be a string
of length k. Consider

A = {x E Ajjxj = k} U {x[l, !xi - l]$k-lxl+ 1 jx EA, lxl < k} U

{x[l, k - ~]$Ix EA, lxl > k},

where $ is a new symbol. Then SCOD(A,z)
PCOD(A, z) = PCOD(A, z).

SCOD(A, z) and

Proof. Clearly, one can construct a z-producing CC S in CO*(A),
starting from a z-producing CC S in CO*(A), of the same length,
hence SCOD(A,z) :S SCOD(A,z). Conversely, given a z-producing
CC Sin CO.(A), one can construct a z-producing CC Sin CO*(A)
of a smaller length. Consequently, SCOD(A, z) = SCOD(A, z).

The proof is complete because we note that all strings of length
k that do not contain the symbol $ from CO;(A) are in CO;(A), for
all i 2'. O, and vice versa. o

1n conclusion, throughout this section the strings in the initial set
and the target string will be all of the same length.

https://biblioteca-digitala.ro / https://unibuc.ro

84 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Suppose that A = { x1, x2, ... , xn} and let z he an arbitrary string·
of length k; the following measure will be very useful in the sequel:

MaxSubLen(A,z,p) = max{ql there exists 1::; i::; n

such that xi[p,p+ q- 1] = z[p,p+ q-1].

Note that with uniform crossover, a letter at position i in a string
remains at position i after moving to another string. Assume that
z E CO*(A); define iteratively the set H(A,z) of intervals of natural
numbers as follows:

l. H(A,z) = {[l,MaxSubLen(A,z,l)]};

2. Take the interval [i,j] having the largest j; if j = k, then
stop, otherwise put into H (A, z) the new interval [j + 1, j +
M axSubLen(A, z,j + 1)].

Note that we allow intervals of the form [i, i] for some i to be in
H(A,z); moreover, for each 1 ::; i ::; k there are 1 ::; p ::; q ::; k
(possibly the same) such that i E [p, q] E H(A, z).

Lemma 2.5.2. Let S bea z-producing CCS in CO.(A). Then, lg(S) ~
card(H(A,z))- 1.

Proof. We prove this assertion by induction on the length k of z.
For k = l the assertion is trivially true because z must be in A,
hence H(A, z) contains just one element. Assume that the assertion
is true for any string shorter than k. Let us consider a CC S S =
s1, s2, ... , sg in CO.(A) producing z. Moreover, we may assume that
s; = (x;,y;) f-P, (u,,v,), 1::; i::; q, and z has been obtained in 5 at
the last step, that is either ug = z or vg = z. Let

A' = {x[MaxSubLen(A,z,l)+ 1,k]lx EA},

z' = z[M axSubLen(A, z, l) + 1, k].

For simplicity denote r = M axSubLen(A, z, 1). Clearly, H(A', z') =
{[i - r,j - r]l[i,j] E H(A,z) \ {[1,r]}}, hence card(H(A',z')) =
card(H(A, z)) - l. Starting from 5 we construct a CC Sin CO*(A'),
producing z' S' = s~, s~, ... s~ in the way indicated by the following
procedure:

https://biblioteca-digitala.ro / https://unibuc.ro

2.5. TWO CROSSOVER DISTANCES

Algorithm 2.5.1.
Procedure ConstrucLCCS(S, r);
begin
m := O;
for i:=1 to q begin

if (p; > r) then
m := m+ l;
s~ = (xi[r + 1, k], y;[r + 1, kl) 1--p,-r (u;[r + 1, k], v;[r + 1, kl);

endif;
endfor;
end.

Claim 1: S' is a CCS.

85

Proof of the claim. Firstly, we note that for each 1 S i S q so that
p; :S r, the relations u;[r + 1, k] = y;[r + 1, k] and vi[r + 1, k] =
x;[r + 1,k] hold. Assume that p;1 ,p;2 , ••• ,p;m are all integers from
{p1 ,P2,···,Pq} bigger than r. Because all p1 ,p2, ... ,p; 1 -1 equal at
least r, it follows that both x;1 [r+ 1,k],y;1 [r+ 1,k] are in A'.

Now, it suffices to prove that for a given 2 :S j :S m, the relations

F1_1(S',x;
1

[r + 1,k]) > P1_1 (S',x;;[r + 1,k]),

F1-1(S1 ,y;
1
[r+ 1,k]) > P1_1 (S',yi;[r+ 1,k]),

hold. We shall prove the first relation only. It is not hard to see that

where

x[r+l,k)=x,
1

(r+l,k)

card(X) - card(Y),

P1-1(S1,x;
1
[r+ 1,k]) = L P;

1
-1(S,x)-

x[r+l,k)=x,1 (r+l ,k)

card(Z) - card(W),

X { t :S i 1 - 1 IPt :S r, ut[r + 1, k] = vt[r + 1, k] = xi
1

[r + 1, k]},

Y {t :S i1 - llPt :S r, ut[r+ 1,k] = x;
1
[r+ 1,k]

or vt[r+ 1,k] = x;
1
[r+ 1,k]},

https://biblioteca-digitala.ro / https://unibuc.ro

86 CHAPTER 2. GENO ME EVOLUTION: OPERATIONS

Z {t ~ ij - llp1 ~ r, xt[r + 1, k] = yt[r + 1, k] = x;j[r + 1, kl},

W {t ~ ij - llPt ~ r, xt[r+ 1,k] = x;Jr+ 1,k]

or yt[r + 1, k] = x;j [r + 1, kl}.

But, as we have seen

X= Z and Y = W.

1n conclusion, as 5 is a CC S, it follows that Fj-1 (S', xij[r + 1, kl) >
Pj-I (S', x;; [r + 1, kl), and the proof of the claim is complete.

Claim 2: S' is z-producing.
Proof of the claim. More generally, we shall prove by induction on i
that 5' is producing u;[r + 1, k] and v;[r + 1, k] for all 1 ~ i ~ q. The
assertion is trivially true for i = 1. Assume that the assertion is true
for all t ~ i; we shall prove it for i + 1. If u;+i[r + 1, k] is in A' or
Pi+I > r, we are clone. If Pi+I ~ r, then Ui+i[r + 1, k] = Yi+1[r + 1, k];
for Yi+i -~ A we have F;(S, Yi+i) > O, hence there exists k ~ i such
that Ut = Yi+I or Vt = Yi+I. By the induction hypothesis, Ut[r + l, k]
holds, which concludes the proof of the second claim.

But there exists at least one i such that p; ~ r, it follows that
m ~ q - 1. By the induction hypothesis, m 2'. card(H(A', z')) - 1,
and the proof is complete. D

The next resuit is a direct consequence of this lemma.

Theorem 2.5.1. Let z be a string of length k and A be a set of
cardinality n. There is an exact algorithm that computes SCOD(A,z)
in O(kn) time and O(kn) space.

Proof. The following algorithm indicates how to construct a CC S

S = s1, s2dots, sm in CO*(A) producing z, when z ~ A, whose length
is exactly card(H(A, z)) - 1.

Algorithm 2.5.2.
Proced ure Uni/ orm_crossover _CCS_construction(A,z);
begin
p := MaxSublen(A,z, l); let x bea string in A with x[l,p] = z[l,p];
m := O;
while p < k begin

https://biblioteca-digitala.ro / https://unibuc.ro

2.5. TWO CROSSOVER DISTANCES 87

r := MaxSubLen(A,z,p+ l);
if r = O then THE STRING z CANNOT BE OBTAINED FROM

A; stop
else

let y bea string in A with y[p+ l,p+r] = z[p+ l,p+r];
m := m+ 1
Sm = (x,y) f-p (u,v)};
p:=p+r;
x:=u;

endif
endwhile;
end.

lt is easy to see that if the algorithm successfully terminates, then
either u or v is exactly z, and the length of the CC S determined by
the algorithm is exactly card(H(A,z))- l. By the previous lemma,
this in an optimal value. As one can easily see the time complexity
of this algorithm is given by the complexity of computing the values
MaxSubLen(A,z,p), which is O(kn). Obviously, it requires O(kn)
memory. □

We shall proceed to a similar approach for computing the parallel
crossover distance from A to z. For a positive real number r denote
by f r l the natural number that satisfies f r l - 1 < r :::; f r l-

Theorem 2.5.2. Let z be a word in CO*(A). Then

PCOD(A,z) = flog2(card(H(A,z)))l-

Proof. Denote by q = flog2(card(H(A, z)))l- For the beginning we
prove that z E C09(A). The argument is an induction on q. If
q = O, then card(H(A, z)) = 1, that is z E A = C0 0 (A). Assume
that the assertion is true for any set A and z E CO*(A) such that
flog 2(card(H(A,z)))l < q and let

H(A, z) = {[1, r1], [r1 + 1, r2l, ... , [rp-I + 1, kl}

with 29 -
1 < p:::; 29 . Consider B = C0 1 (A); it is easy to see that

https://biblioteca-digitala.ro / https://unibuc.ro

88 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

For flog 2 (card(H(B,z)))l = q - 1 it follows that z E COq-1(B) =
COq(A), and the proof is complete. In conclusion, PCOD(A, z) :S
flog 2 (card(H(A, z)))l.

By a similar reasoning one can prove that if z E COr(A), then r
is at least flog2 (card(H(A,z)))l- O

Based on the previous lemma and Theorem 2.5.1 one may state:

Theorem 2.5.3. Let z be a string of length k and A be a set o.f
cardinality n. There is an exact algorithm that computes PCOD(A,z}
in O(kn) time and O(kn} memory.

2.5.2 Arbitrary Target Sets

We shall try to adapt the techniques used in the previous section
for arbitrary target sets, too. Let A be a finite set of strings and
z E CO*(A); denote by

{

Iz I ' iff z E A'

MaxPref Len(A,z) = .
max{qlq < lzl, there ex1sts x EA,
lxl > q, so that x[l, q] = z[l, q]},

MaxSuf Len(A,z) = max{ql there exists x EA,

lxl = lzl, so that x[lxl - q + 1, lxl] = z[lzl - q + 1, lzl]},

ArbMaxSubLen(A,z,p) = max{ql there exists x EA and

!xi 2: p + q such that x[p,p + q - 1] = z[p,p + q - 1].

We define iteratively the set ArbH(A, z) of intervals of natural
numbers as follows:

1. ArbH(A, z) = {[l, M axPref Len(A, z)]};

2. Take the interval [i,j] having the largest j; if j = lzl, then stop.
If j < lzl - MaxSufLen(A,z), then put the new interval [j +
l,j + ArbMaxSubLen(A,z,j + 1)] into ArbH(A,z); otherwise
put [j + 1, lzl] into ArbH(A, z).

https://biblioteca-digitala.ro / https://unibuc.ro

2.5. TWO CROSSOVER DISTANCES 89

Theorem 2.5.4.
J. Let A be a finite set of strings and B be a finite subset of

CO*(A). Then

LzEB(card(A;bH(A,z))- 1) S SCOD(A,B) S

I)card(ArbH(A,z))- 1).
zEB

2. There exist A and B ~ CO.(A) such that

LzEB(card(ArbH(A,z))-1)
SCOD(A, B) =

2
.

3. There exist A and B ~ CO.(A) such that

SCOD(A,B) = L(card(ArbH(A,z))- 1).
zEB

Proof. 1. We shall prove the first assertion by induction on the length
of the longest string in B, say k. The non-trivial relation is

If k = 1, then B ~ A, hence card(H(A, z)) = 1 for all z E B,
therefore the relation (*) is satisfied. Assume that the relati'?n (*)
holds for any two finite sets X and Y, Y ~ CO.(X), all strings in
Y being shorter than k. Assume that B \ A = { z1 , z2 , ... , Zm} and
let S = s1 ,s2 , ... ,sq, s; = (x;,y;) f-p, (u;,v;), 1 S i S q, bea B \ A­
producing CC S in CO.(A). Note that at least one string in B \ A
should exist, otherwise the relation (*) being trivially fulfiled.

Consider m new symbols a1 , a 2 , ... , am and construct the sets

A' = {x[l,r]a;x[r + 2, lxl]lx EA, 1 S i S m},

B' = {z;[l, r]a;z;[r + 2, lz;l]ll S i S m},

where r = min{p;ll S i S q}. One can construct a B'-producing
CC S in CO* (A') of the same length of S, say S' by applylng the
next procedure.

https://biblioteca-digitala.ro / https://unibuc.ro

90 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

Algorithm 2.5.3.
Procedure Convert{S);
begin
for j := 1 to m begin

Z := Zj; t := m;
while z eţ. A begin

find the maximal 1 :::; t such that u1 = z or v1 = z;
t:=1-l;
if u1 = z then replace u1 by u,[l, r]aju1[r + 2, lu,I];

if PI> r then z := x1;
replace x1 by x1[l, r]ajx1[r + 2, lx1I];

else z := y1;
replace YI by y1[l, r]ajy1[r + 2, ly,I];

endif;
else replace v1 by v1[l, r]ajv1[r + 2, lv,I];

if PI::; r then z := x1;
replace x1 by x1[l, r]ajx1[r + 2, lx,I];

else z := y1;
replace YI by Y1[l, r]ajy1[r + 2, iy,i];

endif;
endif;

endwhile;
replace z by z[l, r]ajz[r + 2, lzl];

endfor;
replace the symbol on the position r + 1 in al/ strings in S that have not

been replaced so far by a1;
end.

For a better understanding of the previous procedure we pro­
vide below the effect of applying this procedure to a B-producing
CC S, B = { abacdb, aabccb, bbaadc}, starting from the ini tial set
A = { abbccb, aaaadb, bbbcdc }. The CC S S is

(abbccb, aaaadb) f- 2 (abaadb, aabccb),

(abbccb, abaadb) f- 3 (abbadb, abaccb),

(bbbcdc, abaccb) f- 2 (bbaccb, abbcdc),

(bbaccb, aaaadb) f- 3 (bbaadb, aaaccb),

(bbaadb, bbbcdc) f- 5 (bbaadc, bbbcdb),

(abaadb, aaaccb) f- 2 (abaccb, aaaadb),
https://biblioteca-digitala.ro / https://unibuc.ro

2.5. TWO CROSSOVER DISTANCES 91

(abaccb, aaaadb) f-- 4 (abacdb, aaaacb).

The procedure Convert runs for r = 2 transforming this sequence
into the sequence S': •

(aba2ccb, aaa3adb) f-- 2 (aba3adb, aaa2ccb),

(aba1 ccb, aba3adb) f-- 3 (aba1 adb, aba3ccb),

(bba1 cdc, aba3ccb) f-- 2 (bba3ccb, aba1 cdc),

(bba3ccb, aaa1 adb) f--3 (bba3adb, aaa1 ccb),

(bba3adb, bba1 cdc) f-- 5 (bba3adc, bba1 cdb),

(aba1 adb, aaa1 ccb) f-- 2 (aba1 ccb, aaa1 adb),

(aba1 ccb, aaa1 adb) f-- 4 (aba1 cdb, aaa1 acb).

Now we apply Algorithm 1 to the sequence S' for r previously de­
fined. The obtained sequence S" is a B"-producing CC Sin CO*(A"),
where

A" {aix[r + 2, lxl]lx EA, 1 ~ i ~ m},

B" {aizi[r + 2, lzil]ll ~ i ~ m}

due to the two claims from the proof of Lemma 2.
For each 1 ~ i ~ m card(ArbH(A", a;z;[r + 2, lz;I])) is either

card(ArbH(A, z;)) or card(ArbH(A, z;)) - 1. Furthermore, for each
i such that card(ArbH(A", aiz;[r + 2, lzil])) = card(ArbH(A, zi)) - 1
there exist at least one step in S' where the strings exchange prefixes
oflength at most r. lt follows that lg(S") ~ lg(S')- ft/21, where t =
card({ilcard(ArbH(A", aizi[r + 2, lzil])) = card(ArbH(A, zi)) - l}).
Consequently,

lg(S) = lg(S') 2 lg(S") + ft/21 2
L~(card(ArbH(A", aiz;[r + 2, lzil]))- 1) f / l ~~-------------+ t 2 > 2 -
I:~(Arbcard(H(A, zi)) - 1)

2

The reader may easily find sets A and B fulfilling the last two
assertions. D

https://biblioteca-digitala.ro / https://unibuc.ro

92 CHAPTER 2. GENOME EVOLUTION: OPERATIONS

An a-approx.imation algorithm for a minimization problem is a
polynomial algorithm that delivers a solution whose value is at most
a times the minimum. From the previous theorem we have:

Theorem 2.5.5. There is an 2-approximation algorithm for comput­
ing the sequential crossover distance from two sets of strings.

Proof. lt is easy to notice that an algorithm that computes
LzEB(card(ArbH(A,z))- 1) requires O(nlBI), where n = card(A)
and I BI is the sum of the lengths of all strings in B. □

As far as the parallel crossover distance is concerned one may
state

Theorem 2.5.6. There is an exact algorithm that computes
PCOD(A, B) in O(nlBI) time, where n = card(A) and IEI zs the
sum of the lengths of all strings in B.

We have introduced two crossover distances between two finite
sets of strings and proposed some algorithms for computing them
based on the "greedy" strategy. Ali results presented here are valid
for a particular type of crossover, namely the uniform crossover where
the strings exchange with each other prefixes of the same length.
Even so, the problem of finding a polynomial algorithm to compute
the sequential crossover between two finite sets remains open. The
next step is naturally to consider the case of arbitrary crossover; we
hope to return to this in a forthcoming paper.

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 3

Language Generating
Devices

Generative devices based on operations suggested by the mutations
which take place within genomes appear very attractive for formal
language theorists (see [33, 34, 37, 89, 94]) and hopefully, biologists
(see [11, 19, 20, 53, 116, 121, 122, 123, 134]). It seems that an in­
creasing trend manifests itself throughout the field of computational
biology toward abstracted views of biological sequences, which is very
much in the spirit of language theory.

The issues addressed by this section are basically formal language
theoretic questions but the results presented here address a biologi­
cally important and realistic problem as well. We hope that our model
responds to some computational aspects of bioinform~tics. Maybe it
is worth mentioning here that, in spite of the simplicity of our model
(no context constraints, no auxiliary symbols), the decidability status
of many important problems is negative.

It might also be argued that, due to practicai problems when
dealing with arbitrarily large genomes, the length of strings is of a
definite importance. Thus, following the approach in L-systems area,
it appears of interest to study length sets or growth functions asso­
ciated to the evolutionary grammars. One paragraph of this section
is a first approach in this respect.

We introduce in this first section the most general model - the

https://biblioteca-digitala.ro / https://unibuc.ro

94 CHAPTER 3. LANGUAGE GENERATING DEVICES

evolutionary grammar - which takes into account nat only all the
operations involved in the genome evolution but lexical context for
controlling their application. We introduce a grammatical model for
the evolution of genomes an the basis of gene mutations and chromo­
some mutations and present some properties of such grammars. Few
problems which might be biologically relevant are discussed from the
computational point of view. On the other hand, the model suggests
a new direction in formal language theory motivated by the common
operations of genome evolution.

3.1 Evolutionary Grammars

For an alph.;t,bet V we denote by C(V) = {(w)lw Ev+}, (,)~V.
The C-length of x E C(V)+ is defined as follows:

l {
1, if x E C(V)

9C X = () lgc(Y) + 1, if x = yw,w E C(V)

An evolutionary grammar is a construct

EG = (V,GM,CE,CO,A)

where

• V is an alphabet (the set of nucleotides).

• GM ~ { Sub,I ns, Del} (the set of gene mutations: substitu­
tions, insertions, deletions, respectively)

- Sub is a subset of V x (V U { (}) x (V U {)}) x V

- Ins,Del are subsets of V x (V U {(}) x (V U {)})\(V x
{(}X{)})

• CE~ {CDel,Inv,Trans,Dupl} (the set of chromosomes evo­
lutions: deletions, inversions, transpositions, duplications, re­
spectively)

- C Del and Inv are finite subsets of C(V)+

- Trans and Dupl are finite subsets of (C(V)+)3
https://biblioteca-digitala.ro / https://unibuc.ro

3.1. EVOLUTIONARY GRAMMARS 95

• CO is a finite subset of (C(V)+)4 such that if (x, y, z, t) E CO,
then (z, t, x, y) E CO, too (the set of crossing-over operations).

• A is a finite subset of C(V)+ (the set of initial genomes)

We define the following relations on the set of genomes C(V)+:

(i) x ===}cM y iff one of the following conditions holds:

1. x = uacbv, y = uadbv, (c,a,b,d) E Sub E GM,

2. x = uabv, y = uacbv, (c,a,b) E Ins E GM,

3. x = uacbv, y = uabv, (c,a,b) E Del E GM

(these rules model the gene mutations)

(ii) x ===}cE y iff one of the following conditions holds:

1. X= X1X2X3, y = X1X3, X2 E CDel E CE,

2. x = X1X2X3, y = x1mi(x2)x3, X2 E Inv E CE,

3. X= X1X2X3X4X5X5,

{

X1X3X4X2X5X5, (x2, X4, xs) E Trans E CE
X1X2X5X3X4X5, (xs,x2,x3) E Trans E CE

y=
X1X2X3X4X2X5X5, (x2,X4,xs) E Dupl E CE
X1X2X5X3X4X5X5, (xs, x2, x3) E Dupl E CE

(these rules model the chromosomes rearrangements)

(iii) x,y =}coz iff x = x 1x2x3x4, y = y1y2y3y4, and

1. lgc(x1x2) = lgc(Y1Y2),

2. z = X1X2Y3Y4

(this rule models the crossing-over of the genomes x and y

resul ting in z).

Let us define the following sequences of languages

A,

{y E C(V)+ Ix===} x y for some x E L;(EG)},

X E {GM,CE}, i 2'. O,

{z E C(V)+ Ix, y =}co z for some

x, y E L;(EG)}, i 2'. O,
https://biblioteca-digitala.ro / https://unibuc.ro

96 CHAPTER 3. LANGUAGE GENERATING DEVICES

L;+1(EG) = L;(EG) u L;+1(GM) u L;+1(CE) U

L;+ 1 (CO), i 2' O.

The world generated by an evolutionary grarnrnar as above is

(intuitively, L;(EG) contains all genornes which can be obtained frorn
genornes in the set A after at most i rnutations and W(EG) is the
union of all these sets, i.e. it consists of all genornes which originate
from elernents of A by some given rnutations).

As one can easily see the aforernentioned definition of the evolu­
tionary grarnrnars tries to model all local as well as global operations
that rnight occur during the evolution tirne.

We say that an evolutionary gramrnar EG is local or global if
CE = © or GM = © holds, respectively. Moreover, EG is called
non-deleting, if Del = C Del = © holds.

The following rnatters appear to be of interest frorn the cornpu­
tational biology point of view:

1. lt is possible to get a given genorne frorn another one ?
2. Is a world generated by a given evolutionary gramrnar finite

or infinite ?
3. Are there common genornes in two given worl<ls ?
4. What can be said on the number of genorns derivable frorn

a given set of genorns by a certain nurnber of given mutations ?
5. What can be sai<l on the length of genorns derivable frorn a

given set of genoms by a certain number of given mutations ?
We rnention that our model is not satisfactory in order to de­

scribe the process of evolution because we take into consideration all
genomes created by the given mutations whereas the nature takes
only some of them which survive since the corresponding organisms
have better properties and abilities (the others lead to lethal situa­
tions). In or<ler to model this aspect one has to add further features
(see [28] for an approach).

Furthermore, we give the mutations in the grammar and allow
only them during the evolution. However, which mutations lead to
new organism is not known in advance. Therefore one has to add

https://biblioteca-digitala.ro / https://unibuc.ro

3.1. EVOLUTIONARY GRAMMARS 97

a mechanism which selects the mutations and does nat require their
knowledge in advance. We shall present answers to some of the prob­
lems mentioned above.

3.1.1 Decision Problems

In this subsection we are firstly interestecl in the question whether
or nat a given genom can be transformed by some given mutations
to a given genom. Formally, this can be written as follows: Given
some sets V of nucleoticles, GM = {Sub,Ins, Del}, CE = { C Del,
Jnv, Trans, Dupl} and CO of mutations and genomes x and y, does
there ex.ist a derivation

with n 2: 1 and X; E {GM, CE, CO} for 1 ::::; i ::::; n. Obviously,
this is equivalent to the following problem: Given an evolutionary
grammar EG = (V,GM,CE,CO, {x}) and a genom y, does y E
W(EG) hold. This is the membership problem which is well-known
and well investigated in the theory of formal languages (see [64]).
However, the operations which are performed in one derivation step
of a evolutionary grammar differ essentially from the replacements
used in the classical theory of formal languages.

Theorem 3.1.1 i} There is no algorithm which decides, for a given
local or global evolutionary grammar EG (with a singleton set of ini­
tial genomes) and a given genome y, whether or nat y E vV(EG).

ii} There is an algorithm which decides, for a given non-deleting
evolutionary grammar EG and a given genome y, whether 01· nat
y E W(EG).

Proof. i) It is well-known that there is no algorithm which decicles
the membership problem for arbitrary phrase structure grammar, i.e.
which decides, for a grammar G = (N, T, P, S) and w E r+, whether
or nat w E Gen(G) (see [64]).

Let G be a phrase structure grammar as above, whose set of
productions P contains only rules of the following forms:

AB ----, AC, AB----, GB
https://biblioteca-digitala.ro / https://unibuc.ro

98 CHAPTER 3. LANGUAGE GENERATING DEVICES

A -, EC

with A, E, C E N and a E T. For the effect of arule AE _, CD
could be obtained without side effects by the context sensitive rules
AE -, Y E, Y E -, Y X, Y X -, C X, C X -, CD, provided that Y
and X have no other occurences in the rules of G and by the Kuroda
normal form, we daim that the aforementioned forms do not induce
any restriction of the generative capacity.

Take the local evolutionary grammar

EG = (V,{Sub,Ins,Del},0,0,{(S)})

where

V = Nu Tu {[El, [EC]IA _, EC E P}

Sub= {(E,A,X,C)IAE-,ACEP,XENUTU{)}}

U {(A,X,E,C)IAE _, CE E P,X E N UTU {(}}

u { (A, X, Y, a) I A _, a E P, X E N u T u { (},

YENUTU{)}}

u {(A, X, Y, [EC])IA _, EC E P, X E Nu Tu{(},

YENUTU{)}}

u {([EC],[E],X,C)IE,CEN,XENUTU{(}}

U {([El, X, Y, E)IE E N, X E Nu Tu{(}, YEN

Ins= {([E],X,[EC]IE,CEN,XENUTU{(}}

Del = {(A,X,Y)IA-,cEP,XENUTU{(},YENUTU{)}}

Clearly, w E L iff (w) E W(EG) that implies the undecidability of
the membership problem for local evolutionary grammars.

For the same phrase structure grammar G let us assume that
P = { a; ---+ /Ji I 1 :S i :S n, for some n 2: 1. We consider the global
evolutionary grammar

EG = (V,0,{CDel,Inv,Dupl},0,{x})

where

https://biblioteca-digitala.ro / https://unibuc.ro

3.1. EVOLUTIONARY GRAMMARS 99

{ c1, c2, d1, d2, #, $} n (N u T) = 0
X g(C1 c2d1 d2/31 d2/32 ... d2f3n)(#)(5)($)

CDel {g(d1a;d1d2)ll :S i :S n} U {(c1),(c2)}
Inv {(c1)(X)IX E NU T} U {(X)(c2)IX E NU T}

Dupl {(g(d2/3;), g(d1a;d1), (X))ll :S i :S n, X E NU TU{$}} u
{((c1),(#),(X))IX E N UT} U {((c2),(X),($))I

XEN u T} u {((d1), (ci), (X))IX E NU T} U

{((d1),(X),(c2))IX E NuT}

In the above relations g is a morphism from NU T into NU TU { (,)}
defined as g(X) = (X), for all X E NU T.

Thus, by deletions and duplications we are able to simulate all
productions of P. Therefore,

which concludes the first statement of this theorem.

ii) Since the grammar is non-deleting, any step in the derivation
does not decrease the length of the generated word. Thus one can con­
struct an upper bound n for the number of steps which are necessary
in order to obtain a given PJ.ement y by a given grammar EG. Now
we only have to determine in succession all sets L0 (EG), L1(EG), ... ,
Ln(EG) which can be done algorithmically since all these sets and
the sets of operations are finite. Finally, we have to check whether or
not y E Ln(EG). □

The next decidabili ty results are direct consequences of the pre­
vious theorem.

Corollary 3.1.1 i) There is no algorithm which decides, for two
given local/global evolutionary grammars EG1 and EG2, whether or

nat W(EG1) ~ W(EG2)-
ii) There is no algorithm which decides, for two given local/global

evolutionary grammars EG1 and EG2, whether or nat W(EG1) n
W(EG2) = 0.

iii) There is no algorithm which decides, for two given local/global
non-deleting evolutionary grammars EG1 and EG2 , whether or not

W(EG1) n W(EG2) = 0.
https://biblioteca-digitala.ro / https://unibuc.ro

100 CHAPTER 3. LANGUAGE GENERATING DEVICES

Proof. ln order to prove the first assertion it suffices to take an
evolutionary grammar EG1 generating only one genome and another
arbitrary one EG2 generating a nonrecursive world. An algorithm for
solving the problem W(EG 1) ~ W(EG2) would imply that W(EG2)
is recursive, contradiction.

The undecidability of the intersection emptyness problem for local
(non-deleting) evolutionary grammars follows obviously from Theo­
rern 3.1.1. Let G; = (N;, T;, S;, P;), i = 1, 2, be two arbitrary gram­
mars with N1 n N2 = 0 and P; = {o~ --+ ,B}ll :S j :S ni}, i = 1, 2,
for some n1 , n2 2:: 1. As in the proof of Theorem 3.1.1 one can con­
struct two global evolutionary grammars EG1 and EG2 such that
W(EG 1) n W(EG2) is the following set

g(c1 c2d1 d2,8i d2,B~ ... d2,B! d2,8i d2,B~ ... d2,B~)(#)
g(Gen(G1) n Gen(G2))($).

Ofcourse, W(EG
1

)nW(EG
2

) = 0iffGen(G
1

)nGen(G
2

) = 0, which
is undecidable.

But the above construction does nat work for global non-deleting
evolutionary grammars. So, we shall provide below another proof in
the case of non-deleting evolutionary grammars.

Let -

be an instance of the Post Correspondence Problem over the alpha­
bet { a, b}. Consider the global non-deleting evolutionary grammars
EGx, EGy as follows:

where

EGz = (V,0,{Jnv2 ,Duplz},0,Az), z E {x,y},

V {1,2, ... ,n}U{a,b,c,d},

Ax {g(mi(x1)l mi(x2)2 ... mi(Xn)nmi(y1)lmi(y2)2 ...

mi(yn)nkcdxk)ll :S k :S n}

Ay {g(mi(x1)lmi(x2)2 ... mi(xn)nmi(y1)lmi(y2)2 ...
https://biblioteca-digitala.ro / https://unibuc.ro

3.1. EVOLUTIONARY GRAMMARS

Duplx

Duply

Invx

Invy

mi(yn)nkcdyk)ll S k S n}

{(g(mi(x;)i),(p)(q),(c)(d))ll S i,p,q S n}

{(g(mi(y;)i),(p)(q),(c)(d))ll S i,p,q S n}

{g(mi(x;)icd)ll S i S n} U {(d)(c)(i)ll S i S n}

{g(mi(y;)icd)ll S i S n} U {(d)(c)(i)ll S i S n}

101

Note that g is the same morphism as that from the pro of of Theorem
3.1.1. One easily observe that W(EGx) n W(EGy) = 0 if and only if
the given instance has no solution and the proof is complete. □

Theorem 3.1.2 It is undecidable whether or nota given local/global
evolutionary grammar generates a finite number of genoms.

Proof. By applying a reduction to the Post Correspondence Problem
one can prove (see [96]) that the finiteness problem for the sentential
form languages of context-sensitive grammars is undecidable. Fol­
lowing the proof of Theorem 3.1.1 we get a local/global evolutionary
EG grammar simulating all productions of a given context sensitive
grammar G. By that simulation every sentential form of G has a
finite number of "similar" genomes in W(EG) (since G is length in­
creasing) and each genome in W(EG) is associated to a sentential
form of G. Therefore, W(EG) is finite if and only if the sentential
form language of G is finite. □

It is worth mentioning here that the problem remains undecidable
for local non-deleting evolutionary grammars as well. We do not know
whether the problem has the same decidability status for global non­
deleting evolutionary grammars.

Ali the results above are negativist. For lightening a bit this
sombre vision we present the next decidable result.

Theorem 3.1.3 It is decidable whether or not a given global, non­
deleting evolutionary grammar produces all genomes consisting from
chromosomes in a given finite set.

Proof. The problem can be stated as follows. Let EG = (V, 0, CE\
{CDel},CO,A) be an evolutionary grammar and F be agiven finite

https://biblioteca-digitala.ro / https://unibuc.ro

102 CHAPTER 3. LANGUAGE GENERATING DEVICES

subset of C(V). Now, we have to decide whether or not W(EG) = F+
holds. Take k = max{lgc(x)lx E A}. Our problem can be reduced
to the checking of the following relations:

(i) F = {w E C(V)I exist x,y E C(V)* such that xwy EA

(ii) Any w with lgc(w) :s; k + l belongs to W(EG)

Note that the relations above can be algorithmically verified since the
evolutionary grammar is non-deleting. If one of the above relations
is not fulfilled, then the equality W(EG) = F+ does not hold, too.
Now it suffices to show how can be produced any genome w E p+
with lgc(w) = k+2. Let wx E p+ with lgc(w) = k+l, lgc(x) = l.
As lgc(w) = k + l there ex.ists y E A with lgc(Y) :s; k such that w can
be obtained from y by different chromosome mutaţions. On the other
hand, the genome yx has its C-length at most k + l; consequently it
is produced from a genome z E A. Therefore, z can produce wx as
well which concludes the proof. O

lt is worth mentioning here that the theorem remains valid when F
is a finite subset of C(V)+.

3.1.2 A Growth Function for Genomes

Based on the definition of the chromosome length lgc, we define the
gmwth function JEG : N-> N of an evolutionary grammar EG by

!Ea(n) = max{lgc(x) Ix E Ln(EG)}.

This function is an analogon of the growth function known from the
theory of LINDENMAYER systems (see [113]).

First we mention that the gene mutations GM do not influence
the growth function because they change the length of genes but
do not change the length of a chromosome. Because L;(EG) s;;;
L;+1(EG), !Ea is a monotonous function.

Let
a= max{cl(x) Ix EA}.

If the set Dupl of duplications is empty, then no increase of the
chromosome length is possible, i.e.

!Ea(n) = a
https://biblioteca-digitala.ro / https://unibuc.ro

3.1. EVOLUTIONARY GRAMMARS 103

is a constant function in this case.
On the other hand, if k = max{cl(xi) I (x 1 , x2 , x 3) E Dnpl}, then

any derivation step can increase the C-length at most by k. Thus we
obtain

!Ec(n)S:a+n·k.

This shows that, for any evolutionary grammar EG, the growth func­
tion is bounded from below by an constant function and bounded
from above by a linear function.

However, a lot of other mappings within the aforementioned bounds
may be growth functions of some evolutionary grammars. We provide
now such a class of mappings. A function f : N -> N is monotonously
increasing ultimately periodically linear (MIUPL, shortly) if there are
numbers t 2: O (threshold), p 2: 1 (period) and O :'S r 1 :'S r 2 :'S ... S r P

satisfying the condition

J(t +ip+ j) = J(t) + irp + rj, for all i 2: O, 1 s; j s; p

We give the following result on the existence of growth functions.

Theorem 3.1.4 i) Every MIUPL mapping is the growth function of
an evolutionary grammar.

ii) There is an evolutionary grammar EG such that fEc(n)
O(fa).

Proof. The first item is left to the reader and we only prove ii).
It is sufficient to consider the global evolutionary grammar

with

EG = (V, 0, {Inv, Trans, Dupl}, 0, { eabcdaaf})

Inv

Trans

Dupl

{ac,bc,de},

{(aec,a,f),(J,a,e)},

{(bc,a,a),(a,c,e),(e,bc,cd)}

where a, b, c, d, e, f are the elements of C(V) used. First we obtain
the following derivation

eabcdaaf ===> eabcdabcaf ===> eabcdacbaf ===> eabcdcabaf ===>

eabccdabaf ===> eabcecdabaf ===> eabcaecdabaf ===>

eabcdabaaecf

https://biblioteca-digitala.ro / https://unibuc.ro

104 CHAPTER 3. LANGUAGE GENERATING DEVICES

which is unique in that sense that the application of other muta­
tions do not increase the C-length and lead to situations such that
no further applications of mutations are possible). Now we can re­
peat this derivation with an additional application of the transposi­
tion (!, a, e) and two additional inversions and obtain after 10 steps
eabcdababaaecf ec (again, this derivation is unique in the above sense;
however, the time w here the additional transposition is performed is
not uniquely determin ed). N ow we can repeat this process and have
to use two additional steps in order to obtain eabcdabababaaecf ecec
etc. Therefore we get

!Ea(O) = 8, !Ea(7) = 12, !Ec(l 7) = 16, !Ec(29) = 20

and generally

n

!Ec(7 + 8n + 2 Li)= !Ec(n2 + 9n + 7) = 12 + 4n
i=l

which proves the statement. O

ln light of the last result we suspect that the class of evolutionary
grammar growth functions is likely quite large and it seems to be
very diffi.cult to give an exhaustive characterization.

3.2 Context-Free Evolutionary Grammars

This section is devoted to the context-free variant of the evolutionary
grammars investigated in the previous section. For sake of simplicity,
in the rest of this section we refer to these grammars as evolutionary
grammars but the reader should understand that they are context­
free evolutionary grammars. Besides all the problems studied for the
evolutionary grammars in the previous section we shall consider here
some specific problems as well.

A context-free evolutionary grammar ([33)) is a construct

EG = (V,A,Del,Inv,Xpos,Dup)

where
https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 105

• V îs an alphabet (the set of nucleotides. Strings of V* are
referred as genomes).

• Del, Inv, Xpos and D·up are finite subsets of v+ (the sets of
deletions, inversions, transpositions and duplications, respec­
tively),

• A is a finite subset of v+ (the set of initial genomes)

We define the following relationships on the set v+:

X -:=:}De/ y iff X= UVW, y = uw, V E Del

x evolves into y by deleting a segment

X -:=:} Inv Y iff Y E l(V,Inv) (X)

x evolves into y by reversing the orientation of a segment

X -:=:} X pos Y iff Y E ~ V,X pos) (X)

x evolves into y by transposing a segment to a new position

X ==;,Dup y iff y E 'D(V,Dup)(x)

x evolves into y by copying a segment

and

x -:=:}Ec y iff x ==;,x y, for some X E {Del,Inv,Xpos,Dup}

Denote by -:=:}X the reflexive and transitive closure of ==;,X· The
language generated by an evolutionary grammar as above îs

L(EG) = {w E V*lx ==;,EG w, for some x EA}

(intuitively, L(EG) consists of all genomes which originate from ele­
ments of A by some given mutations).

Remark. Each evolutionary grammar may be viewed as a very par­
ticular pure grammar [4 7]. Indeed, each mutation can be simulated
by a set of pure productions as follows.

• For each x E Del, the associated production îs x ------> E.

• For each x E Inv, the associated production îs x------> mi(x).
https://biblioteca-digitala.ro / https://unibuc.ro

106 CHAPTER 3. LANGUAGE GENERATING DEVICES

• For each x E X pos, the associated productions are xa ----+ ax,

for all a E V.

• For each x E Dup, the associated production is x ----+ xx.

An evolutionary grammar is called non-deleting if Del = 0.
We shall give an informal biologica} interpretation _of our genera­

tive device. The alphabet of the grammar might be considered as the
alphabet of nucleotides and the set A as the set of initial genomes.
Evolutionary events are described by the sets Del, Inv, Xpos, Dup;
thus the language generated by an evolutionary grammar may be
viewed as the world consisting of all genomes which originate from
elements of A by some given mutations.

3.2.1 Computational Power

Denote by {(EG) the family of languages generated by evolutionary
grammars.

Theorem 3.2.1 1. The family of languages generated by evolution­
ary grammars is incomparable with the family of regular languages.

2. The family of languages generated by evolutionary grammars
is incomparable with the family of context-free languages.

Proof. The following evolutionary grammar generates a non-context­
free language:

EG = ({a,b,c},{abc},0,0,{a,b,c},{abc})

It is easy to check that

Let us consider the alphabet V = { a, b, c, d, e} and the language

L = {x EV* I if x = x1a1n2x2, with x 1 ,x2 EV*, and a 1 ,a2 EV,

then a 1 -/:- a2 and a 1a2-/:- ba}.

It is easy to see that this is an infinite regular language. For
instance, L contains all square-free strings over {c,d,e}, and one

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 107

knows that this language is infinite (see [128], [118]). The regularity
of L can be easily checked. Moreover, if Sub(L) is the language of all
substrings of strings in L, then obviously L = Sub(L) (the properties
of strings in L are hereditary).

Let us assume that L is generated by an evolutionary grammar,
i.e. L = L(G) for some G = (V,A,Del,Inv,Xpos,Dup).

(i) Assume that there is z E Del, z f: c:, such that z E Sub(L).
This means that z E L. Suppose that z = a 1z1 = z2a2, for some
z1, z2 E V* and a 1, a 2 E V. There are strings w = W1 {3zf3w2 in L,
with w1 ,w2 E V*,/3 (ţ. {a,b,a1 ,a2} (we have card(V) = 5 and z EL,
hence at least strings of this form with w1 = w2 = € can be found
in L). Then w ~De/ w1{3{3w2; the obtained string is not in L, a
contradiction.

(ii) Assume that there is z E Xpos,z f: c:, such that z E Sub(L).
For z = a1z1 = z2a2, for some z1, z2 E V* and a1, a2 E V, we take
w = w1{3zf3w2 in L, with w1, W2 E V*, f3 (ţ. { a, b, a 1, a2}, and we get a
contradiction by noticing that w ~ Xpos w1{3{3zw2 produces a string
not in L.

Therefore, no element of Del and X pas can be used in a deriva­
tion step with respect to G, we can replace these sets by 0 and the
generated language is the same. Thus, we suppose that G has already
these components empty.

(iii) Consider now the language S F{c,d,e}, of all square-free strings
over { c, d, e}. We have mentioned above that this is an infinite lan­
guage ([128], [118]). Construct the strings of the form

a 1 aba2ab . .. akabak+I,

for k > 1,a; E {c,d,e}, 1 :S i :S k + 1, and a1a2 .. ,ak+I E SF{c,d,e}·

Denote by M the language of such strings.
The language M is infinite (because S F{c,d,e} is infinite) and it

is included in L (no double symbol and no substring ba appear in
its strings). The ax.iom set A is finite. Therefore, there are strings
w E M which are not in A, that is there is a derivation x ~• w în
G. Let w' ~ w be the last step of such a derivation. Without loss
of generality we may assume that w' f: w (we ignore the steps which
do not observe this property). By the definition, we have w' E L.

https://biblioteca-digitala.ro / https://unibuc.ro

108 CHAPTER 3. LANGUAGE GENERATING DEVICES

Because w contains no square, the derivation step w' ==> w is not
a duplication. Because Del = 0 and X pas = 0, the only remaining
possibility is to have an inversion. Let z E Inv be the string inverted
in w' in order to obtain w, i.e. w' = v1 zv2 and w = v1 mi(z)v2 for
some v1 , v2 E v•. If z E V, then w' = w in contrast to our choice.
If mi(z) contains ab, then w' contains the subword ba in contrast to
w' E L. Therefore mi(z) = o:a or mi(z) = bo: or mi(z) = bo:a hold
for some a E { c, d, e}. In the former two cases w' contains ba, in the
latter case w' contains aa and bb. Therefore in any case we get a
contradiction to w' E L.

Consequently, no operation can be used in the last step of pro-
ducing a string w as above, and this completes the proof. D

A language L is called strictly bounded if and only if there are
pairwise different letters a1 , a2, ... , ansuch that L ~ aîa2 ... a;.

Theorem 3.2.2 A strictly bounded language can be generated by a
non-deleting evolutionary grammar if and only if it is regular.

Proof. In [50] it is shown that a strictly bounded language L ~
ai a2 ... a; is regular if and only if there is an integer r E N, finite
sets F;,1 ~ N and integers m;,j E N, 1 :S i :S n, 1 :S j :S r, such that

r

L U {ar1,j+s1 m1,1 ar2,j+s2m2,1 arn,J +snmn,j
1 2 • • • n

j=l

r;,j E F;,1,s; E N for 1 :S i :S n}.

For 1 :S i :S n, let m; be the smallest common multiple of the integers
m;,1, m;,2, ... , m;,, different from O (or m; = O if m;,1 = O for all j),

t =max{s :s E F;,1,1 :S i :S n,1 :Sj :S r}.

Now we consider the evolutionary grammar

with

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 109

Let
r 1 ,1 +s1m1,1 r2,1 +s2m2,1 Tn,1 +snmn,J (3.l)

W = al U2 •.• Un

be a word in L. If a duplication of at' for sorne i, 1 :S i < n, can
be applied to w then r;,j + s;m;,j 2': tm;. Hence, by m; = qimi,j for
some qj E N, the word

I r1 1 +s1m1 1 r2 1 +s2rn2 1 Ti-1 1 +s,-1m,-1 1 r, 1 +(s,+tqi)m, 1 w a 1 ' ' a 2 ' • ... a;_ 1 ' ' a; ' •

Ti+ J ,J +si+ 1 mi+l ,J Tn,J +sn mn,j
ai+I ... Un

obtained by the duplication belongs to L, too. Since we start the
generation of L(EG) with words from A ~ L and the application of
duplications to words of L yields words of L, we get L(EG) ~ L.

We now prove the converse inclusion by induction on the length
of words. Obviously, the shortest words in L belong to A and A ~
L(EG) holds by definition. Thus let us consider a word of the form
given in (3.1) which is not contained in A and assume that all words
w" E L which are shorter than w belong to L(EG). Because w (ţ. A,
there is a number i, 1 :S i :S n such that r;,j + s;m;,i > 2tm;. By
Ti,i ~ t ~ tm;, we get s;m;,i > tm; = tq;mi,i • Thus the word

W
II r1 1 +s1m1 1 r2 1 +s2m2 1 r,-1 1 +s,-1m,-1 1 r, 1 +(s;-tq;)m, 1 al ' ' a2 ' ' · ··ai-I ' ' a; ' '

Ti+1,j+Si+1 rn1+1 ,J Tn,J +sn m 11 ,1 ai+I ···Un

is in L. By assumption w" E L(EG). Because w" ~Dup w, we
obtain w E L(EG).

Let EG = (V,A,0,Inv,Xpos,Dup) bea non-deleting evolution­
ary grammar generating a strictly bounded language. Obviously, one
may assume that J nv = X pas = (jJ without modifying the language
generated by EG. Now it is easy to see that the language generated
by EG is regular. □

We conjecture that Theorem 3.2.2 is valid for arbitrary evolu­
tionary grammars as well. Next theorem proves this assertion for the
unary alphabet.

Theorem 3.2.3 A language over the unary alphabet is regular iff it
is genemted by an evolutionary gmrnmar.

https://biblioteca-digitala.ro / https://unibuc.ro

110 CHAPTER 3. LANGUAGE GENERATING DEVICES

Proof. By the first part of the previous proof it suffices to prove that
each language over the unary alphabet generated by an evolutionary
grammar is regular.

Consider an evolutionary grammar EG = ({a}, Del, Inv, Xpos,
Dup, A). vVithout loss of generality we may assume that Inv =
Xpos = 0. Let

and

#(Del)

#(Dup)

p = gcd(d1, d2, ... , dm, C1, C2, ... Cn)

Here gcd means the greatest common divisor. It is known that

n m

p = L k;c; + L q;d;,
i=l i=l

for some integers k;, qj, l :S i :S n, l :S j :S m. Moreover, one can
choose k; 2: O and qj :S O, for all 1 :S i :S n, l :S j :S m.

If L(EG) is finite, then it is obviously regular. If L(EG) is an
infinite set, there aret;, l :S i :S s, s :S p, such that

L(EG) =FU LJ{at,+kplk 2: O},
i=l

for some finite set F. Consequently, L(EG) is regular which com­
pletes the proof. o

A statement analogous to Theorem 3.2.2 does not hold for context­
free languages because the strictly bounded context-free language
{anbn I n 2: l} cannot be generated by an evolutionary grammar. In­
deed, let us assume the contrary and Jet EG = ({a,b}, A, Del, Inv,
Xpos, Dup) be an evolutionary gra.mmar generating L. Obviously,
Dup =/:- 0. For each w E Dup we distinguish three cases:

1. w E a+. Then, for large enough n, anbn ==?Dup an+lwlbn,
contradiction.

2. Analogously for w E b+.
https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 111

3. w E a*abb*. Then anbn may provide, by duplication, a word
having two factors ab, contradiction.
Consequently, L cannot be generated by any evolutionary grammar.

We do not know whether or not Theorem 3.2.2 also holds for
bounded languages, where a language L is bounded iff there are the
strings w1, w2, ... , Wn such that L;:: wîw; ... w~.

In the view of the previous theorems it is of interest to look for
features tobe added to an evolutionary grammar in order to generate
all regular languages. A squeezing mechanism in the form of a termi­
nal alphabet is too powerful, since we get all recursively enumerable
languages in this way as stated by the next theorem.

Theorem 3.2.4 Each recursively enumerable language can be ex­
pressed as the intersection of a language in [(EG) with a regular
language.

Proof. Let G = (N, T, S, P) bea phrase-structure grammar. We may
assume (see [48]) that N = {S, A, B, C} and

P = {S---. xill :S: i :S: n, for some n ~ 1} U {ABC---. c}

We consider the evolutionary grammar

EG = (V, A, Del,Inv,Xpos, Dup)

with

V

Del

Inv

Xpos

Dup

A

NUTU{<l, t>,--l}U {1-ill :S: i :S: n},

{ABC, --l} U {1-;S <l t>ll :S: i :S: n} U { <lxi1-i t> --l I
1 :S: i :S: n },

{<lxi1-;ll :S: i :S: n} U {S1-imi(x;)ll :S: i :S: n},

{<lxi1-i t> 11 :S: i :S: n},

{ <lx;1-; t> --l ll :S: i S n},

{<lx11-1 t> --l <lx21-2 t> --l ... <] Xn1-n t> --l S}

Firstly, we shall prove that L(G) ;:: L(EG) n T*. More precisely, we
shall prove that

https://biblioteca-digitala.ro / https://unibuc.ro

112 CHAPTER 3. LANGUAGE GENERATING DEVICES

Let 5 ===>c y be a derivation in m 2: O steps. If m = O, the assertion
is trivially true. We assume the assertion true for any k < m and
prove it for m. Consider S ===>8- 1 z ===> y. By the induction
hypothesis, <lx1..L1 I> -l <lx2..L2 I> -l ... <l Xnl.n I> -l z E L(EG).

If the rule used at the last step was ABC --'> E, then

<lX1..l1 I> -l <lx2..l2 [> 4. • • <] Xnl.n [> -l Z ==>De/

<] X1 l.1 I> 4 <] X2..l2 I> -l · · · <] Xnl.n I> 4 Y

If the rule used at the last step was 5 - x;, for some i, that is
z = z1Sz2,y = z1x;z2, we consider the following derivation in EG:

<lx1..L1 I> -l <lx2..l2 l> -l • • • <l Xnl.n I> -l

z ===>Dup <lx1l.1 I> -l <lx2..L2 I> -l ... <l x;l.; I> -l <lx;..L; I> -l ...

<l Xnl.n I> -j Z ===> De/ <l X1..l1 I> -j <l X2..l2 I> -l · · ·

<lx;..l; I> -l <lx;..l; I> ... <l Xnl.n I> -l Z ===>Xpos <lX1..l1 I>

-l <l X2..l2 I> -l ... <l x;l.; I> -l ... <l Xnl.n I> -l z1S <l x;l.; I> Z2

===>Inv <lX1..l1 I> -l <lx2..L2 I> -l • .. <l x;l.; I> -1 ... <l Xnl.n I> -l

z1S..L;mi(x;) <l t>z2 ===>Jnv <lx1..L1 I> -l <lx2..L2 I> -1 ...

<lx;..L; I> -l ... <l Xnl.n I> -l Z1X;l.;S <l t>z2 ===>ne1

<lx1..L1 I> -l <lx2..L2 I> -l • • • <l x;..L; I> -l • • • <l Xnl.n I> -l Z1XiZ2

N ow for any y E L(G) there exists the derivation in EG

<lX1..l1 I> -j <lX2..l2 [> -1 ... <] Xnl.n I> -j 5 ===>t:G

<l X1 l. 1 I> -l <l X2 ..l.2 I> -l · · · <l Xnl.n I> -l Y ===> De/ Y

We shall discuss some considerations which lead to the conclusion
L(EG)nT" s;:: L(EG). For sake of simplicity, denote by a= <l x1 ..L 1 I> -l
<lx2..L2 I> -1 ... <lxnl.n I> -1. ltiseasytoseethatwheneveraS ===>EG

/3, with /3 E (Nu T)" we have also aS ===>EG a() ==>vei (3.
Therefore, it suffices to prove that

where /3, 1 E (NU T)". This results from the following remarks:
https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMJVIARS 113

• Each deletion of a substring ABC corresponds to an application
of the rule ABC ---+ c.

• Let /3 = /31/32 and a/3 ==} x pos /31 <l Xi ...Li t> /32 he the result of
transposing the segment <lxi...Li t> /32. The symbols <l,...Li, t>,
not in N U T can be removed only if one of the following cases
holds:

1. Roughly speaking, the erasing of the symbols <l, .li, t>,
requires that the segment <l Xi ...Li t> to be preced ed by the
symbol S. The overall effect is the substitution of S by Xi,
Formally, a/31 ==}EG a(J~S and a/JiS <l Xi...Li t> fh ==}EG
af3i x;/32- This case can be covered in G by applying the
rule S---+ Xi,

2. The symbols <l, .li, t> can be cancelled if ami(xi) ==}EG
a.S as well. But in this case, the transposition has no
further effect.

□

3.2.2 Decidability Properties

The last theorem has a series of consequences regarding some deci­
sion problems of evolutionary grammars. In the view of biologica]
interpretation of evolutionary grammars given in the beginning of
this section, some of these decision problems might also ha.ve some
biologica! relevance. Thus, the wellknown membership problem asks
whether or not a given genome might appear from an initial set of
genomes by evolution. Also the following matters appear to be of
interest from the computational biology point of view:

1. Is the world generated by a given evolutionary grammar
finite or infinite?

2. Are there common genomes in two given worlds?
3. Does the world generated by an evolutionary grammar con­

tain all genomes which would support life? Or all genomes, no matter
they would support life?

These problems, formally stated in the framework of our gram­
matical formalism, shall be discussed in the following.

https://biblioteca-digitala.ro / https://unibuc.ro

114 CHAPTER 3. LANGUAGE GENERATING DEVICES

Theorem 3.2.5 The following problems are undecidable for the class

of evolutionary grammars:
1. The membership problem.
2. The inclusion problem.
3. The intersection problem. (Js the intersection of the languages

generated by two given evolutionary grammars empty?)

4. Is R a subset of L for R being a regular language and L a

language generated by an evolutionary grammar ?

Proof. Let G; = (N;, T;, S;, P;), i = 1, 2, be two phrase-structure
grammars with N 1 n N2 = 0, and EG; = (V;, A;, Del;, Inv;, Xpos;,

Dup;), i = 1, 2, the evolutionary grammars constructed as in the
previous proof such that Vi n Vi = T1 n T2.

l. It is obvious that for each x E Ti*,

hence the membership problem is undecidable.

2. Clearly, L = { x} is a language that can be generated by an
evolutionary grammar. Since

the undecidability status of the inclusion problem follows.

3. Observe that

L(EG1) n L(EG2) -::p 0 iff L(G1) n L(G2) -:p 0,

therefore the intersection problem is undecidable as well.

4. Take R = Ti* and L = L(EG1). The equivalence

R ~ L iff L(Gi) = Tt

implies the last assertion of the theorem. o

Theorem 3.2.6 It is nat decidable whether or nat an arbitrary given

context-free language can be generated by an evolutionary grammar.
https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 115

Proof. The proof is an usual reduction to the Post 's Correspondence
Problem. Take two arbitrary n-tuples of nonempty strings over the
alphabet { a, b},

Y = (YI , Y2, • • • , Yn) •

Then, consider the languages

for z E {x, y},

Ls = {w1cw2cmi(w2)cmi(w1)lw1,W2 E {a,b}*}

L(x,y) = {a,b,c}* - (Lx{c}mi(Ly) n Ls)

lt is known that L(x, y) is a context-free language. For every solution
(i1 , i2, ... , ik) of PCP(x, y) the strings

bai1 bai2 ••• baikcx;k ... x;2 x;1 cmi(y;1)mi(y;2) •.. mi(y;k)
caikb ... bai2 bai1 b

are not in L(x,y). On the other hand, {a,b}* ~ L(x,y).
Clearly, when L(x,y) = {a,b,c}*, then L(x,y) can be generated

by the evolutionary grammar:

EG = ({a,b,c},{abc},{a,b,c},0,{a,b,c}, {a,b,c})

Now, it is suflicient to prove that when L(x,y) -:j:. {a,b,c}*, then
L(x, y) is cannot be generated by any evolutionary grammar and we
will do that in the sequel.
LetussupposethatL(x,y) = L(EG),forsomeEG = ({a,b,c},A,Del,
Inv, Xpos, Dup). We choose a solution (i1 , i2 , ... ik) such that
lx;kx;k-i ... x;1 J > max{lwl I w EA}. For {a,b}* ~ L(EG), there
exists a word w E A such that

By the choice of the solution (i1, i2, ... , ik) the word

https://biblioteca-digitala.ro / https://unibuc.ro

116 CHAPTER 3. LANGUAGE GENERATING DEVICES

is in L(EG).
Therefore,

z => EG bai1 bai2 ••• baikcx;k ... x;2 x;1 cmi(y;1)mi(y;2) • • • mi(y;k)

caikb ... bai2 bai1 b,

contradiction, and the proof is complete. o

Theorem 3.2.7 1. Jt is decidable whether or not the language gen­
erated by a given evolutionary grammar is finite.

2. The problem "L(EG) = V*?" is decidable for a given non­
deleting evolutionary grammar EG.

3. The membership problem is decidable for non-deleting evolu­
tionary grammars.

Proof. The first assertion is immediately true. lndeed, for a given
evolutionary grammar EG = (V, A, Del, Inv,Xpos, Dup), L(EG) is
infinite if, and only if, Sub(L(EG1)) n Dup :j:. 0, where EG1 =
(V, A, Del, Inv, Xpos, 0) and Sub(X) means the set of all factors of
the strings in X. Because the set L(EG1) is finite the proof of the
first assertion is complete.

The second and the third items follow from [96], since any evolu-
tionary grammar îs actually a pure grammar. O

By Theorem 3.2.2 the following open decision problems are still
of interest:

• Does a given evolutionary grammar generate a regular lan­
guage?

• Can a given regular language be generated by an evolutionary
grammar?

3.2.3 Some Closure Properties

Theorem 3.2.8 The family .C(EG) is not closed under union, con­
catenation, morphisms, intersection with regular sets and intersec­
tion.

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 117

Proof. We consider the languages:

L1 = {x E {a,b}+I I X la=I X lb}

L2 = a+b+

Both of them can be generated by evolutionary grammars. Moreover,
L2 is regular.

The same reasoning may be used in order to prove the non-closure
under union and concatenation. We shall discuss it in the case of
concatenation. We claim that L1 L2 is not in I,(EG). Indeed, let
EG = ({a,b},A,Del,Inv,Xpos,Dup) be an evolutionary grammar
generating L1 L2. Recall that the Parikh vector associated to a word
x in {a,b}*, denoted by \Jl(x), is \Jl(x) =(Ix la,I x lb)- Note that
the transpositions and inversions do not change the Parikh vector
associated to a word.

Sin ce there are words in L(EG) whose Parikh vector (n1 , n2) sat­
isfies the requirement that n1 - n2 îs arbitrarily large, at least one
of Del or Dup has to contain words x with I x la#I x lb- We shall
analyse the case when Dup contains such words. A similar analysis
for the case when Del contains such words is left to the reader. Let
x E Dup be such a word.

If I x la< I x [b, then the following derivation is possible in EG

xalxlb-lxla ab ====;, EG xxalxlb-lxla ab

which implies xxalxlb-lxlaab E L(EG), contradiction.
If I x la> I x lb, then the following derivation is possible in EG

xblxla-lxlbab ====;, EG xxblxla-lxlbab

which implies xxblxla-lxlbab E L(EG), contradiction. Therefore, L1 L2

cannot be generated by EG.
Define the morphism h: {a,b,c,d}*----> {a,b}* by h(a) = h(c) =

a, h(b) = h(d) = b. Since L1 U c+d+ E I,(EG) and h(L1 u c+d+) =
L1 U L2 , it follows that I,(EG) is not closed under morphisms.

The non-closure under intersection with regular sets and inter­
section can be settled in the same way. The language L 1 n L2 =
{anbnjn 2'. l} cannot be generated by any evolutionary grammar by
Theorem 3.2.1. O

https://biblioteca-digitala.ro / https://unibuc.ro

118 CHAPTER 3. LANGUAGE GENERATING DEVICES

3.2.4 Evolutionary Gramrnars and the Structural Lan­
guage of Nucleic Acids

Theorem 3.2.9 1. There is an evolutionary grammar that generates

LDNA·
2. It is decidable whether or not a given non-deleting evolutionary

grammar generates LDNA·

Proof. 1. We consider the following evolutionary grammar:

EG = (VDNA, A, ,Jnv, Xpos, Dup)

with

lnv Xpos = Dup = {AT,CG}

A {AT,CG, ATCG}

We claim that L(EG) = L DN A· lt is easy to verify that all strings of
length at most 4 in LvNA are also in L(EG). Assume that all strings
x E LDNA, lxl :S 2n are in L(EG), for some n 2: 2, and consider a
string w E LvNA with lwl = 2n + 2. Clearly, w = x 1aax 2 , for some
a E VvNA· By the choice of lnv it suffices to consider only the cases
a= A and a= C. Furthermore, since CGAT E L(EG), we consider
the case a = A only. Note that x1x2 E LvNA, lx1x2I = 2n. By our
hypothesis x 1 x 2 E L(EG).

If AT ==> EG x1 Xz, then the following derivation is also possible
in EG:

AT ==>Dup ATAT ==>ec ATx1x2 ==>xpos x1ATx2

If CG ==>Ec x1x2, then the following derivation is also possible in
EG:

ATCG ==>i;;c ATx1X2 ==>xpos x1ATx2

If ATCG ==>Ec x1x2, then the following derivation is also possible
in EG:

ATCG ==> Dup AT ATCG ==> EG ATx1X2 =:> Xpos X1ATx2

Consequently, x E L(EG). We finish the proof of the first item by
observing that L(EG) s;; LDNA·

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 119

2. Let EG = (VDNA, A, 0,Inv,Xpos, Dup) bea non-deleting evo­
lutionary grarnrnar. We clairn that LDNA ~ L(EG) if, and only
if, all strings in L DN A of length at rnost 2k can be generated by
EG. Here k = max{lxl I x E A}. lt rernains to prove that
the aforernentioned condition is suffi.cient. We shall prove that each
x E LDNA, lxl = 2k + 2 is in L(EG). There are two possibilities:

(i) X= X1X2, X1,X2 E LDNA·
Since jxj = 2k + 2, one of x1, x2 is of length bigger than k. Assurne
that !xii > k. Then, there is y E A such that

+ Y ~EG X1

The word yx2 E L(EG) because IYx2I :S 2k. But

hence x E L(EG).

(ii) x = ax3a, for sorne a E VDNA·
There is z E A such that z ~ kc x3 . The string aza E L(EG) and
aza ~kc x, hence x E L(EG). lnductively, all strings in LDNA can
be generated by EG.

We clairn that if LDNA ~ L(EG) we have L(EG) ~ LDNA if,
and only if, A,Xpos, Dup ~ LDNA and Inv contains only words
that can be reduced to palindrornes. All these conditions can be
algorithrnically checked. The "if' part is irnrnediate. 1n order to
prove the "only if" part, we shall consider each condition separately.
Obviously, if A contains words not in L DN A the sarne is true for
L(EG).

Assurne that x E Dup and let xy be in LDNA ~ L(EG). Because
xxy has tobe in LDNA it follows that x E LDNA·

Let x E X pos \ L DN A and y be the shortest word such that
xy E L DN A· Note that such a word always exists. Let z be the
reduced word associated to x. Assurne that. z starts with a and y
ends with b. Consider xycc E LDNA such that c f:. a, c f:. b. We get

xycc ~ Xpos ycxc

and

ycxc E LDNA iff yczc E LDNA
https://biblioteca-digitala.ro / https://unibuc.ro

120 CHAPTER 3. LANGUAGE GENERATING DEVICES

The only possible reduction that can take place within yczc, concerns
the string zc, hence yczc ~ LDNA·

Now, Jet x E Inv and z be its reduced word. Again y is the
shortest word such that xy E LDNA· We have zy E LDNA and
mi(x)y E LDNA· Because the reduced word associated to mi(x) is
mi(z), it follows that mi(z) = z if mi(z)y E LDNA· Now the proof is
complete. D

3.2.5 Descriptional Complexity

In this section we consider the descriptional (syntactic) complexity
of languages generated by evolutionary grammars following [40]. We
are interested in the minimal number of axioms and operations, re­
spectively, and the maximal length of the words associated with an
operation. Formally, for an evolutionary grammar G = (V, A, Del,
Inv, Xpos, Dup), we set

a(G) card(A),

o(G) card(Del) + card(Inv) + card(Xpos) + card(Dup),

l(G) max{lwl I w E Del U Inv U Xpos U Dup}

and extend these measures to a language L generated by an evolu­
tionary grammar by

a(L) min{a(G) I L = L(G),G is an evolutionary grammar},

o(L) = min{o(G) I L = L(G),G is an evolutionary grammar},

l(L) = min{l(G) I L = L(G),G is an evolutionary grammar}.

Theorem 3.2.10 A language L isfinite ifand only ifo(L) = O.

Pmof. Let L be a finite language, and let V be the set of symbols
occurring in at least one word of L. Then L = L(G) for the evo­
lu tionary grammar G = (V,L,0,0,0,0). Since o(G) = O we obtain
o(L) = O.

If o(L) = O for some language L, then there is an ev olu tionary
grammar G = (V,A,0,0, 0,0) with L = L(G). By L(G) A, G
generates a finite language which proves that L îs finite. D

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 121

The measure o(G) corresponds to the number of prod uctions in
a (usual) Chomsky grammar. The context-free languages form an
infinite hierarchy with respect to the number ofproductions (see [54]).
Furthermore, the measure l(G) corresponds to the radius of an H
system which is grammatical device based on splicing. With respect
to the radius the languages generated by H systems form an infinite
hierarchy, too (see [104]). 1n this section we shall prove analogous
assertions for the measures for evolutionary grammars introduced
above.

Theorem 3.2.11 For any measure d E {a,o,l} and any natural
number T 2 1, there is a language L generated by an evolutionary
gram mar such that d(L) = T.

Proof. We consider the language

n

L = LJ L; where L; = {(baibr J m 2: O} for 1 $ i $ n.
i=l

Because L is generated by the evolutionary grammar

G = ({a,b},{baib I 1 $ i $ n},0,0,0,{baib I 1 $ i $ n})

with a(G) = n, o(G) = n and l(G) = n + 2, we obtain

a(L) $ n, o(L) $ n and l(L) $ n + 2. (3.2)

Now let us assume that H = (V,A,Del,Inv,Xpos,Dup) is an
evolutionary grammar with L(H) = L. If there is a derivation w' ==}

w in H with w' E L;, w E Lj, 1 $ i, j $ n and i -j; j, then there
also is a derivation w'baib ==} wbaib. Since w'baib E L; C L and
wbaib ~ L, we get a contradiction. Thus, for any i, 1 $ i $ n, An L;
has tobe a non-empty set. Therefore a(H) 2: n for any evolutionary
grammar H with L(H) = L which implies a(L) 2: n. By (3.2), we
obtain a(L) = n.

Let a= max{Jzl Iz E A}. We consider a word w E L;, 1 $ i $ n,
with Jwl 2: a + l. Let w = (baib /. By the length of w there is a
word w' E L with w' ==} w and w' -j; w. By the above considerations
w' EL;, too, say w' = (baib/ for some k.

https://biblioteca-digitala.ro / https://unibuc.ro

122 CHAPTER 3. LANGUAGE GENERATING DEVICES

If w' ====> lnv w or w' ====> Xpos w, then lw'I = lwl and hence w' = w

in contrast to the choice of w'.
Let us assume that w' ====> Dup w. Then w' = W1 xw2 and w =

W1XXW2 for some W1, W2 E v·, X E v+. Thus

I X la=I W la - I w' la= i(l - k) and I X lb= 2([- k).

Therefore

If x = arbba3, r,s 2 O, r+s = i, i.e. l = k+ 1, then we can apply x E
Dup to banbbanb which yields ba2n-ib and hence n = i. If, in addition,
r > O and s > O, we can apply x E Dup to ban- 1 bban-1 bban-lb and
obtain ba2n- 2-ibban-lb from which i = n-1 follows. This contradicts
i = n. Thus x = arbba5 implies r + s = n and r = O or s = O.

We now define

Mj {arb(bajb)tba 5
I r,s 2'. O, r + s = j, t 2 O} U

{(baib)t I t 2 1} for 1 ~ j < n,

Mn {arb(banb)tba 5
I r,s 2'. O,r+ s = n,t 2 O} U

{anbb,bban} u {(banb)t I t 2 l}.

By the considerations above, we get X E M;.
Let w' ====>ne1 w. Then w' = w1xw2 and w = w 1w 2. By analogous

arguments we can show that x E M;, again.
Thus (DelUDup)nM;-::/= 0 for 1 ~ i ~ n. Furthermore, M;nMj =

0 for 1 ~ i, j ~ n and i -::/= j. Therefore Del U Dup contai ns at least n
elements and o(H) 2 n holds for any evolutionary grammar H with
L(H) = L. Hence o(L) 2 n. By (3.2), o(L) = n.

Moreover, for 1 ~ i ~ n, lxl 2 2 + i holds for any x E (Del U
Dup)nMi, Thus l(H) 2 n+2 for any evolutionary grammar H with
L(H) = L. Therefore l(L) 2 n + 2 and, by (3.2), l(L) = n + 2.

Hence the statement holds for d E { a, o}, r 2 1 and <I'= l, r 2'. 3.
It is easy to see that l({a}+)= 1 and l({a2 }+) = 2, and therefore the
statement holds in the remaining cases, too. o

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 123

3.2.6 The Differentiation Function

The notion of a differentiation function of a grammar was firstly
introduced in [29] for deterministic tabled Lindenmayer systerns. It
presents a measure for the number of objects which can be derived
in a given grammar by a given nurnber of derivation steps. Formally
we obtain the following notion for evolutionary grammars [40].

Let G = (V,A,Del,lnv,Xpos,Dup) be an evolutionary gram­
mar. Then we define its dijferentiation function

fc: N __, N by fc(k) = card(Lk(G)),

where Lk(G) consists of all strings obtained from A after exactly k
mutations.

Example 3.2.1 We consider the evolutionary grammars

G1 ({a,b},{aa},0,0,0,{aa}),
G2 ({a,b},{aa},0,{aa},0,{aa}),
G3 ({a,b},{aab},0,{aa},{b},{aa}).

Then, for k 2: 1,

Lk(G1)

Lk(G2) =
Lk(G3)

and thus

{a2k+2},

{ 2 4 2k+2} a ,a, ... ,a ,

{arba" Ir+ s = 2i, 1:::; i:::; k} U {a2k+ 2b},

1, for k 2: 1,

k + 1, J or k 2: 1 ,

fc 1 (k)

fc 2 (k)

fc3(k) 3+5+ ... (2k+l)+l =(k+1)2, fork2: 1.

We only show the statement concerning Lk(G3), the modifications
for the other cases are obvious.

From the axiom aab of G3 we can generate by inversion of aa
the same word aab, by transposition of b the words baa, aba and by
duplication of aa the word aaaab. Thus the statement holds for k = 1.

https://biblioteca-digitala.ro / https://unibuc.ro

124 CHAPTER 3. LANGUAGE GENERATING DEVICES

Now let w E Lk(G3). By induction hypothesis, w = arba5 with
r + s = 2i for sorne i, 1 S: i S: k or w = a2k+ 2b.

We first consider the forrner case. Since the transposition and
inversion does not change the nurnber of occurrences of a and b, we
obtain by these operation a word ar' bas' with r' + s' = 2i. If we
applied the duplication of aa we get ar+ 2ba5 or arbas+z. Because
r + s + 2 = 2(i + 1), in all cases the generated words have the desired
forrn.

In the forrner case we generate frorn w a word of the ar ba3 with
r + s = 2k + 2 = 2(k + 1) or a2k+4b = a2(k+I)+ 2b, and all words have
the desired forrn, again.

Moreover, these considerations also show that all words of the
desired forrn are contained in Lk+·1(G3).

We now give an upper bound for differentiation functions of evo­
lutionary grammars.

Theorem 3.2.12 For any evolutionary grammar G, there are con­
stants c1 and c2 such that fc(k) S: c1 • c~ for k 2'. 1.

Proof. Let G = (V, A, Del, I nv, X pos, Dup) he an evolutionary gram­
rnar. We set

d = max{l1LI I u E Dup}, a= card(A), b = max{lvl Iv EA}.

Then, for any k 2'. O and any word in z E Lk(G), lzl S: b + k · d. Thus

fc(k + 1) <

<

card({w I lwl S: b+ kd})
b+kd l L (card(V)r = ---- • ((card(V)i+kd+I - 1)
. card(V) - 1
•=O

(card(V)i+ 1

d(V) ((card(V))d)k . car - 1

B , crird V) btl d •
Y settmg c1 = crird v _ 1 and c2 = (card(V))) the assert10n fol-

lows. o
The following shows that the exponential upper bound is obtained

for sorne evolutionary grammars.
https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 125

Theorem 3.2.13 For any natural number c, there is an evolutionary
grammar G such that fo(k) = ck for k ~ O.

Proof. Let c be given. We consider the evolutionary grammar

By induction on k we prove that

Lk(G) = { acbai1 +cbai2 +cb ... a ide bac I i1, i2, ... ik E {l, 2 ... C}}

which implies

for k ~ O.
By definition, L0(G) = { acbac} and therefore the statement holds

for k = O.
Now let w E Lk+i(G). Then w' ===} w for some w' E Lk(G).

By induction hypothesis w' = acbai1 +cbai2+cb ... aidcbac. Let w be
derived from w' by duplication of some acbai, 1 :=:;; i :=:;; c, where the
duplication involves the j-th occurrence of b. Then

w' acbai1 +cbai2+cb ... aiJ+cbaiJ+1 +cb ... aik+cbac

acbai1 +cbai2+cb ... aiJ acbaiaiJ+I +c-ib ... aik+cbac

===} acbai 1 +c bai2+cb . .. a iJ ac bai an bai aiJ+l +c-i b . .. aik +cbac

acbai 1 +c bai2+cb . .. aiJ +cbai+c baiJ+l +cb . .. aik+c bac

which proves that w has the <lesired form. If we apply in succession
the duplications of acbai1, acbai2, .. . , acbaik+ 1 such that in any step
the last b is involved, then we get acbai1 +cbai2+cb ... baik+ 1 +cban E
Lk+1(G). Hence Lk+i(G) contains all words of the considered form.

Thus the induction statement is shown for k + 1. O

We have shown that, for any exponential function f with a posi­
tive integer as exponent, there is a context-free evolutionary grammar
G whose differentiation function is asymptotically equal to f. We now
want to prove such a statement for polynomials.

Theorem 3.2.14 For any natural number n, there is an evolution­
ary grammar G such that Jo(k) = 0(kn).

https://biblioteca-digitala.ro / https://unibuc.ro

126 CHAPTER 3. LANGUAGE GENERATING DEVICES

Proof. For n E {O, 1, 2} the statement follows from Example 3.2.l.
Let us assume that there is already an evolutionary grammar G' =
(V,A,Del,lnv,Xpos,Dup) with Jc,(k) = 0(kn). Without loss of
generality we may suppose that V n { a, b} = 0 and construct the
evolu tionary gram mar

G = (Vu {a,b},{aa} • A,Del,lnv,Xpos,DupU {aa}),

where the sets Del, lnv, Xpos, Dup are taken from G'. By induction
we show that

By the construction of G, the statement holds for k = O.
Let w E Lk+i(G). Then there is a word w E Lk(G) with w ===>

w'. Furthermore there exists an integer i, 1 ::S; i ::S; k, such that
w = a2i+ 2 v for some word v E Lk-i(G'). Let us apply an element
x E Del U lnv U Xpos U Dup to w in order to get w'. Then we have
to apply x to v and get w = a2i+2v ===> a2i+2v' = w' where v' E
Lk-i+1(G'). Hence w' E {a2i+2}Lk-i+1(G') = {a2i+2}L(k+1)-i(H).
If we apply the duplication of aa to w, we get

w = a2i+2v ===> a2i+4v = a2(i+1)+2v = w' E {a2(i+1)+2}Lk-i(G').

This proves

On the other hand let

Then there exists an integer i such that u' = a2i+ 2 z' where z' E
L(k+I)-i(G). If i 2: 1, a duplication of aa in u = a2iz' gives u'.
Because u = a2iz' E {a2(i-l)+2}Lk-(i-I)(G') ~ Lk(G) and u ===> u'
we have· u' E Lk+ 1 (G).

If i = O, then k + 1 - i = k + 1 2: 1 and there is a word z E Lk(G')
with z ===> z' in G'. Hence a2z ===> a2z' in G and a2z E {a 2 }Lk(G') ~
Lk(G). Thus a2 z' = u' E Lk+i(G). Therefore

{a2}-Lk+1(G')u {a4 }-Lk(G')U· · ·U{a2(k+i)+2}-L0(G') ~ Lk+1(G).
https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAMMARS 127

Therefore (3.3) is shown.
By (3.3) and the disjointness of the sets involved in the union,

k k

Ja(k) = card(Lk(G')) = L card({a2i+2}Lk-i(G') = L fc,(k - i)
i=O

k

L Jc(i) = 0(kn+l).
i=O

i=O

o
Without proof (use disjoint alphabets and unions of the involved

sets) we add the following lemma on closure properties of the set of
differentiation functions.

Lemma 3.2.1 Let f and g be two differentiation functions of evolu­
tionary grammars. Then their sum f + g is a differentiation function,
too. O

The presented results give some upper and lower bounds for and
some examples of differentiation functions; the characterization of the
family of differentiation functions of evolutionary grammars is left as
an open problem.

Finally we present two classes of evolutionary grammars with dif­
ferentiation functions bounded by a constant or linear function.

Lemma 3.2.2 If G = (V, A, Del,Inv, Xpos, 0), then there is a con­
stant c such that fa(k) S c for k 2 O.

Proof. Obviously, because the set of duplications is empty, L(G) is
finite. Let c be the cardinality of L(G). Then fc(k) = card(Lk(G)) S
card(L(G)) = c. □

Example 3.2.1 shows that there are evolutionary grammars with a
non-empty set of duplications which also have a differentiation func­
tion bounded by a c·onstant.

Before we present the other class we give the definition and a prop­
erty of a number-theoretic function. For a set A= {a1, a2, ... , an} of
natural numbers we define the function

k

9A(k) = card({Lai
1
I ai

1
EA for 1 :S j :S k}).

j=l
https://biblioteca-digitala.ro / https://unibuc.ro

128 CHAPTER 3. LANGUAGE GENERATING DEVICES

This function expresses the number of all distinct sums of k elements
from A.

Lemma 3.2.3 Let A= {a1,a2, ... ,a.} with OS a1 < a2 < a3 <
... < as and m = max{ a;+l - a; I 1 S i S s - l}. Then

a - a1 l s • kJ + 1 S 9A(k) S (as - ai)· k + l.
m

Moreover, both bounds are optimal.

Proof. Obviously a1 -k and a.-k are the minimal and maximal number
which can be obtained by addition of k numbers of A. Hence any sum
S of interest satis:fies a1k S S S a5 k. This implies the upper bound.

We now prove that any interval I;= [a 1k + im,a1k + (i + l)m),
OS i S l(a,:'i)kJ -1, contains at least one sum of k numbers of A.

Obviously, this holds for i = O by a 1 k E Io. Now Jet c = I:7=1 a;i

be the maximal number in I; which can be represented by sum of
k numbers of A. Since i S l (a,-;,,a 1)k J - 1 we obtain c S a1 k +
(l (a,:'i)k J - 1)m < a5 k. Thus there exists an r such that a;r < a5 •

Let a;r = a1. Then we consider the sum

r-1 k

c' = c2:= a;J + a1+1 + (:z= a;J
j=l

of k numbers of A. Because c' = c + (a1+ 1 - a1) S c + m and c is
maximal in I;, we obtain c' E l;+i • Since we have l (a,:'i)k J intervals
and the additional sum a5 k (which belongs to no interval), the lower
bound follows.

The optimality of both bounds follows by considering A= {l, 2, 3,
... ,s} or A= {m,2m,3m, ... ,sm} (for some m). □

Lemma 3.2.4 For any evolutionary grammar G = ({a}, {an} ,(/),
Inv, Xpos, Dup) where Dup contains a non-empty word (i.e. the
underlying alphabet of the gram mar is unary, there is only one axiom,
no deletion and at least one non-empty duplication), fc(k) = 0(k)
holds.

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRA1vIMARS 129

Praaf. First we assume that I nv U X pas = 0. The applîcatîon of
v E Dup to am leads to am+lvl_ Thus takîng A= {Ivi Iv E Dup}, we
obtain 9A(k) = Jc(k) for k ?: 1. Hence the statement follows from
Lemma 3.2.3.

Now let Inv U X pas :p 0 and c (ţ. Dup. We set r = mîn{lzl Iz E
Jnv U X pas}. If we apply an inversion or a transpositîon to a word
w, then w is not changed by this operation because the underlyîng
alphabet is unary. To any word w E L k (G) wi th I w I ?: r we can
apply an inversion or a transposition, and thus w îs alsa contaîned în
L1(G) for l?: k. Moreover, if Dup does not contaîn the empty word,
all words from Lr (G) have a length ?: r. lt îs easy to see that

9Au{o}(k) :S fc(k + r) :S card(Lr(G))9Au{o}(k) for k?: 1.

Now the statement follows from Lemma 3.2.3.
The proof for the case I nv U X pas :p 0 and c E Dup follows by

analogous arguments and is left to the reader. O

3.2. 7 Adult Languages

Since evolutionary grammars can be considered as formal models for
the evolution of genomes, the final stages of the development or evo­
lution are of special interest, i.e. those genomes to which no mutatîon
taken into consideratîon can be applied. In terms of languages we are
înterested in those words which do nat allow a contînuation of the
derivation. Languages of such words are called adult languages and
have been investîgated extensively alsa în connection wîth L-systems,
[113]. In thîs sectîon we study adult languages of evolutionary gram­
mars and show that they form the family recursively enurnerable
languages. We mention here that the adult languages of L-systerns
do not possess this rather surprisîng property.

Let EG = (V,A,Del,Inv,Xpas,Dup) be an evolutionary grarn­
mar. Then the adult language of EG îs defined by

A(EG) = {w I w E L(EG) and there is no w' wîth w ==;, w'}.

The language L(EG) contains all words which can be generated by
iterated derivation steps, and the adult language A(EG) contaîns

https://biblioteca-digitala.ro / https://unibuc.ro

130 CIJAPTER 3. LANGUAGE GENERATING DEVICES

those words from the generated language L(EG) which do not allow
further derivation steps. Therefore a word w E L(EG) belongs to the
adult language if w does not contain a subword which can be deleted
or reversed or translocated or duplicated. This implies the following
statement.

Lemma 3.2.5 Let EG = (V,Del,lnv,Xpos,Dup,A) bea context­
free cvolutionary grammar. Then

A(EG) = L(EG) n (V*\ V*(Del u lnv U Xpos U Dup)V*).

We now present a characterizations of the set of recursively enu­
merable languages by adult languages of evolutionary grammars.

Theorem 3.2.15 The family of adult languages of context-frec evo­
lutionary grammars coincides with the family of recursively enumer­
able languages.

Proof. By Theorem 3.2.4 and Lemma 3.2.5 any adult language of a
context-free evolutionary grammar is recursively enumerable.

Now let L be an arbitrary recursively enumerable language. We
construct an evolutionary grammar EG' such that A(EG') = L.

ln order to get EG' = (V',A',Del',lnv',Xpos',Dup) we modify
the gramrnar EG = (V,A,Del,lnv,Xpos,Dup) with L = L(EG) u
T* given în the proof of Theorem 3.2.4 as follows: We obtain V'
by adding a new symbol $ to the alphabet V. Then we define the
morphisms h : V ---> V' by h(A) = A$ for A E N and h(x) = x for
x E V \ N. Then we set

A' h(A),

Xpos' h(Xpos),

Dup' h(Dup) u { <1, $},

Del' {ABC$, --i} u {.1;$5 <1 t> 11:::; i:::; n} U

{ <1h(x;).li t> -ii 1:::; i:::; n},

lnv' = { <1h(x;).l; 11:::; ·i:::; n} U {5$.l;mi(h(x;)) I 1:::; i:::; n}.

Essentially, instead of a nonterminal A we use A$ or $A (where the
latter one only occurs since inversions can be involved). Thus the

https://biblioteca-digitala.ro / https://unibuc.ro

3.2. CONTEXT-FREE EVOLUTIONARY GRAJH1vIA.RS 131

deletion of all symbols $ in a word of L(EG') gives a word of L(EG),
and conversely, for any word w E L(EG) there is a worcl w' E L(EG')
such that the deletion of all $ in w' gives w. This implies

L(EG) n T* = L(EG') n T*. (3.4)

Now L = A(EG') follows from the following remarks: For any
word w E L(EG'), by the construction

If w E L(EG') contains $ or <l, then we can apply a <luplication.
If w E L(EG') contains --1, a deletion can be applie<l. Thus a word
w E A(EG') cannot contain $, <l and --1. By (3.5) w cannot contain
I>, 1-;, 1 ~ i ~ n, and elements of N. Hence w E A(EG') contains
only terminals. On the other hand, any word w E L(EG') n T*
belongs to A(EG') since any derivation step requires the presence of
symbols not belonging to T. Therefore we obtain from (3.4)

A(EG') = L(EG') n T* = L(EG) n T* = L.

□

From the proof of Theorern 3.2.15 we see that adult languages can
be obtained as the intersection of the set of all generated words with
an monoid. This corresponds to the situation well-known for reduced 1

context-free grarnrnars G: On one side L(G) is the intersection of
the set of all generated words with the set of terminal words, and
on the other side L(G) consists of all words which allow no further
derivation.

Another Version of Adult Languages

In the theory of Lindenrnayer systems another definition of adult
languages is used (see [113], pages 70-78 and 287) . By definition,
in a Lindenmayer systern at every moment a derivation step can be
performed, and thus the adult language consists of all words which are
not changed by derivation steps. For an evolutionary grarnmar EG =

1 For any nonterminal A, there is a rule with the left-hand side A.

https://biblioteca-digitala.ro / https://unibuc.ro

132 CHAPTER 3. LANGUAGE GENERATING DEVICES

(V, A, De/ ,Inv, X pas, Dup), the modified adult language mA(EG) is
defined as the set of all words w E L(EG) such that either w E A(EG)
or w E L(EG) and w ===} z implies z = w.

Let EG = (V,A,Del,Inv,Xpos,Dup) be an evolutionary gram­
mar and Jet w be a word generated by EG such that z = w holds for
any z with w ===} z.

Obviously, if there is an element u f. f. from Del and Dup, re­
spectively, which can be applied to w, then there is a z f. w with
w ===} z. Thus the only applicable element from Del and Dup is f.,

and the cancellation or duplication of f. in a word does not change
the word.

Moreover, if we can apply an inversion u E J nv to w yielding z,
then w = w1uw2 and z = w1mi(u)w2. Now w = z implies u = mi(u),
and thus the application of the inversion u to an arbitrary word does
not change the word.

Furthermore, Jet u be a transposition from X pos such that its
application to w does not change w. If we shift u by one letter to the
right, we obtain w = v1uav2 and z = v1auv2. w = z implies ua = au.
By the famous theorem by Lyndon and Schiitzenberger (see Lemma
1.7 în [125]) we getu E {a}*. Shifting to other positions we can show
that w E { a t- Thus the application of the transposition u to any
word of v E {a}* with Ivi 2: lui does not change v.

We now consider the evolutionary grammar

EG1 = (V,A,Del\ {c},Inv\ {u I u = mi(u)},Xpos,Dup\ {c}).

Obviously, any word w E mA(EG) \ A(EG) to which elements of
Del or Dup or I nv can be applied without changing w is contained
in A(EG1). Thus we obtain

mA(EG) = A(EG1)U LJ {w / w E L(EG)n{a}*,s(a) :S /w/ :S t(a)}

(3.6)
where

s(a) = min{/u/ / u E T n {a}*
https://biblioteca-digitala.ro / https://unibuc.ro

3.3. DUPLICATION GRAMMARS

and

t(a) ~ {

min{lul I u E (Dup U Del) n {a}+,
if (Dup u Del) n {a}+ ţ 0

oo, otherwise.

3.3 Duplication Grammars

133

String duplica.tions or duplica.tions of segments of strings are rather
frequent in both natural and genetic la.nguages. For motivations com­
ing from linguistics, we refer to [86] a.nd [110].

We consider here the context-free varia.nts of duplica.tion gram­
mars. We investigate their generative capacity, their mutual rela­
tionship, and their relationship to the context-sensitive duplication
grammars.

Based on [32], Martin-Vide and Păun introduced in [89] a gen­
erative mechanism (similar to the one considered in [33]) based only
on duplication: one starts with a given finite set of strings and pro­
duces new strings by copying specified substrings to certa.in pla.ces in
a string, according to a finite set of dupli~a.tion rules. This mecha.nism
is studied in [89] from the generative power point of view.

The section considers the context-free versions of duplication gram­
mars - this formalizes a possible hypothesis tha.t duplications appear
more or less at random within the genome in the course of its evolu­
tion. We follow [94] where some problems left open in [89] were solved,
new results concerning the generative power of context-sensitive <tn<l
context-free duplication grammars were prove<l, a.nd the two classes
of gra.mmars were compa.red. Fina.lly, sorne <lecision problems are
discussed.

A context-sensitive duplication rule is a triple whose components
a.re strings over a given alphabet (in the case of DNA the alphabet
consists of the four nucleotids), say (u, x, v), w hich has the following
interpretation:

• the string x, which appears to the left of nv in thc processe<l
string, is inserted in between u and v;

https://biblioteca-digitala.ro / https://unibuc.ro

134 CHAPTER 3. LANGUAGE GENERATING DEVICES

• the string x, w hich appears to the right of uv in the processed
string, is inserted in between u and v;

• the string x which appears in between u and v is doubled.

A context-free duplication rule is a string over the given alphabet,
say x, whose effect is the duplication of x either to the right of,
or to the left of, or immediately after, an already existing copy of
x. Clearly, context-free duplication rules may be viewed as context
sensitive duplication rules whose contexts are empty.

In vivo, cross-over takes place just between homologous chromo­
somes (chromosomes of the same type and of the same length), see
[57]. A model of a cross-over between a DNA molecule and its repli­
cated version is considered in in the next section - this is a model
for a cross-over between "sister" chromatides. One specifies an ini­
tial finite set of strings and a finite set of cross-over rules of the form
(a, (3, 1 , 8). lt is assumed that every ini tial string is replicated so that
two identica} copies of every initial string are available. The first copy
is cut between the segments a and (3 and the other one is cut between
, and 8. N ow, the last segment of the second string gets attached
to the first segment of the first string, and a new string is obtained.
More generally, another string is also generated, by linking the first
segment of the second string with the last segment of the first string.
Iterating the procedure, one gets a language.

The main idea of this approach is schematically presented in the
Figure 3.1.

(3
w ţ::I ===t====::ţ:=::::ţ:::====l

X a y

w
z ' 8

Figure 3.1.

https://biblioteca-digitala.ro / https://unibuc.ro

3.3. DUPLICATION GRAMMARS 13.S

Hence, the splicing operation introduced by T. Head, see, e.g., [60]
is performed here between identica! strings. It is easily seen that one
obtains the insertion of a substring of w in w; this induces a duplica­
tion of some chromosomes into genome. This type of recombination
is considered to be the main way of producing tandem repeats or
block deletions in chromosomes.

A (context-sensitive) duplication grammar is a construct

where Vis an alphabet, D1, Dr, Do are finite subsets of v· Xv+ Xv·,
and A is a finite subset of v+. The elements of D1, Dr and Do
are context-sensitive duplication rules, and elements of A are called
ax10ms.

Given a duplication grammar as above and two words x, y E v+,
we define the following three types of direct derivation relations in
6.:

X ~ Di y iff X = X1 UVX2ZX3, y = XJ UZVX2ZX3,

with X1,X2,X3 Ev·, and (u,z,v) E Di,

X ~Dr y iff X= X1ZX2UVX3, y = X1ZX2UZVX3,

with X1,x2,X3 Ev·, and (u,z,v) E Dr,

X ~ Do y iff X = X1 UZVX2, y = X1 UZZVX2,

with X1,X2,X3 Ev·, and (u,z,v) E Do,

The union of these relations is the direct derivation relation of d,
denoted by ~, and the reflexive and transitive closure of~ is the
derivation relation of 6., denoted by ~•. The language generated
by the duplication grammar 6. is defined by

L(6.) = {y Ev· I X~· Y, for some X EA}.

Thus, the language of 6. consists of all words obtained by beginning
with strings in A, and applying iteratively duplication rules from
D1 U Dr U Do, The application of arule to a string means to copy one
of its su bstrings to the left of, or to the right of, or next to its '•given"
occurrence. Because each of the three sets of rules rnay be empty,

https://biblioteca-digitala.ro / https://unibuc.ro

136 CHAPTER 3. LANGUAGE GENERATING DEVICES

one obtains seven families of languages denoted by DU P L(X), X E
{l,r,0,lr,lO,r0,lr0}; the presence of a letter within X means that
the corresponding set of rules is non-empty, e.g., for X = l0, D1 -/=
0, Do -/= 0 and Dr = 0.

Analogously, we define a context-free duplication grammar as a
construct 6. = (V,D1,
Dr, D0 , A), where V and A have the same interpretation as above, but
D1, Dr, Do are finite subsets of v+ whose elements are context-free
duplication rules. Given a context-free duplication grammar as above
and two words x, y E v+, we define three types of direct derivation
relations:

X FD, y iff X= X1X2ZX3, y = X1ZX2ZX3,

with x1,x2,x3 EV*, and z E D1,

X f=Dr Y jff X= X1ZX2X3, Y = X1ZX2ZX3,

with X1, X2, X3 EV*, and z E Dr,

X FDo y iff X= X1ZX2, y = X1ZZX2,

with x1,x2,x3 EV*, and z E Do.

Again, the unior1 of these relations is the direct derivation relation,
denoted by F, and the reflexive and transitive closure of F is the
derivation relation, denoted by p=*. The language generated by the
context-free duplication grammar 6. is defined by

L(.6.) = {y Ev• I x p=* y, for some x EA}.

Again, we get seven families of languages denoted by C F DU P L(X),
X E {l,r,0,lr,l0,
rO, lr0}.

3.3.1 A Short Comparison

We begin by set tling the relationships among the seven families of
con text- free du plication languages.

Theorem 3.3.1 The relations in the following diagram hold, where
an arrow indicates a strict inclusion and a dotted line links two in­
comparnble families.

https://biblioteca-digitala.ro / https://unibuc.ro

3.3. DUPLICATION GRAMMARS

CFDUPL(l)

I "'-
"'­

I
C F D U P L (lO) --------__

137

I

I

CFDUPL(0) CFDUPL(lr0) ---- CFDUPL(lr)

/ CFDUPL(r0) /

/
1/

CFDUPL(r)

Figure 3.2.

Proof. Thelanguage {anbmapbqln,m,p,q 2 l} is in CFDUPL(0)
(one starts with abab and doubles either an occurrence of a or an oc­
currence of b) but not in CFDUPL(lr). To see the latter, we note
that each context-free duplication grammar having just left and right
duplication rules generates strings in a+ b+ a+ b+ a+ b+; a contradic­
tion.
By a similar reasoning, the language {anbmln,m 2 1} belongs to

CFDU P L(l0) n CFDU PL(r0) n CFDU P L(lr)

but not to
CFDU PL(l) u C FDU PL(r).

The language {a,b,c}+ is in CFDUPL(r) n CFDUPL(l) (the
initial set contains all strings of length at most 3, each letter a, b, c
appearing at most once; <luplication rules allow copying of any let­
ter to the right/left of one of its occurrences.) Because there are
arbitrarily long square-free strings in {a,b,c}+, [128], it follows that
{a,b,c}+ t/:. CFDUPL(0).

Finally,

{a,b,c}+{$}+{d,e,J}+ E CFDUPL(lr0)\

(C FDU P L(l0) u CF DU P L(r0))
https://biblioteca-digitala.ro / https://unibuc.ro

138 CHAPTER 3. LANGUAGE GENERATING DEVICES

which conclucles the proof. □

The following resuit concerning the relationships among the context­
sensitive families of duplication languages has been proved in [89].

Theorem 3.3.2.[89]
1. The families DUPL(l) and DUPL(r) are incomparable.
2. The following inclusions

DUPL(r)UDUPL(l)c DUPL(lr)

DU P L(O) c (DU P L(rO) n DU P L(lO))

are proper.

It is an open problem whether or not DU P L(O) is included in
DUPL(l) or in DUPL(r). However, we have

Proposition 3.3.1 CFDUPL(O) is strictly included in DUPL(lr).

Proof. Let .6. = (V,0,0,Do,A) bea duplication grammar with Do=
{ x1, x2, ... , Xn}. Construct a duplication grammar .6.' = (V, D1, Dr,
0, A'), where

D1 = Di = {(xi,Xi,E)ll :S i :S n},

A' = { z E L(.6.) I each Xi has at most two non-overlapped

occurrences in z}.

It is easy to see that A' is a finite set, and L(.6.) = L(.6.'). □

Along the same lines, we have

Theorem 3.3.~ C F DU P L(X) C DU P L(X), for alt X E {O, I, r,
lO, rO, lr, lrO}.

Proof. It suffi.ces Lo provide languages that prove all inclusions to
be strict. The duplication grammar .6. = ({a,b}, {(E,a,a), (E,b,b)},
0, 0, {ab,a 2b,ab2 ,a2b2 } generates 1 1 = {anbmln,m?:: l}. Hence
L1 is in DUPL(l) (also in DUPL(r)) but not in (CFDUPL(l) U
CFDUPL(r).

Similarly, {anbmapbqln,m,p,q?:: 1} E DUPL(lr)\CFDUPL(lr).
https://biblioteca-digitala.ro / https://unibuc.ro

3.3. DUPLICATION GRAMivlARS 139

One can show that {anb 11 abln 2: l} cannot be generated by any
context-free duplication grammar. On the other hand, {anbnabln 2:
l} E DU P L(lr0) (see [89]).

Take now the language L2 = {abncmdPell '.S n,m,p '.S 3}+. This
]anguage can be obtained by starting with the string abcde and iter­
atively applying rules from the set

Do = {(c:,abcde,E),(a,b,c),(ab,b,c),(b,c,d),(bc,c,d),

(c,d,e),(cd,d,e)}.

Consider the homomorphism h : { a, b, c} * --+ { a, b, c, d, e}" defined
by h(a) = ab3cde, h(b) = abc3de, h(c) = abcd3e. Let x be an ar­
bitrarily long square-free string over { a, b, c}. The string h(x) is in
L2 . lt is easy to notice that the adjacent identical substrings in h(x)
are only the letters from {a,b,c}. If L2 were in CFDUPL(0), then
any context-free duplication grammar generating L2 would generate
strings containing arbitrarily many adjacent occurrences of the same
letter from {a,b,c}; a contradiction. O

3.3.2 Observations on the Generative Power

We start by considering unary alphabets. We will prove that in this
case the generative power of duplication grammars equals the accept­
ing power of deterministic finite automata. To this end, we prove the
following lemma.

Lemma 3.3.1 Over the unary alphabet, the equality DU P L(X)
CFDUPL(0) holds for any X E {l,r,0,lr,l0,r0,lr0}.

Proof. Let 6 = ({a}, Di, Dr, D0 , A) bea duplication grammar. Let

Di {('ui,ai',vi)ll '.S l '.S n},

D,. {(:i·1,a11 ,y1)ll '.S l '.S m},

Do {(z1, ak1
, w1)l l :S I :S p }.

Take

ct=max({luxvl (u,1:,v)ED1UDrUDo}U{lxl xEA}.
https://biblioteca-digitala.ro / https://unibuc.ro

140 CHAPTER 3. LANGUAGE GENERATING DEVICES

Consider now the context-free duplication grammar

6.' = ({a},0,0,D~,A'),

where

A' {xlx E 1(6.), lxl S 3a},
n m p

D~ {aqlq = L a 5 i 5 + L /3„j. + L 1s k . ., a S q S 2a}.
s=l

We claim that 1(6.) = 1(6.'). Note that each rule in D~ is applicable
to strings of length at least a. Furthermore, each application of
a rule in D~ simulates the application of a sequence of rules from
D1 U Dr U Do. Consequently, 1(6.') ~ 1(6.).

Ali strings oflength at most 3a from 1(6.) are also in 1(6.'). Let
z be the shortest string in 1(6.) such that lzl > 3a. Then there exists
a derivation in 6.':

with

(i) .rEA,

(ii) a S IYI S 3a,

(iii) a S lzl - IYI S 2a.

Because y E A' one may write y ~ 0 , z, and so z E 1(6.'). Induc­
o

tively, 1(6.) ~ 1(6.'). O

Theorem 3.3.4 A language over a unary alphabet is regular ij and
only ij it is generated by a duplication grammar.

Proof. By the previous lemma., it suffices to consider duplication
grammars with just context-free duplication rules whose effect is to
double an occurrence of a substring. Let L ~ {a}* be a regular
language. Then, there exist a. finite set F an<l the positive integers
ki, 1 S i S m, and q > max{lxl I :r E F} such tha.t

m

l =FU LJ{ak,+nqln 2: l}
i=l

https://biblioteca-digitala.ro / https://unibuc.ro

3.3. DUPLICATION GRAMM1-1RS 141

This can be easily seen if one considers a deterministic finite au­
tomaton accepting L, for which the transition function is defined
everywhere.

Consider now the duplication grammar:

6. = ({a}, 0, 0, { aq}, FU { ak,+q I 1 :S i :S m'}.

Clearly, L = L(6.). Duplications can never be carried out on words
of F. •

Conversely, let us consider a duplication grarnrnar 6. = ({a}, 0,
0, Do, A), with Do= {ac1 ,ac2 , ... ,ac"}. Let

where gcd rneans the greatest common divisor. If L(6.) is finite,
then it is obviously regular. If L(6.) is an infinite set, then there are

• ti, 1 :S i :S s, s '.S p, such that

L(6.) =FU LJ{a1•+kPlk;::: O},
i=l

for some finite set F. Consequently, L(6.) is regular which completes
the proof. o

The next resuit settles a problem left open in [89].

Theorem 3.3.5 All regular languages are in DU P L(X), X E {l, r,
10, rO, lr, lrO}.

Proof. We present a proof for DU P L(r), the proofs for other cases are
analogous. Let R be a regular language recognized by the determin­
istic finite automaton M = (Q, V, o, q0 , F) with the total transition
function o. Let for each state q, Cq be defined as follows:

Cq = {x E v+lo(q,x) = q by passing each state, different frorn q,

at rnost once}.

For strings x, y E V*, we define the equivalence relation ~Ras follows:

(x ~R y) iff (uxv E R i:ff uyv E R), for any u, v EV*.
https://biblioteca-digitala.ro / https://unibuc.ro

142 CHAPTER 3. LANGUAGE GENERATING DEVICES

lt is well-known (see e.g. [114]) that v• / ~R (the quotient of V* by
~ R) is finite; Jet k be the· car di na.li ty of V*/ ~ R (the index of ~ R),

Now, one constructs the duplicat.ion grammar .6. = (V, 0, Dr, 0,
A), where

Dr (j {(x,y,c:)lxy ~R x, lxl < k,y E Cq}, and
qEQ,Cqf-0

A { w E RI for each q E Q, each string in Cq

has at most k non-overlapping occurrences in w}.

We claim that A is finite. Indeed, no word longer than (k +
l)l · card(Q), where l = ma.r{card(C7)lq E Q}, is in A. To see this,
assume that such a word, say w, is in A; so lwl = p 2'.'. (k+ 1)l·card(Q).
Let q0 ,qi,••·,qp, qP E F, be the sequence of states that accepts w.

At least (k + l)l states in this sequence must be the same; assume
that q is such a state. But then w contains at least k + I identical
substrings in Cq; a contradiction.

Clearly, L(.6.) ~ R. Let z be the shortest word in R\L(.6.). Thus,
there exists x E Cq, for some q E Q, such that x occurs more than k
times in z. Let z = wxy, with lwl 2:: k, where the given occurrence
of x is the last (rightmost) occurrence of x in z. Let z = uvxy with
Ivi = k. Thus v has k + 1 prefixes, and so there are two prefixes
vi, v2 of v such that vi ~ R v2 and Ivi I < I V21- We choose the closest
pair of such prefixes. By replacing v2 by vi in v we get a string uv'xy
which is in L(.6.) because it is in R and it is shorter than z. Moreover,
v2 = vi t, where t must be in Cq, for some q E Q (because of the choice
of Vi and v2). Consequently, (vi,t,c:) E Dr, and so uv'xy ==J>Dr z.
Thus z E L(.6.); a contradiction.

Analogously one proves that each regular language is in DU P L(l).
o

We recall that the family DU P L(O) is incomparable with the
family of regular languages.

The position of the class of regular languages with respect to
the classes of context-free duplication languages is given by the next
theorem.

Theorem 3.3.6 The family of regular languages is incomparable with
any of the families C F DU P L(X), X # O.

https://biblioteca-digitala.ro / https://unibuc.ro

3.3. DUPLICA.TION GRA1vIMA.RS 143

Proof. The regular language v+{c}+v+, where V contains at least
three symbols an<l c (/;. V, cannol be generated by any context-free
duplication grammar. Indeed, if a context-free duplication grammar
generates all strings in v+ { c} +y+, then it must con tain left/right
duplication rules involving strings in v+ + c+. Therefore, also strings
in v+{c}+v+{c}+v+ can be generated.

Consider now the Dyck language over { a, b}, denoted by Da.b,
and the non-regular language L = { ab} Da.b· This language is in
CF DU P L(r). The context-free duplication grammar 6. = ({ a,b },
0, {ab}, 0, {abab}) with only right duplication rules generates L.
Clearly, L(6.) ~ L; let z be the shortest string in L \ L(6.). If
z = abxy, with x, y E Da.b, then ab yields z in 6. as follows:

If z = abaxb, with x E Da.b, then the derivation ab F abab F* abaxb
is possible in 6.. Consequently, L(6.) = L. □

The relation between C F DU P L(O) an<l the class of regular lan­
guages remains open.

Recall that a homomorphism which erases some symbols and
leaves the others symbols unchanged is called a projection. A projec­
tion h : (V U V')* -----+ v· that erases the symbols in V' only is the
projection of V, denoted by prv.

Theorem 3.3. 7 For each context-free language L E V*, there exists
a language L in CFDUPL(r) (CFDUPL(l)) and a homomorphism h
such that L = prv(h- 1(L')).

Proof. Let G = (N, V, S, P) bea context-free grammar generating L.
Assume that

n

P = LJ{A·-----+ x· ·11 < y· < r·}
i i,J - - i '

i=l

with S = Ar. Furthermore, we assume that c (/;. L. Let V' = N U

V U {c;ll S i S n} U {d}, where ci,d, are new symbols. Let then 6.
he the duplication gramrnar (V', 0, D„ 0, A), where

D,. {(ci:Ci,1 ll S i S n, 1 S j Sri}, and

A { ex 1 ,I dcx1,2d . .. dc.r 1 ,,. 1 dcx2.1 d ... dcx,,,,.,. dAi}.
https://biblioteca-digitala.ro / https://unibuc.ro

144 CHAPTER 3. LANGUAGE GENERATING DEVICES

Now, let h be the homomorphism

h: (V U {[i,j]ll::::; i ::=:; n, 1::::; j::::; r;} U {c;ll::::; i::::; n}--> (V')*

such that

h([i,j])
h(c;)

h(a)

c;x;,jd, 1 ::=:; i ::=:; n, 1 ::::; j ::::; r;,

A;c;, 1 ::::; i ::::; n, and

a, a E V.

lt is easy to see that prv(h- 1 (L(.6))) = Gen(G). Clearly, whenever
a substring c;x;,j is copied, this is clone somewhere to the right of
the last occurrence of d :. otherwise one gets a string "rejected" by
applying the inverse homomorphism h. Also, all strings that contain
nonterminal occurrences that are not immediately followed by some
c;, to the right of the last occurrence of d, are rejected in the same
way. Moreover, every occurrence of a non terminal A;, situated to the
right of the last occurrence of d, has to be followed by just one oc­
currence of c;. In this way duplication rules simulate the application
of production rules in G. □

3.3.3 Decision Problems

We discuss in this section some basic <lecision problems. We begin by
pointing out that the "totality problem" is deci<lable for all families
of duplication languages.

Theorem 3.3.8 Let .6 be a duplication grammar over the alphabet
V. It is decidable whether or nat L(.6) = v·.

Proof. We will consider <luplication grarnmars having only left <lupii­
cation rules - the other types of <luplication grarnmars can be treated
in a similar way. Let .6 = (V, D1, 0, 0, A) be a <luplication grammar.
The main point of our argument is the following property

L(.6) = V* if and only if {x EV*: lxl::::; k + 1} C L(.6),

where k = max{lxl: x EA}.
https://biblioteca-digitala.ro / https://unibuc.ro

3.3. DUPLICATION GRAMMARS 145

The "only if'' part is obvious. For the "if'' part of the proof,
assume that z is a shortest word in V* \ L(6.). This word can be
written as z = ya with a E V. Hence y E L(f:l) \ A, ancl so there
ex.ists x E A such that x =}> b, y. Because I xal < I yal, i t follows
that xa E L(6.). But, also xa =}> b, ya = z. To conclude, it suffices
to note that the inclusion {x EV*: lxl:::; k + 1} C L(6.) is decidable
due to the decidabilty of the membership problem. O

lt is proved in [89] that the membership of a context-free lan­
guage in the family of languages DU P L(X), X -::p O, is not decidable.
Our next theorem extends this resuit to the families of context-free
duplication languages, as well as to DU P L(O).

Theorem 3.3.9 It is not decidable whether or not a context-free lan­
guage is in a family C F DU P L(X), X (ţ. { r, I}.

Proof. The proof is similar to the one in (89]. Let G be an arbitrary
context-free grammar with the terminal alphabet { a, b}, and let

L = Gen(G){c,d}* U {a,b}*{cndnln 2: 1}.

If Gen(G) = { a, b }'", then L = { a, b t{ c, d}* which is in C F DU P L(X),
for all X (ţ. {r, l}. lt is easily seen that the grammar f:l = ({ a, b, c, d},
0, 0, Do, A), with

Do= {a,b,c,d,ab,ba,cd,dc},

and
A= {a,b,c,d,ab,aba,ba,bab,cd,cdc,dc,dcd},

generates { a, b} * { c, d} *. The reader my easily check this assertion.
If Gen(G) -::p { a, b }*, then L cannot be generated by any con-

text sensitive duplication grammar (see the proof of Theorem 4 in
[89]). Consequently, LE CFDUPL(X) for X (ţ. {r,/}, if and only if
Gen(G) = { a, b }*, which is undecidable. O

This resuit can be also extended to the farnilies C F DU P L(r) and
CFDUPL(l).

Theorem 3.3.10 It is not decidable whethcr or not a conte.rt-Jree
language is in a family C F DU P L(X), X E { r, l}.

https://biblioteca-digitala.ro / https://unibuc.ro

146 CHAPTER 3. LANGUAGE GENERATING DEVICES

Pmof. The proof is based on a reduction to the Post Correspondence
Problem (PCP). Take an arbitrary instance of PCP, i.e., two arbitrary
n-tuples of nonempty strings over the alphabet { a, b }:

Y = (Y1 , Y2 , • • • , Yn) •

Then, consider the languages

Ls = {w1cw2cmi(w2)cmi(wi)lw1,w2 E {a,b}"}, and

L(x, y) = {a, b, c}* - (Lx{c}mi(Ly) n L.).

lt is known that L(x, y) is a context-free language. For every solution
(i1,i2, ... ,ik) of PCP(x,y) the strings

are not in L(x,y).
Clearly, when L(x,y) = {a,b,c}*, then L(x,y) is in CFDUPL(r) n
CFDUPL(l).

Now, it îs sufficient to prove that L(x,y) (/:. CFDUPL(l)U
CFDUPL(r) if L(x,y) -:p {a,b,c}*.
Let us suppose that L(x,y) = L(Li), fi= ({a,·b,c},0,Dr,0,A). We
choose a solution (i1 , i 2 , ... ik) such that

lxikx;k-i .. • x;1 I > max{lwl lw EA}.

For {a, b}" ~ L(!::i), there exists a word w EA such that

By the choice of the solution (i1 , i2 , ... , ik) the word

is in L(6.).

https://biblioteca-digitala.ro / https://unibuc.ro

3.4. SELF CROSSOVER SYSTEMS 147

Therefore, we get

Z L* b i1 b i2 b ik '() '() , a a ... a cxik ... Xi 2 Xi 1 cmi y; 1 mi Yi 2 •••
. . .

mi(y;k)ca'k b . .. ba'2 ba' 1 b,

a contradiction. Hence the theorem holds. o

Finally, we consider "nonemptiness of the intersection problem"
for DU P L(X), X =p O.

Theorem 3.3.11 It is undecidable whether or not L1 n L2 = 0? for
arbitrary two duplication languages in DU P L(X), X =p O.

Proof. Let x = (xi, x2, ... , xn), y = (Y1, Y2, ... , Yn) be an instance of
PCP, and let

Lx = {w$cf 1 $ci2
••• $cikxik ... X; 2 Xi 1 lk ~ 1,1 S ij S n,l S j S k}

U{ w$ci1 $ci2 ••• cikx;k ... x;2 x; 1 lk ~ 1, 1 S ij S n, l S j S k },

where w = cdx1cdy1cd2x2cd2y2 ... cdnxncdnYn· Ly is defined analo­
gously.

Clearly, the duplication grammar ~ = ({a,b,c,d,$,#}, 0, Dr, 0,
{ w$#}), with

Dr= {($,cix;,#)11 S i S n} U {($,cixi,X)ll S i S n,X E {a,b}}

u{(d, $, a), (d, $, b)}

generates Lx.
This concludes the proof, because Lx n Ly = 0 if and only if the

instance (x, y) of PCP has no solution. O

3.4 Self Crossover Systems

In this paragraph we are dealing with a very particular case of crossover
despite that this is not the only biologically significant case. One has
asserted [57] that in vivo, crossover takes place just between homol­
ogous chromosomes (chromosomes of the same type and of the same
length). A first attempt to model the homologous recombination was

https://biblioteca-digitala.ro / https://unibuc.ro

148 CHAPTER 3. LANGUAGE GENERATING DEVICES

macle in [65], where crossover between strings of equal length, which
exchange each other segments of equal length, is proposed.

Roughly speaking, in the present paper, we try to model crossover
between a DN A molecule and a its replicated version. Thus, our ap­
proach appears as a model for crossover between "sister" chromatids.
In our opinion this restriction makes up a theoretical aspect of molec­
ular biology that deserves to be investigated. What would happen if
crossover occured only between a chromosome and its replica ?

The main idea of our approach is schematically presented in the
figure below:

X /3 y
w 1=1 ===l==l===l===:::::::j

w
z Î

Figure 3.3.
t

One gives a starting finite set of string and a finite set of crossover
rules (a ,/3, 1 , o). One considers that every starting string is replicated
so that, we have two identica! copies for every initial string. The first
copy is cut between the segments a and /3 and the other one is cut
between Î and b. N ow, the last segment of the second string adheres
to the first segment of the first string, and a new string is obtained.
More generally, another string is also generated, by linking the first
segment of the second string with the last segment of the first string.
Iterating the procedure, we get a language.

V-le want to point out, at this moment, some connections between
our approach and the other large scale operations in genome. If the
situation is asin the Figure 3.3, then we have the deletion of a certain
substring of w which may be viewed as the deletion of a segment of
a chrornosome.

If the situation is as in Figure 3.1 of the previous section, then
https://biblioteca-digitala.ro / https://unibuc.ro

3.4. SELF CROSSOVER SYSTEMS U9

we have the insertion of a substring of w in w; this appears rtS the
duplication of a segment in a chromosome.

A self crossover system is a triple:

SCO = (V, A, R)

where V is an alphabet, A is a finite subset of V*, and R is a fi­
nite commutative relation, R C (V* x v•)2. With respect to a self
crossover system as above, for x E v+, we define:

X l><I y iff (i) X = X1 oJ3x2 = X3,0X4

(ii) y = X10'tfa4

(iii) (o:,(J)R(,,o).

Note that x 1><1 x31(3x 2 follows from the definition of R. Moreover,
the strings x 1o:ox4 and x31(3x 2 are somehow "conjugated" narnely,
there ex.ists u E V* such that

Denote by 1><1* the reflexive and the transitive closure of the relation
IX!.

The language generated by a self crossover systern as above is

L(SCO) = {x E V*lw CXl* x, w E A}

Example 3.4.1 Take V= {a,b}, A= {bab}, and
R = {(a,b;b,a),(b,a;a,b)}.

We have
L(SCO) = {bb} u {ba 2nbln 2'. O}.

lndeed, bab 1><1 ba2b and bab CXl bb. Assuming that bab CXl" ba2n b, by
applying the rule (a,b;b,a) to this string, we get ba2"b txJ bo 2"+

1
b. By

using the other splicing rule, we get ba2n b CXl bb. □

https://biblioteca-digitala.ro / https://unibuc.ro

150 CHAPTER 3. LANGUAGE GENERATING DEVICES

Example 3.4.2 Consider V= {a1,a2, .. ,,an}, A= {a1a2 .. ,an},

R = {(E,E;E,E)}.
We state that L(SCO) = V*. We are going to prove aur assertion

by induction on n. Jt is obvious that the statement is true for n = 1.
Let z Ev+ I

with t 1 ,t2, .. -,tk 2: l,z1,Zk+1 E (V - {an})*z1,z2, ... ,Zk E (V -
{an})+.

By the hypothesis of induction and following the crossover rule,
we can perform the sequence of crossover below

Going on, one obtains

Therefore, every string in V* can be generated by the above system,
which concludes the proof.

Denote by I,(SCO) the family of languages generated by self
crossover systems. The elements of I,(SCO) will be referred as self
crossover languages.

Theorem 3.4.1 Every self cross-over language L, over {a}, is either
a finite set or· exist a finite set F E V* and k > O such that L =
FU {anin 2: k}.

Pmof. Let SCO = ({a},A,R) bea self cross-over system. Since

L(SCO) = LJ L(SCOx), SCOx = ({a},x,R)
xEA

it suffices to show that any language L(SCOx) is either a singleton
or of the form { an I n 2 k}, for some k > O. Clearly, every language
L(SCO,:) is either a singleton or an infinite language.

https://biblioteca-digitala.ro / https://unibuc.ro

3.4. SELF CROSSOVER SYSTEMS 151

Let L(SCOx) be an infinite language and

k = min{la81: (a,,6)R(,,b)}.

p = max({lal l(a,,6)R(,,b)} U {l/31 l(a,,6)R(,,b)})

Moreover, let (a, ,6; 1 , 8) be the cross-over rule which fulfils the min­
imal value of k: Of course, L(SCOx) ~ {anin 2 k}. We show that
any z = an, n 2 k is a string of L(SCOx)- Because L(SCOx) îs an
infinite set, ex.ists m > n + p such that am E L(SCOx)-

Then, we have the two following decompositions

am an-lal-l61a1<>1/am-n+l61

am am-l61/al61_

where the cross-over sites are indicated by the symbol /, which resuit
in generating of an. □

Lemma 3.4.1 The language L
any seif cross-over system.

a*b*a*b* cannot be generated by

Proof. Assume that L can be generated by the system SCO =
({ a, b }, A, R). Let z = anbmakbp be a string in L such that n, m, p, k
are bigger than the length of the longest string over { a, b} which
occurs in a rule of R.

Please note that, at each cross-over between two identica] strings
of the above form, only the number of occurences of only one symbol,
injust one of its two segments is modified. According to this remark,
in order to get z, we have to produce a cross-over on a string of the
form anbmakbr, O < r < p, in the sites indicated below by the symbol
/:

anbmakbr1 / br2' r1 > O

anbmakbr3 / br4

But, we can choose also the foUowing sites for cross-over:

https://biblioteca-digitala.ro / https://unibuc.ro

152 CHA.PTER 3. LA.NGUA.GE GENERA.TING DEVICES

and get the string anbmakbr 1+m2 akbr, which leads to a contradiction.
o

The next result is a consequence of the results got so far.

Theorem 3.4.2 The family I,(SCO) is incomparable with the fam­
ilies of regular and context-free languages, respectively.

Theorem 3.4.3 The families I,(EG) and I,(SCO) are incompara­

ble.

Proof. We prove that the seif cross-over language L = { bb} U { ba2
n bi

n 2 1} cannot be generated by any evolutionary system. Assume
the contrary and let EG = ({a,b},A,Del,Inv,Xpos,Dup) be an
evolutionary grammar generating L. Since the set Dup has to be
nonempty exists ak E Dup.

All strings ba2" b, ba2"+
1
b, ba2n+

2
b are in L(EG); consequently,

by applying duplication rules to all strings ba2n b, ba2"+
1
b, ba2n+

2
b

we get strings in L(EG). Therefore, there are integers p < q < r
such that

2n + k 2P

2n+l + k 2q

2n+2 + k 2r

which leads to 2q+l - 2P = 2r - 2q or equivalently 2P(2q+l-p - 1) =
2q(2r-q - 1). lt follows that p = q that is contradictory.

Conversely, we observe that the language L1 = a*b*a*b* can be
generated starting from abab by iterating the duplication and deletion
of both letters a and b, respectively. O

Now we shall prove that the family [(SCO) has very poor proper­
ties concerning the closure under usual operations in formal language
theory.

Theorem 3.4.4 The family [(SCO) is an anti-AFL and it is not
closed under left/right derivatives and complement, too.

https://biblioteca-digitala.ro / https://unibuc.ro

3.4. SELF CROSSOVER SYSTEMS 153

Proof.
Union: The languages L1 = {bb} U {ba 2"bln 2". O} and L2 =

{baaab} are self cross-over languages but nat their union. We omit
the simple proof of this fact.

Catenation: The language L = { anbm ln, m 2". O} can be generated
by the self cross-over system (a detailed proof is left to the reader):

SCO = ({a,b},{ab},{(a,E;E,a),(b,E;E,b),(E,a;a,E),(E,b;b,E)}).

From Lemma 3.4.1 it follows that L2 is nat a self cross-over lan­
guage.

Intersection with regular sets: Consider the intersection between
the self cross-over language {a}* and the regular language {a2nln 2".
l}, which is nat in [(SCO) due to Theorem 3.4.1.

Morphisms: Take the morphisrn h : { a, b }* ----, {a}* defined by
h(a) = h(b) = a, and the self cross-over language L = { bb} U
{ba 2"bln 2". O}. However, h(L) = {aa} U {a2"+2 1n 2". O} is nat in
[(SCO), as a consequence of Theorem 3.4.1.

Inverse morphisms: Take the self cross-over language L = {an I n 2".
3} and the morphism k: {a,b}•----, {a}* defined by h(a) = a, h(b) =
E. Clearly, h-1(L) = {x E {a,b}•l lxla 2". 3}. We are going to prove
that h- 1(L) fţ [(SCO. Assurne the contrary but notice that exists
k > O such that at least a cross-over rule is applicable to the string
x = bkabkabkabk. Thus, x may be split

• between two a's,

• between an a and a b,

• between a b and an a.

Therefore, we should consider nine cases, but the reader can easily
find aut some appropiate sites such that each case leads to strings
containing less than three a's, contra<liction.

Kleene opemtion *: Consider the seif cross-over language L =
{bb} U {ba 2"bln 2". O} and assume that L• can be generated by a seif

https://biblioteca-digitala.ro / https://unibuc.ro

154 CHAPTER 3. LANGUAGE GENERATING DEVICES

cross-over system. Following the same idea as for proving Lemma
3.4.1, we want to obtain the string

z = ba2"
1 bba2"

2
... bba2

"k b

with large enough n;, 1 :S: i :S: k, pairwise different. For increasing the
number of a's occurences in the last segment, we must split one copy
of z somewhere on its last segment of a's. But, by choosing another
segment, we will obtain a string which has a substring of the form
bar b, and r is not a power of 2, contradiction.

Lefi derivatives: Take L the previous language. We shall prove
that 8b(L) = {b} u {a 2"bln 2 O} is not in t,(SCO).

Assumming the contrary, in order to get a string a 2
n b, with large

enough n, we must apply a cross-over rule to a string, say a2"' b, n -:p
m. By crossing-over, the string a2"'b may give the strings a2m+kb and
a2m-kb, for some k > O. For both strings must be in 8b(L), it follows
that exist i -:p j such that 2m+l = 2i + 2j, contradiction.

The case of the right derivatives is symmetric.

Complement: For the non-closnre under cotnplement, take the
language generates by the seif cross-over system

SCO = ({ a, b }, { aaabbabb }, R)

where

R = {(t:,t:;x,y),(x,y;E,t:)lx,y E {aa,ab,ba,bb}}

In order to prove that L(SCO) = {a,b}* - {E,a,b} we establish the
following two facts.

Fact 1. Ali strings of length two over { a, b} are in L(SCO).

This fact can be easily checked. For instance, the string ba can
be obtained as follows:

aaabbabb IXl babb IXl ba

Fact 2. Both strings aaabbabba, aaabbabbb are in L(SCO).
https://biblioteca-digitala.ro / https://unibuc.ro

3.4. SELF CROSSOVER SYSTEMS 155

The cross-over steps for generating the above strings are given
below:

aaabbabb D<l aaabbabbabb D<l aaabbabba

and
aaabbabb D<l aaabbabbbabb D<l aaabbabbb

According to the first fact, we can assume, by induction, that all
strings of length n 2'. 2 over { a, b} are în L(SCO). Let z be a string
oflength n + 1 over { a, b} and z = ua. From the inductive hypothesis
we have

aaabbabba D<l• ua

hence, by combining with the second fact, z E L(SCO). Analogously,
if z = ub.

Therefore, the com.plement of L(SCO) is the language {c,a,b}
which, obviously, îs not in ,CSCO. O

Theorem 3.4.5 The family ,C(SCO) is nat closed under duplica­
tions and deletions.

Proof. If we try to duplicate the letter a în the strings from { bb} U
{ba 2"bln 2'. O}, we get the language {ba 2"+ 1 bln 2'. O} which îs not
a self cross-over language. Indeed, let us assume that the string
ba2"+ 1 b produces two conjugated strings, say bazm+ 1 b and ba2 k+ 1 b.
Observe that 2n+1 + 2 = 2rn + 2k + 2 holds that requires n = m = k.
Consequently, our task leads to a finite set, contradiction.

The same reasoning îs valid for deletions as well. O

https://biblioteca-digitala.ro / https://unibuc.ro

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 4

Other Operations

4.1 The PA-Matching Operation

We consider the PA-matching operation, used in DNA computing,
as a formal operation on strings and languages. We investigate the
closure of various families of languages under this operation, rep­
resentations of recursively enumerable languages and decision prob­
lems. We also consider the dual operation of overlapping strings. All
closure properties of families in the Chomksy hierarchy under both
non-iterated and iterated PA-matching and overlapping operations
are settled.

ln the fastly emerging area of DNA computing, many new com­
putability models are considered, where many of the operations used
are inspired by the DNA behavior in vivo or in vitro. Examples of
such operations are: the splicing operation (used in H systems), the
annealing (used in sticker systems), and the insertion-deletion oper­
ations. These and other operations are discussed in [104].

Here we investigate yet another operation suggested by operations
on DNA molecules, the so-called PA-matching operation, used in
[109]. lt is related to both the splicing and the annealing operations:
starting from two single stranded molecules x, y, such that a suffix w
of x is complementary to a prefix ·w of y, by annealing we can form

the molecule with the double stranded part (:) and the remaining

sticky ends specified by x and y. The matching part is then ignored

https://biblioteca-digitala.ro / https://unibuc.ro

158 CHAPTER 4. OTHER OPERATIONS

(removed), so that the resulting string consists of the prefix of x and
the suffix of y which were nat matched.

This operation is considered here as an abstract operation on
formal languages. We relate it to other operations informal language
theory and we settle the closure properties of families in the Chomsky
hierarchy under it. A dual operation is that of overlapping, where
we keep a matching part of two strings. Alsa in this case we settle
all closure properties of Chomsky families. Once again, it turns aut
that manipulation of DN A molecules leads to operations interesting
from formal language theory point of view.

The set of all the proper prefixes and suffixes of the strings in a
language L s;;; V* are denoted by PPref(L),PSuf(L), respectively.

For L1 , L2 s;;; V* we define the lefi quotient of L 1 with respect to L2
by L2 \L1 = { w E V* I xw E L1 for some x E L2}. The right quotient
is defined in the symmetric way. When L2 is a singleton, L2 = { x },
then we write 8~(L) instead of {.T}\L 1 and this operation is called
the lefi derivative of L 1 with respect to x. The right derivative is
denoted by o;(L1).

A finite transducer is a gsm which is able to change its current
configuration without reading effectively the current input symbol.
The finite transduction defined by a finite transducer M is denoted
by TM, similarly to the gsm mapping. If L is a regular language and
Misa finite transducer, then T1w(L) is also regular.

4.1.1 The Non-Iterated Case

The PA-matching operation consists of cutting two strings in two
segments such that the prefix of one of them matches the suffix of
another, removing these two matching pieces, and pasting the re­
m ai ning parts.

Formally, given an alphabet V, a subset X of v+, and two strings
u, v E v+, one defines •

PAmx(u,v) = {wz I u = wx,v = xz, for x EX, and w,z EV*}.

The operation is naturally extended to languages over V by

u PAmx(u,v).

https://biblioteca-digitala.ro / https://unibuc.ro

4.1. THE PA-MATCJ-IING OPERATION 159

When L1 = L2 = L we write PAmx(L) instead of PAmx(L1,L2).
Since we shall only deal either with finite sets X or with X = v+,
we use the notation f P Am for finite PA-matching and the notation
PAm for arbitrary PA-matching PAmv+.

The reader familiar with the splicing operation ([59], [60], [104])
may easily recognize a special variant of splicing in the finite PA­
matching case.

A splicing rule over V is a quadruple r = (u1, u2, u3, u4), with
u; E V*, 1 :S i :S 4.

Given a finite set R of splicing rules and the strings x, y E V* we
write

O'R(x,y) = {x1u1u4y2 Ix= x1u1u2x2, Y = Y1U3U4Y2,

(u1,u2,u3,u4) E R, x1,x2,Y1,Y2 EV*}.

For L1, L2, L ~ v•, we define

u
<7R(L) = <7R(L,L),

O'~(L) = L,

O'i1(L) = O'k(L) u O'R(O'k(L)), i::::: o,
O'R(L) = u O'k(L).

i>O

Note that in the splicing case we cannot check the suffix-prefix
matching; this is the main difference between the two operations.
However, with the use of other operations, the two operations can
simulate each other.

Lemma 4.1.1 IJ a family F of languages is closed under concatena­
tion with symbols and non-iterated splicing, then F is closed under
the operation JPAm.

Proof. For L1 , L2 ~ V•, consider two symbols c1 , c2 not in V.
For a finite set X ~ v+, consider the set of splicing rules R =
{(r,xc2,c1x,r) Ix EX}. Then we obviously have

https://biblioteca-digitala.ro / https://unibuc.ro

160 CIIAPTER 4. OTHER OPERATIONS

which implies the lemma. D

Lemma 4.1.2 Jf a family F of languages is closed under finite trans­
ductions and the operation f PAm, then it is closed under non-iterated

splicing.

Proof. Let L1 , L 2 ~ V* be two languages and R be a finite set of
splicing rules over V. For each rule r = (u1, u2, u3, u4) consider a
new symbol ar and let X= {ar Ir E R} be the set of these symbols.

We define two finite transducers, M 1 , M2, such that, for each x E
v·

'
{x 1u 1ar Ix= x1u1u2x2, for r = (u1,u2,u3,u4) E R

and x 1 ,x2 EV*},

{arU4X2 Ix= X1U3U4X2, for r = (u1,u2,u3,u4) E R

and x 1 ,x2 EV*}.

Clearly, the equali ty

holds (the PA-matching just puts together the strings marked by the
two tranducers) which proves the lemma. □

Of course, the concatenation with symbols can also be performed
by finite transducers, therefore, by combining the above two lemmas
we get:

Theorem 4.1.1 Jf F is a family of languages closed under finite
transductions, then F is closed under the operation f PAm if and only
if it is closed under non-iterated splicing.

Then by Theorem 7.1 from [104], we get the following corollary:

Corollary 4.1.1 The families REC, CF, RE are closed under the
f PA m operation, but LIN is nat closed.

Also the family CS is closed under the operation f PAm (although
it is nat closed under splicing), as a consequence of the following
resuit.

https://biblioteca-digitala.ro / https://unibuc.ro

4.1. THE PA-MATCHING OPERATION 161

Lemma 4.1.3 /fa family F of languages is closed under concatena­
tion, union, and right and lefi derivatives, then F is closed under the
operation f PAm.

Proof. The following equality is obvious:

PAmx(L1,L2) = LJ a;(L1)8;,(L2)-
xEX

The required closure properties of F irnply then the lernrna. □

Corollary 4.1.2 The family CS is closed under the f PAm operation.

We move now to investigate the properties of arbitrary PA-rnatch
operation.

Lemma 4.1.4 /fa family F of languages is closed under the shuffle
and finite transductions, then F is closed under PA m.

Proof. Let L1 , L2 E F, L1 , L 2 ~ V*. Consider the alphabet V' = { a' I
a E V} and the morphism h defined by h(a) = a', for a E V. Since
each rnorphism can be realized by a finite transducer, h(L 1) E F.

We construct now a finite transducer M which, inforrnally speak­
ing, works as follows on the strings frorn the language 5 huf (L 1 , h(L2)):

- M reads a prefix of the input string forrned exclusively by non­
primed letters and leaves it unchanged;

- then, starting frorn a new state, Jvl checks for a while if the
input contains only pairs of letters of the forrn aa', and writes
nothing to the output;

- then, starting from another state, J\-1 reads only pri med symbols
and writes as output the non-prirned versions of them.

It is easy to see that M defines a transduction that satisfies the
equation

TM(Shuf(L1, h(L2))) = PAm(L1, L2)­

Thus the lemma holds. □

https://biblioteca-digitala.ro / https://unibuc.ro

162 CHAPTER 4. OTHER OPERATIONS

Lemma 4.1.5 lf a family F of languages such that REC ~ F is
closed under concatenation with symbols, left derivatives, and PAm,
then F' is closed under Pref.

Proof. Let L ~ v• and let c1, c2 be two new symbols. Then obviously

and so the lemma holds. □

Theorem 4.1.2 1. The families REG and RE are closed under
PAm.

2. The families LIN, CF, and CS are not closed under PAm.

Proof. Let us consider the languages

Li= {c1wd1mi(w)d2 I w E {a,b}+},

L2 = {d1wd2mi(w)c2 I w E {a,b}+}.

Clearly, both of them are linear languages. It is easy to see that

which is nota context-free language. Consequently, the families LIN
and C F are not closed under P Am.

The family C S is not closed under Pref; the families REC, RE
are closed under shuffie and finite transductions. Thus, the theorem
follows from the previous lemmas. □

A language L îs said to be a fixed point of the PA-match operation
iff PArn(L) = L.

If L is a regular language, then by Theorem 4.1.2 we have that
P Arn(L) is regular. The equivalence problem for regular languages
is decidable. Therefore, we can decide whether or not a given regular
language is a fixed point of the PA-match operation. As expected,
this is not true for the family of context-free languages.

Theorem 4.1.3 The problem whether or not a given context-free
language is a fixed point of the PA-match operation is undecidable.

https://biblioteca-digitala.ro / https://unibuc.ro

4.1. THE PA-MATCHING OPERATION 163

Proof. Take two arbitrary n-tuples of nonempty strings over the
alphabet {a,b}, x = (x1,X2, .. ,,xn),y = (Y1,Y2, .. ,,yn), n 2:'. 1, and
consider the languages

Lz {bat 1 bat2 ... batkcztk ... Zt 2 Zt 1 I k 2:'. 1, 1 ::; l; ::; n,

1 ::; i ::; k}, for z E { x, y},

L.
L(x, y)

{w1cw2cmi(w2)cmi(w1)lw1,w2 E {a,b}*},

{a,b,c}* - (Lx{c}mi(Ly) n L.,).

It is known, see, e.g., [117], that L(x, y) is a context-free language.
If PCP(x,y) has no solution, then L(x,y) = {a,b,c}* an<l

PAm(L(x,y)) = {a,b,c}*. (4.1)

If PCP(x,y) has solutions, then L(x,y) # {a,b,c}* but equality 4.1
still holds. (For each w E { a, b, c} *, the strings c4 and c1 w are in
{a,b,c}* but not in L5 ; hence, these strings are in L(x,y). This
means that w E PAm(c4 ,c4w), that is, {a,b,c}* ~ PAm(L(x,y)).
The converse inclusion is trivial.)

Consequently, PAm(L(x, y)) = L(x, y) if and only if PC P(x, y)
has no solution. Since PCP is undecidable, the theorem holds. □

4.1.2 The Iterated Case

We will investigate now the iterated version of the PA-match opera­
tion.

It is defined as follows. For a language L ~ V* and a finite set
X ~ v+, we define:

PAmi(L)
PAm}+1(L)

PAmx(L)

L,

PAm}(L)uPAmx(PAm}(L)), k 2 O,

LJ PAm}(L).
k>O

When X is finite, the iterated PA-mathching operation is denote<l
by f P Am*; in the case X = V*, the corresponding operation is
denoted by P Am*.

https://biblioteca-digitala.ro / https://unibuc.ro

164 CHAPTER 4. OTHER OPERATIONS

Lemma 4.1.6 If a family F of languages is closed under concate­
nation with symbols, iterated splicing, and lefi and right derivatives,
then F is closed under itemted finite PA-matching.

Proof. Let L ~ V* be a language in F and X be a finite subset of
v+. Let c1 , c2 be two new symbols. We associate with X the set of
splicing rules R = {(c:,xc2 ,c1x,E) Ix EX}. Clearly,

PAmx(L) = Et(8~
2
(ajt({ci}L{c2}))).

Hence the lemma holds. o

Lemma 4.1.7 Let F be a family of languages closed under concate­
nation with symbols, union, lefi and right derivatives.

l. Jf F is closed under f P Am*, then F is closed under fPAm.
2. Jf F is closed under P Am*, then F is closed under PAm.

Proof. For L 1 , L2 ~ V*, let c1, c2 be two new symbols. It is easy to
see that the following equation holds:

(The derivatives require that at least one PAm operation is per­
formed, while the markers c1 , c2 prevent performing more than one
such operation.) Note that this relation holds also for PAm. □

Theorem 4.1.4 1. The families REC and RE are closed under both
fPAm* andPAm*.

2. The family LIN is not closed under f P Am* and P Am*.
3. The family CF is closed under J P Am* but it is not closed under

PAm*.
4. The family CS is closed neither under f P Am* nor under P Am*.

Proof. l. The closure under f P Am* follows from Lemma 4.1.6 and
the fact that the family of regular languages is closed under iterated
splicing (see [26, 60, 104]).

A more involved argument is required for proving the closure un­
der P Am* (remember that the regularity is not preserved by an it­
erated splicing with respect to a regular set of splicing rules - see
[102]).

https://biblioteca-digitala.ro / https://unibuc.ro

4.1. THE PA-MATCHING OPERATION 165

Let_ R ~ V* be a regular language recognized by a finite automa­
ton M = (Q, V, o, q0 , F), which satisfies the following conditions:

{qj}, Qo # QJ,

0, for all a E V,

Qo i b(qo,x), for each x Ev+.

Clearly, each regular language is accepted by a fini te automaton sat­
isfying the above conditions.

We construct now iteratively a sequence of finite automata with
E-moves, Mo, M1, ... , M;, ... with M; = (Q, V, Oi, qo, {qf}) as follows:

• M;+I = (Q, V, b;+1q0 , {qJ}) is obtained from M,- as follows.

- Oi+1(s,a) = b;(s,a), for all s E Q,a EVU {c}.

- For all pairs of different states q, q' E Q - {q0 , QJ} such
that:

1. q i b;(q',E),
2. L(Mq) n L(Mq') # 0,

where

Mq = (Q,V,b;,qo,{q}), and Mq' = (Q,V,b;,q',{q1}),

we set

Obviously, the above sequence is finite, because there exists k such
that Mk+l = Mk (the set of states is not changed, only new transi­
tions are added); hence Mk+p = Mk, for all p 2: O. Note also that
the construction is effective due to the decidability of the emptiness
problem for the intersection of two regular languages. Furthermore,

Acc(Mk+i) = ... ~ PAm*(R)
https://biblioteca-digitala.ro / https://unibuc.ro

166 CHAPTER 4. OTHER OPERATIONS

holds. On the other hand, one may easily prove by induction that
PAmJ(R) s;; Acc(Mj), for all j 2 O; therefore PAm*(R) = Acc(Mk)-

~- Because the family LIN is closed neither under J PAm (Corol­
lary 4.1.1) nor under PAm (Theorem 4.1.2), by Lemma 4.1.7 it fol­
lows that it is not closed under the iterated versions of these opera­
tions.

3. lt is known that the family C F is closed under iterated splicing
[GO]; thus, the closure of C F under J PAm* follows from Lemma 4.1.6.
By Lemma 4.1.7 and Theorem 4.1.2, we get the non-closure of CF
under PAm".

4. Consider now a language L E RE - C S, L s;; V*. There are
a1 ,a2 tţ. Vanda context-sensitive language L' ~ L{ai}{a2}" such
that for each w E L there is i 2 O with wa1 at E L'. We have then

Indeed, the first P Am operation transforms strings wa1a2 E L' into
wa1 a;- 1 c. The next step leads to wa1 a;- 2 and the process can
be iterated. The right derivative with respect to a1 selects from
PAm{a

2
,a

2
c}(L'{a2, a2c} U {a2c}) the strings of the form wa1. Since

we nondeterministically concatenate L' with both a 2 and a~, in this
way we can get wa 1 for all w E L. Thus, the equality follows.

If the family C S was closed under the operation PA m *{ } ,
a2 ,a2c

then LE CS, which is a contradiction. □

As a matter of fact, the non-closure of the families C F and C S
under iterated arbitrary PA-matching may be obtained from a more
general resuit.

Theorem 4.1.5 Each recursively enumerable language L s;; V* can
be written as L = 8~

1
(8~

2
(PAm*(L') n {ci}V*{c2})), where L' is a

context-free language and c1 , c2 are two new symbols.

Proof. Assume that L is generated by a type-0 grammar G = (N, V,
S, P) in the Geffert normal form, that is, with N = {S, A, B, C} and
P having only context-free rules of the form S _, x, x E (NU V)+,
an<l a siugle extra rule ABC -. €. Consider the context-free grammar
G' = ({S}, V u {A,B,C,X},S,{S-. h(x) I S-. x E P}), where X

https://biblioteca-digitala.ro / https://unibuc.ro

4.2. THE OVERLAPPING OPERATION 167

is a new symbol, and h is a morphism that replaces A by X A leaving
all the other symbols unchanged. Consider the language

L' {ci}L(G'){c2} u {X ABCwc2Ymi(w)Z I w E (V u {B, C})"}

U {YwZmi(w)c2 I w E (V U {B,C})*},

where Y, Z are two new symbols. Clearly, L' is a context-free lan­
guage.

Let c1w1X ABCw2c2 be a string in {ci}L(G'){c2}, with w2 E
(V U { B, C})* (that is, this is the rightmost occurrence of X ABC in
aur string). The only possible PA-matching operation is

PAm(c1 w1X ABCw2c2, X ABCw2c2Y mi(w2)Z) = c1 W1 Y mi(w2)Z.

The obtained string can again "enter" only one operation:

In this way, one occurrence of X ABC has been removed. By iterating
the P Am operation, all such substrings can be removed - therefore
{ci}L{c2} = PAm*(L') n {ci}V*{c2} holds. The left and the right
derivatives lead now to L. □

As a direct consequence of the above resuit, we find that every
family of languages that contains all context-free languages but not
all recursively enumerable languages, and is closed under intersection
with regular sets and right and left derivatives, is not closed under
PAm*. This is the case for the most of the language families in the
regulated rewriting area [114]. Moreover, the abovc resuit implies
some undecidability results.

Corollary 4.1.3 The following problems are undecidable:
l. For an arbitrary LE CF, is PAm*(L) regular/context-free?
3. For an arbitrary L ~ V*, L E C F, does w E v· belong to

PAm*(L)?

4.2 The Overlapping Operation

In this section we consider another operation on languages that rnay
be viewed as the dual of PA-matching. While the PA-matching oper-

https://biblioteca-digitala.ro / https://unibuc.ro

168 CHAPTER 4. OTHER OPERATIONS

ation removes the matched part, the overlapping operation preserves
the matched part and removes the rest.

More precisely, for strings x, y we define

Ov(x, y) = PSuf(x) n PPref(y).

Then,

u
We write Ov(L) instead of Ov(L,L). The closure properties of the
language families in the Chomsky hierarchy under the overlapping
operation are the same as for the PA-matching operation.

Theorem 4.2.1 1. The families REG and RE are closed under Ov.
2. The families LIN, CF, and CS are not closed under Ov.

Proof. The first assertion follows from the closure of both families
under intersection, P Pref and P Suf.

It is easy to see that the closure under overlapping, together with
other "easy" closure properties (concatenation with symbols, left
and right derivatives), implies the closui'e under intersection (L 1 n
L2 = 8~

1
(0;

2
(0v({ci}Li{c2},{c1}L2{cD))) and the prefix operation

(Pref(L) = Di({ c2} v•, { c} L{ c})). These observations imply the sec­
ond claim. O

From the previous proof it follows that the fixed point problem
for Ov is decidable for regular languages. The problem remains unde­
cidable for context-free languages (with the same proof as for PAm).

Now, let us consider the iterated version of the overlapping oper­
ation. The usual way of defining an iterated operation (see the case
of the splicing and the case of PA-matcţl.ing) does nat work for the
iterated overlapping, because Ov(Ov(L)) ~ Ov(L), which makes the
usual definition (Ovk+ 1(L) = Ovk(L) U Ov(Ovk(L))) uninteresting.
Therefore, we shall define Ovk+ 1 (L) = Ov(Ovk(L)), for al! k 2: 1.
Moreover, Ov•(L) = L' iff the following two conditions are fulfilled:

(i) L' ~ Ovk(L), for all k 2: 1,

(ii) for each L" with L' C L" there exists k 2: 1

such that L" i Ovk(L).
https://biblioteca-digitala.ro / https://unibuc.ro

4.2. THE OVERLAPPING OPERATION 169

This means that, Ov*(L) is the largest language (with respect to
inclusion) which is included in all the sets Ov(L),Ov2(L), ...

Theorem 4.2.2 1. For each k 2': 1 there is a language Lk such that

Ov*(Lk) = Ovk(Lk)-
2. There are languages L such that Ovk+l(L) C Ovk(L), for all

k 2': 1.

Proof. Consider the language L k = {ai bi I 1 :S i, j '.S k}. It is easy to
see that Ov(Lm) = Lm-I, 2 :S m :S k, and Ov(L1) = 0. Therefore,
Ov*(Lk) = Ovk(Lk)-

Consider also the language

L 00 = LJ {(banbr(canc)j 11 '.S i,j '.S n}.
n>l

For each n, we can overlap only strings containing blocks ba"b, cane.
For given n, we can perforrn a bounded number of overlappings, be­
cause at each step we have to rernove either the prefix banb or the
suffix cane. Therefore Ovk+ 1(L 00)-::/- Ovk(L00) for k '.S n. Because n
can be arbitrarily large, the operation can be iterated an arbitrarily
large nurnber of steps. D

Note that Ovk(L00)-::/- 0, but Ov•(L00) = 0.

Theorem 4.2.3 The families LIN and CF are not closed under Ov*.

Proof. For L 1 ,L2 ~ V*, let us consider two new symbols, c1 ,c2. We
obtain the equality:

Ov*({ci}*Li{c2}*u{ci}•L2{c2}*)n{ci}V*{c2} = {ci}(L1 nL2){c2}.

Indeed, {ci}*(L1 n L2){c2}' ~ Ov({ci}* Li{c2t U {ci}* L2{c2}*).
Starting from strings in {ci}*(L1 nL2){c2}*, we can iterate the over­
lapping operation an arbitrarily large number of times.

By this equation, the closure under Ov* irnplies the closure under
intersection. Sin ce the farnilies LIN and C F are not closed under
intersection (but they are closed under concatenation with regular
languages, intersection with regular languages, union, and left and
right derivatives), the theorem holds. □

https://biblioteca-digitala.ro / https://unibuc.ro

170 CHAPTER 4. OTHER OPERATIONS

Theorem 4.2.4 The family CS is not closed under Ov*.

Proof. Let L ~ V* and let c1 , c2 be new symbols (not in V). Consider
the language

This is a context-sensitive language. It is easy to see that

(We have {ci}*Pref(L){c2}* ~ Ov(L'), hence we can iterate the
operation Ov an arbitrarily large number of times.)

Because the family C S is closed under right and left derivatives,
but not under the operation Pref, we obtain the non-closure under
Ov*. o

Clearly, RE is closed under the iterated overlapping operation.
The case ofthe family REG will be settled below (also in affirmative),
after establishing two auxiliary results.

Let A= (Q, V, 8, q0 , F) bea minimal complete deterministic finite
automaton; because the automaton is complete, the mapping 8 is
total and a dead state exists from which there is no path to a final
state. Let A be the set of all finite automata of the form Ap,q =
(Q, V,8,p,{q}), for p,q E Q. Clearly, this is a finite set. We denote
by L(A) the family of all languages recognized by automata in A and
by C L(A) the closure of the family L(A) under finite union and finite
intersection operations. Because L(A) is a finite family, also C L(A)
is a finite family of languages.

Lemma 4. 2 .1 The family C L(A) is closed under complementation.

Proof. Let L be a Ianguage in C L(A). It can be written in the form
L = (L1,1n ... nL1,n 1)u ... U(Lm,1 n .. . nLm,nm), where each language
L;,j, 1 :S i :S m, 1 :S j :S n;, is an element of L(A). The complement
of each language L;,j (we denote the complement of a language J(by
K) is also in L(A), since A was a complete deterministic automaton.
Because L = (L1,1 U ... u L1,n1) n ... n (Lm,1 u ... u Lm,nm), it follows
that also the complement of L is in CL(A). □

https://biblioteca-digitala.ro / https://unibuc.ro

4.2. THE OVERLAPPING OPERATION 171

Lemma 4.2.2 The family CL(A) is closed under the non-iterated

ovedapping operation.

Proof. Let L be a language în CL(A). We write it in the form
L = T1 U ... U Tn, where each T;, l S i S n is a finite intersection of
languages in C L(A). For every integer i = 1, ... , n, denote:

I{;= {x EV* I â~(T;) = {€}},

M; = {x EV* I â~(T;) = Ql},
P; = {x EV* I a;(T;) = {€}},

R; = {x E V* I a;(T;) = Ql}.

Note that the following assertions holci for each string x E V":

x EL - Ov(L)?? â~(L) = {E} or a;(L) = {E}??

(â~(T;) ~ {E} for all i and there îs some j such that â~(Tj) -::j:. Ql),
or

(a;(T;) ~ {t:} for all i and there is some j such that a;(Tj) -::j:. Ql).

Consequently, we have

L - Ov(L) = (n (I{; u M;) - n M;)
l'.Si'.Sn l'.Si'.Sn

u ((,Qn (P; u R,) - ,Qn R,) •

By Lemma 4.2.1, it suffices to prove that for every i = 1, ... , n the
languages K;,M;,P;,R; are contained în CL(A).

Consider any T; = L1 n ... n Lm, where Lj E L(A), 1 S j S m.
For every j there is an au tom aton A j = (Q, V, 8, Pi, {Jj}) in A such
that Li= L(Aj)-

a. In the standard manner, construct the product automaton

AK ~ (Qm,V,5,P,{f}) whîch accepts T;, where P= (Pi, .. •,Pm)

an<l f = (!1, ... , J m). If A1-; has a cycle w hich contaîns the final state
https://biblioteca-digitala.ro / https://unibuc.ro

172 CHAPTER 4. OTHER OPERATIONS

--+

f, then I(; = 0 and this is a language in C L(A). Otherwise, K; = T;,
which is again in C L(A).

b. For the previous au tom aton AK, Jet FM be the set of states

which appear on a path from P to f. Consider the automaton AM =
(Qm, V, 8, P, FM)- Then,

M; = Acc(AM) = LJ Acc((Qm, V, 8, P, {q})).

qEFM

For every state rÎ= (q1 , ... ,qm) E FM, the language accepted by

the automaton· (Qm, V, 8 ,P ,{q}) is an intersection of the languages
Acc((Q,V,8,pj,{qj})), which are in L(A) for all j = l, ... ,m. Con­
sequently, M; E C L(A).

c. The proof of the relation R; E C L(A) can be obtained in the
same manner as in the case of M;.

d. For each automaton Aj = (Q, V,O,Pj, {fi}) as above we con­
struct its reversal, Af = (Q,V,oR,Jj,{Pj}) and we make Af de­

terministic by the usual subset construction technique. Let Af.. =
(2Q, V, of, Ui}, Fj) be the automaton obtained in this way. Then,
by definition, Acc(A_;:) = mi(Lj) holds.

We construct the product ((2Qr, V,o~, s,F) of automata Ar*'
... , A~*' which accepts T;R = mi(L1) n ... n mi(Lm), where s =
({fi}, ... , Um}). Let Fp be the set of a.11 states q in F such that q
does not have a. path to any state of F. Let Ap = ((2Qr, V, of, s
, Fp). Then, we ha.ve P;R = L(Ap). Thus,

Pi = Acc(A~)

= Acc(((2Q)1",V,(o~)R,Fp,{s}))
--+

= LJ Acc(((2Q)1", V, (o~)R, q, {s})).

q EFp

lt suffices now to show that for every q E Fp, the language Z- =
--+ q

Acc(((2Qr,V,(o[l)R,q,{s})) is in CL(A). Let rÎ= (E1 , ... ,Em) E
https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 173

Fp, where Ej ~ Q, 1 ~ j ~ m. Note that for any (X1, ... , Xm) and
(Y1, ... , Ym) in (2Qr and for any a E V, the following assertions

hold:

(Y1,••·,Ym) E (o:;t((X1,••·,Xm),a)

{::} o:; ((Y1 , . .. ,Ym),a) = (X1,••·,Xm)

{::} o:;(Yj,a) = Xj, for all j = 1, ... ,m,

{::} Xj = {q I q E oR(p,a), for some p E Yj}, for all l ~ j ~ m,

{::} Xj = {q Ip= o(q,a), for some p E Yj}, for all l ~ j ~ m.

Therefore, we have

Z;= n (n Acc((Q,V,6,r,{/j}))- LJ Acc((Q,V,6,r,{fj})))
1 :Si Sm rEE1 rV:,E1

hence this language is in C L(A) and this completes the proof of the
lemma. O

Theorem 4.2.5 The family REG is closed unde1· the operation Ov•.

Proof. Starting from a minimal deterministic finite automaton A for a
regular language L, we construct the farnily C L(A) as above. Because
this family is closecl under non-iterated overlapping, all languages
0vk(L), k 2 1, are in C L(A). Because the family C L(A) is finite, it
follows that only finitely many languages Ovk(L) are different to each
other. The smallest of them is equal to Ov"'(L) and it is an element
ofCL(A). It follows that Ov"(L) is a regular language. O

4.3 Operations Suggested by
Gene Assembly in Ciliates

We define three operations on strings and languages suggested by the
process of gene assembly in ciliates. The closure of the classes of reg­
ular and context-free languages uncler these operations is settled. We

https://biblioteca-digitala.ro / https://unibuc.ro

174 CHAPTER 4. OTI-IER OPERATIONS

also consider the macronuclear language of a given language. Finally,
some open problems and further directions of research are discussed.

A bit more precisely, these operations are suggested by the intri­
cate transformation process by which the macronucleus of a ciliate
results from its micronucleus. The reader interestead in more biolog­
ical details is refereci to [76] and [106].

Following [42, 43] we define the following three operations which
might be viewed as formal linguistica! definitions of the operations
through the gene assembly process in cilitates is accornplished:

• (loop, direct repeat)-excision (ld, for short),

• (hairpin, inverted repeat)-excision (hi, for short),

• (double loop, alternating direct repeat)-excision (dlad, for short).

The computational power of this transformational process taking
place in ciliates has been considered in [77] and [42].

A gac-scheme (gene gssembly in s;_iliates) is a pair a = (V, P),
where Vis an alphabet and Pisa finite subset of v+, whose elements
are called pointers, such that mi(P) = P.

For a gac-scheme as above, we write V = {a I a E V} and P for
the set consisting of all strings obtained from those of P by replacing
ea.eh letter with its barred copy in V.

4.3.1 The ld Operation

The Non-Iterated Case

Given a gac-scheme a = (V, P) and a string w E v+, we define
formally the ld operation as follows.

The ld operation proceeds informally as shown in Figure 4.1. As
one can see, the linear molecule (string), in which two occurrences of
a pointer a have been emphasized, is folded into a loop aligned by
this pair of pointers. Then, the string is cut asin Figure 4.1, yielding
two strings, a linear one and a circular one. We consider here that
a circular molecule is no longer a micronuclear precursor for another
assembly, so that we keep only the linear molecule. For this reason,
the segment y must not contain any pointer.

https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES

~ _a __ ;)l'll----

r~_;_:_=)) -
X a z

Figure 4.1.

Formally, the ld operation is defined by

ld(J"(w) = {xaz I w = xayaz, x,z E v$,y Ev+,

aEP, Sub(y)nP=©}.

175

A string w is called an ld"-macronuclear string if ld"(w) = 0.
The above operation can be extended to languages in a natural

way:
ld"(L) UwEL ld"(w).

A family of languages F is closed under the operation ld if for any
language L E F and any gac-scheme a, ld"(L) E F holds.

Proposition 4.3.1. Any full trio is closed under ld.

Proof. Let a= (V,P) be agac-scheme with P = {x1 ,x2 , ... ,xn} for
some n. The construction is rather simple: We define the homomor­
phisms

defined by

h(a) = h(a) = a, a E V,

h(c;) = h(d) = x • 1 < i < n. 1 i, - -

and

https://biblioteca-digitala.ro / https://unibuc.ro

176 CHAPTER 4. OTHER OPERATIONS

defined by

g(a) a, g(a) = l, a EV,

g(ci) x;, g(d;) = l, 1 S i S n.

Now we consider the regular language

We claim that
ldr;(L) = g(h- 1(L) n R),

for any language L over V. Indeed, the regular language R 'assures
that the following conditions are satisfied:

- The strings in h-1 (L) n Rare produced from those strings in L
having two occurrences of some pointer, say Xi, whose inverse homo­
morphical images are the symbols Ci and d; while the other pointer
occurrences are not transformed into symbols in the set { c1 , c2 , ... ,

Cn, di, d2, ... , dn}.
- The segment between these two occurrences in the original string

contains no occurrence of any pointer and is transformed into its
barred version by the inverse homomorphism h- 1 .

- The prefix and suffix of the original string before and after these
occurrences, respectively, are left unchanged by applying h- 1 .

Now the homomorphism g erases any symbol di, 1 S i S n,
together with all barred letters, restores any string Xi for Ci, 1 ::;
i S n, and leaves unchanged the letters from V, which concludes the
reasoning. O

Since the families of regular and context-free languages are full
trios, we get:

Corollary 4.3.1. The families of regular and context-free languages
are closed under the operation Id.

The Iterated Case

Let L be a language over an alphabet V and a = (V, P) be a gac­

scheme. The ldr;-macronuclear language of L, denoted by ldr;M(L),
https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 177

consists of all lda-macronuclear strings obtained from the strings of
L by applying iteratively the operation ld with respect to a.

More formally, we define the languages

Ro L,

Lo {w E Ro j lda(w) = 0},

R;+1 lda(R; \ L;), and

L;+1 {w E R;+1 j lda(w) = 0}, i 2: o.
Then,

ldaM(L) = U;?_oL;.

We now address the following problem: given a regular/ context-free
language L and a gac-scheme a, is lda M (L) still regular/ context-free.
1n the remaining part of this section we provide a complete answer
for a large class of gac-schemata.

Lemma 4.3.1. Let a = (V, P) be a gac-scheme such that any two

strings x, y E P, with y -:/= mi(x), do nat overlap each other. Then,
one can construct a deterministic finite transducer J'vf such that for
any language L over V, gM(L) is exactly the set of all lda-macronuclear
strings existing in L.

Proof. We assume that P = {x(ll,x(2l, ... ,x(n)} for some n 2: 1

and xU) = Xii)x~i) ... x[~li)i· Before defining the finite transducer,

we brie:fly recall the well-known KMP algorithm for string matching
proposed in [69]. For each 1 :S j :S n, one constructs the array next1
of dimension jxUlj provided by the following algorithm:

begin

nextj(l) := -1;

for i := 2 to jxUlj do

end

k := nextj(i - 1) + I;
while x(j) -+ x(j) and k > O do t-1 r k

k := nexti(k) + I;
nexti (i) := k;

https://biblioteca-digitala.ro / https://unibuc.ro

178 CHAPTER 4. OTHER OPERATIONS

Given a string y = Y1Y2···Ym, where Y1,Y2,···,Ym are symbols,
the matching process of xU) in y proceeds as follows. The sym­
bols in the two strings are compared until a mismatch is found. At
that point, say at x;j), the same symbol in y is compared against

x~}xt
1
(i)+I. If this is a mismatch too, then the same symbol in y is

cornpared against x~}xti(nexti(i)+l)+l and so forth. A special case is

when the mismatch is against x~j\ in this case we proceed to the next
symbol in y.

Based on this brief recall of the KMP algorithm, for each 1 S j S
n, we define the function

where

Construct the finite transducer M = (Q, V, 6, {q0}, F, where

Q {qe} U {[(i1, i2,,. •, in)(k1, k2,.,., kn)] I OS ij, kj S lx(j)I + 1,

1 SS n},

qo [(1, 1, ... , 1) (o, o, ... , o) J,
F Q\{qe,qo}

and the transition mapping 6 is defined as follows.
For each a EV, 6([(i1,i2,••·,in)(k1,k2,.,.,kn)],a) is

1. qc, if exists 1 S j S n such that ij = kj = lx(j)I + 1,

2 [(., ., .,)(k' k' k')] • • ·t 1 ,i2 , ... ,i„ 1 , "2 , ... , n ,otherw1se,where

• if there exists a j with l S j S n such that ij = lx(j)I + 1,
then if there exists a t with 1 S t S n such that it = lx(tll

https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 179

and x(t) = a then ,, '

i~ it + 1,

i~ 1, 1 ::; r # t ::; n,

k~ O, 1 S r S n,

else

•/
ij lj,

i~ J(M P, (i,, a), 1 ::; r ::; n, r # j,
ki J(M Pj(kj, a),

k~ k,, 1 ::; r ::; n, r # j.

• if ij -::j:. lx(j)I + 1 for all 1 ::; j ::; n, then if there ex.ists a t

with 1 ::; t S n such that it = lx(t)I and x;'.) = a, then

i~ it + l,
i~ 1, 1 ::; r # t S n,

k~ O, 1 ::; r S n,

else i~ = KMP,(i,,a) and k~ = k, for all 1::; r::; n.

Let us give some informal explanations on the working mode of this
finite transducer. As one can easily see, the transducer writes always
the read letter, so that the defined transduction is a subset of the
input language. Except for the error state qe, each state is formecl by
a pair of n-tuples of natural numbers. When the first occurrence of a
pointer, say x;, has been meet in the input string, the corresponding
number of the first component of the current state became lx;I + 1. By
our supposition - the pointers do not overlap each other - as soon as
such an occurrence has been found, the searching process for another
occurrence is resumed in the first component of the current states,
for all pointers other than x;, and starts a searching process of xi by
means of the second component of the current states.

When a proximate pointer occurrence has been identified, two
situations may appear:

https://biblioteca-digitala.ro / https://unibuc.ro

180 CHAPTER 4. OTHER OPERATIONS

- This is an occurrence of x; and the transducer will enter the
error state qc, and no move is possible anymore. This corresponds to
the case when the input string has two consecutive occurrences of x;

and no other pointer occurrence in between; consequently it is not an
lda-macronuclear string în L.

- This is an occurrence of a pointer other than Xi. 1n this case,
the former pointer occurrence, that of Xi, is of no use for the rest
of the computation, hence it can be dropped and the computation
continues by considering the pointer occurrence just identified as the
first pointer occurrence in the input string.

Clearly, if the transducer entirely reads the input string in a state
other than the error state qe, the input string is an lda-macronuclear
string in L, and we are clone. □

Proposition 4.3.2. Let a = (V, P) be a gac-scheme such that any
two strings x, y E P, with y -::j:. mi(x), do nat overlap each other.
Then, for any semi-AFL :F, the language ldaM(L) is in :F provided
that L is in :F.

Pmof. We assume that P = { x1, x2, ... , xn} for some integer n 2::: 1.
The language T s;; {1,2, ... ,n}+ such that for every z E T, z =
i1 i2 ... ik the relation ij -::j:. ii+l, l ~ j ~ k - l, holds, is clearly a
regular language. Let A= (Q,{1,2, ... ,n},8,{q0},F) bea deter­
ministic finite automaton recognizing T.

We now consider the following regular languages over V

B; = v+ \ ((uf=1 v+ {xi}(V+ \ V* PV*){x;}V+)u

V*{x;}(V+ \ V* PV*)), l ~ i ~ n,

recognized by the au tomata A;, respecti vely,

E; = v+ \ ((Uf=1 v+ { xi}(V+ \ V* PV*){xi} v+)u

(V+\ V*PV*){xi}V*),l ~ i ~ n,

recognize<l by the automata Â;, respectively, and

https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 181

recognized by the automata A;,1, respecti vely.
Furthermore, we consider the regular language

R = v+ \ (V* PV*),

the automaton recognizing R being denoted by AR- Assume that all
the automata mentioned above have pairwise disjoint sets of states.

Claim 1. The language

L' U;l i2 ... i.ETBi1 { Cjl} R({ d;J R)* { d;I} J;I ,i2 { Ci2} R({ d;2} R)*
{ d;2 }J;2 ,;3 ••• l;,_1,;. { ci,} R({ di,} R)* { di,} E;,

is regular.

Proof of the claim. We shall informally explain the steps of a
computation of the finite automaton which recognizes L'; following
these explanations, the reader can easily write a formal construction.

1. Let j = 1.

2. By a [-move, the automaton nondeterministically chooses a
number i1, between 1 and n, and starts to simulate the automa­
ton A;i till this simulation process cannot continue. During this
process of simulation, the current stat.e is a pair consisting of
the state q;i = o(q0 , i1) and the current state of the automaton
A;j.

When the process stops, the current state has to be formed by
q;i and a final state in A;

1
, and the reading hea<l posi tione<l on

Cjj.

3. By reading c;
1

, the automaton starts simulating the antomaton
AR. The current state now is a pair consisting of q;

1
and the

current state of AR. This process ends successfolly when d;
1

1s
read in a state (q;

1
,r), where r is a final state in ÂR-

4. The automaton reads d;
1

and starts again to simulate ÂR in the
same way as in the previous step. This step will be execnte<l
till a symbol in V is reador the automaton is blocked.

5. Let j = j + 1.
https://biblioteca-digitala.ro / https://unibuc.ro

182 CHAPTER 4. OTHER OPERATIONS

6. Now the automaton nondeterministically chooses a symbol ij -:ţ

ij-l and may change its state into the pair (qii,s), where Qij =
8(qi

1
_ 1 , ij) and s is the initial state of A;j-i ,ij, or the initial

state of .Â;
1

.

7. If the state (Qi
1

, s) is chosen, then the automaton A;j-i ,ij is
simulated as long as possible. This process must end in a state
(qi

1
, t), with t being a final state in A;i-I ,ij and c;

1
as the current

input symbol. Now the computation continues with step 3.

8. If the initial state of .Â;i is chosen, then the automaton simulates

the work of Âi
1

until the input string is completely read. The
computation is successful (the input string is accepted) if and
only if it ends in one of the final states of Âii•

Thus we conclude the proof of the claim.

We define the following homomorphisms:

h : (V U V U { C1, c2, ... , Cn, d1, d2, ... , dn})* ---+ V*,

defined by

h(a) h(a) = a, a EV,

h(ci) h(d;) = Xi, 1::; i::; n.

and

g: (V U V U {c1, C2, ... , Cn, di, d2, ... , dn})*---+ V*,

defined by

g(a) a, g(a) = l, a E V,

g(ci) Xi, g(d;) = l, 1::; i::; n.

Claim 2. For any language L the following relation holds:

https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 183

Proof of the claim. By Lemma 4.3.1, the first term of the
above union is the set of all ldo--macronuclear strings existing in L
and, by the definition of L' and a similar reasoning as in the proof
of Proposition 4.3.1, it is easy to infer that the second term is the
set of all ldo--macronuclear strings obtained as a consequence of the
application of ldo- as many times as possible.

Since the classes of regular and context-free languages are semi
AFLs (they are closed under homomorphisms, inverse homornorphisms,
intersection with regular sets and union, which implies also the do­
sure under finite transductions), it follows that for any regular/ context­
free language L, ldo-M(L) is still regular/context-free. These obser­
vations complete the proof. O

4.3.2 The hi Operation

The hi operation works as shown in Figure 4.2. Now, an inverted
repeat pair of pointers has been put in evidence. The string is folded
into a hairpin aligned by the inverted pair of pointers yielding a new
linear string frorn which a pointer has been dropped.

x~ a ~mi(y)~ z ➔

+

Figure 4.2.

Formally, given a gac-scheme a= (V, P), we define

hio-(w) = {xami(y)z I w = xaymi(a)z, x,z Ev·. y Ev+,

Sub(y) n P = 0, a E P}.
https://biblioteca-digitala.ro / https://unibuc.ro

184 CHAPTER 4. OTHER OPERATIONS

The above operation can be extended to languages in a natural

way:
hia(L) UwEL hia(w).

A family of languages :F is closed under the operation hi if for any
language LE :F and any gac-scheme a, hia(L) E :F holds.

Proposition 4.3.3. 1. The family of regular languages is closed un­
der hi.

2. The family of context-free languages fails to be closed under
hi.

Proof. The first part of the construction is quite similar with the
construction in the proof of Proposition 4.3.1. Let a = (V, P) be a
gac-scheme with P = {x1, x2, ... , Xn, mi(x1), mi(x2), ... , mi(xn)}
for some n. 'vVe define the homomorphism

defined by

h(a) h(a) = a, a EV,

h(c;) x;, h(d;) = mi(x;), 1 :S i :S n.

For a regular language L, now consider the regular languages

L1 1i-1(L) n u~1 V*{c;}(V+ \ V* PV*){d;}V*,

L2 = h-1(L) n ui=l V*{d;}(V+ \ V* PV*){c;}V*.

The language L1 can be written as a union of n pairwise disjoint
languages

L1 = uf=1L1,;{c;}L2,;{d;}L3,;,

where al! the languages Lj,i, 1 :=:; j :S 3, 1 :S i ::; n, are regular.
Let A= (Q, V U V U {c1, C2, ... , Cn, di, d2, ... , dn}, 6, {qo}, F) bea
reduce<l (without useless states) deterministic finite automaton which
recognizes L 1 . We consider the following finite automata:

• .4;,1 = (Q, V, 6 IQxV, {qo}, F;,1), where F; 1 = {q E Q I there
exists s E Q such that b(q,c;) = s}.

https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 185

• Âi,2 = (Q,V,b !Qxii,si,2,Fi,2),where si,2 = {b(q,ci) j q E Fi,i}
and Fi

2
= {q E Q I there exists s E Q such that b(q,di) = s}.

• Ai,3 = (Q, V,b !Qxv,S\,3,F), where 5;,3 = {b(q,d;) j q E F;,2}-

Since A is minimal, it is easy to check that Lj,i is accepted by the
automaton Aj,i for all 1 '.S j '.S 3 and 1 '.S i '.S n.

Consequently, the language

is still regular. Obviously, a similar construction leads to the language
L; starting from the language L 2 .

The reasoning from above for the language L1 can be schemati­
cally illustrated asin Figure 4.3. All edges in the subgraphs denoted
by G0 and G f are labelled with letters from V while all edges in the
subgraphs denoted by G1 , G2 , ... , Gn are labelled with letters from V.
Now, we inverse all edges in the subgraphs denoted by G1 , G2, ... , Gn.
Clearly, the new automaton, which is not necessarily deterministic,
accepts the language

by

We now define the homomorphisms

91 (a)

91 (ci)

91(ii) = g2(a) = g2(ii) = a, a EV,

92(d;) = Xi, g1(d;) ~ gz(c;) = l, 1 '.S i '.S n.

The equality g1(L~) U g2(L;) = hia(L) is immediate. Consequently,
the first assertion is proved.

https://biblioteca-digitala.ro / https://unibuc.ro

186 CHAPTER 4. OTHER OPERATIONS

CJ
-+-

~
d1

T ---1..

~ : d1 -
C2
-+-

~

-C2
-+-

d2
T

~
-4

: d2 - /
G2

Cn
c;;
-+-

-~

Co Gn

Figure 4.3.

2. It is sufficient to take the linear language

L = {wcmi(w)c I w E {a,b}+}

and the gac-scheme a= (V,{c}). Obviously, hi17 (L) = {wcw I w E
{a,b}+}, which is not context-free. O

It is worth mentioning here that two letter suffice for the previ­
ous counterexample. Indeed, we could define the homomorphism h
from {a,b,c} into the two-letter alphabet {a,b} defined by h(a) =
aba,h(b) = abaa, and h(c) = bb. Now, it suffices to take the homo­
morphical images of all objects defined in the previous counterexam­
ple.

4.3.3 The dlad Operation

As in the definition of the previous two operations, we explain infor­
mally how the dlad operation proceeds. This operation is applicable

https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 187

to those strings which have a alternating direct repeat pair of point­
ers as illustrated in Figure 4.4. This string is folded into two loops
each of them aligned by one pair of pointers. The operation removes
one occurrence of each pointer and yields a new linear string.

Formally, given a gac-scheme a = (V, P) we define

dlada(w) = {xa.vf3yuz I w = xa.uf3ya.vf3z, u,v,y Ev+, x,z EV*,

a.,(3EP, Sub(t)nP=©,tE{u,y,v}}.

a. X a.
~~

a. u a.

[/
u -y f3 f3

~ V V

i ~
(}_

~ ~ ((}_

+

Figure 4.4.

The above operation can be exten<led to languages in a natural
way:

dlada(L) UwEL dlada(w).

A family of languages F is closed under the operation dlad if for any
language LE F and any gac-scherne a, dlada(L) E F holds.

https://biblioteca-digitala.ro / https://unibuc.ro

188 CHAPTER 4. OTHER OPERATIONS

Proposition 4.3.4. The class of regular languages is closed under
dlad, whereas the class of context-free languages is not closed under
this operation.

Proof. Let a = (V, P) be a gac-scheme with P = {x1, x2, ... , xn}
for some n. Consider the new alphabets V(i,j) = {a(i,j) I a E V},
1 ::S i,j ::S n, i f. j. By P(i,j) we denote the set of all strings
from P in which each letter a is replaced with a(i, j). We define the
homomorphism

defined by

h(a) h(a(i,j)) = a, a EV, 1 ::S i,j ::S n,i f. j,

h(c;) h(di) = x;, 1 ::S i ::S n.

For a regular language L, we now consider the regular language

L' = h- 1(L) n ufj=l,i#jV*{ci}(V+(i,j) \ V*(i,j)P(i,j)V*

(i,j)){cj}(V+(i,j) \ V*(i,j)P(i,j)V*(i,j)){d;}(V+(i,j) \ V*

(i,j)P(i, j)V*(i,j)){ dj} V*,

which can be written (see the proof of Proposition 4.3.3) as a union
of n(n - 1) pairwise disjoint languages L;,j

where all the languages L;,j,k, 1 ::S i,j ::S n, i f. j, l ::S k < 5, are
regular. Clearly, the languages

are regular, too.
We define the homomorphism

https://biblioteca-digitala.ro / https://unibuc.ro

4.3. GENE ASSEMBLY IN CILIATES 189

by

g(a) g(a(i,j)) = a, a EV, 1 S i,j S n, i 'I j,

g(c;) x;, g(d;) = l, 1 S i S n.

The equality
g(Ufj=t,i;ejL:,j) = dlada(L)

can be easily checked which concludes the first part of the proposition.

We consider the context-free language

and the gac-scheme a= ({a,b,c},{c}). Thus, we get

which is not a context-free language. D

Again, the number of letters needed for the last counterexample
can be reduced to two by the same homomorphism defined at the end
of the previous section.

We now point out two open problems. For a given language L
and a gac-scheme a, we can define its hia-macronuclear and dlada­
rnacronuclear language, respectively, in a similar way to that of defin­
ing the lda-macronuclear language. By the results from the previ­
ous sections, there exist context-free languages such that the corre­
sponding hia-macronuclear language and the corresponding dlada­
rnacronuclear language, respectively, is not context-free. We do not
know what happens if the given language is regular.

More generally, one may consider the gac-macronuclear language
of a given language, say L, as the language consisting of all macronu­
clear strings obtained from the strings of L by applying iteratively
the three operations no matter in which order. This problem seems
to be fascinating because all three operations are involved in the
transformational process of genes in ciliates.

We now continue with a brief discussion about some further di­
rections of research. Let us restrict our discussion to one operation

https://biblioteca-digitala.ro / https://unibuc.ro

190 CHA.PTER 4. OTHER OPERATIONS

only, say ld, but emphasizing that the problems we discuss here may
be a.ddressed to each opeartion as well as to the three operations al­
together. For a given string w and a gac-scheme a, we define the
lda-macronuclear distance of w as the minimal number of applica­
tions of the ld operation to w in order to get a lda-macronuclear
string. For a language L, its lda-macronuclear distance is given by
the maximal lda-macronuclear distance of its strings, if there is an
upper bound or infinite, otherwise. Severa! problems appear tobe of
interest with respect to this measure. ls this measure computable for
regular languages? What is the complexity of computing this mea­
sure for finite languages? Or even for regular languages, if. it turns
out tobe computable?

4.4 Evolutionary Systems

We introduce a language generating device based on string operations
suggested by the evolution of cell populations, called evolutionary sys­
tem. The cells are represented by strings which describe their DNA
sequences. The cell community evolves according to gene mutations
and divison defined by operations on strings. The paper deals with
the generative power of these mechanisms (a characterization of the
class of recursively enumerable languages is presented), and the dy­
namics of the string population. A connection between the growth
function of DOL systems and the population growth relation of evo­
lutionary systems is also given.

Description of the dynamics of evolving cell populations is anin­
triguing question which has been in the focus of interest in current
computer science. At the levei of individual cells, evolution proceeds
by local operations (point mutations) which substitute, insert and
dele te nucleotides of the DN A sequence. Evolu tionary and functional
relationships between cells can be captured by taking only local mu­
tations into consideration.

Treating DNA sequences as strings has been often used for inves­
tigating the structural information contained in biologica! sequences.
Severa! approaches have been proposed so far, most of the investiga­
tions along these lines deal with grammatical formalisms. The gram-

https://biblioteca-digitala.ro / https://unibuc.ro

4.4. EVOLUTIONARY SYSTEMS 191

matical form is preferable for promoting an abstracted and hierarchi­
cal view of the domain. For example, regular grammars have been
used for describing very simple genes [11]. Despite one has argued
[124] that the genetic language is not more than context-free, these
arguments are based on observations restricted just to the amino
acid code. Other authors have argued the inadequacy of context-free
grammars for modelling the gene regulation [20] or some secondary
structures of nucleic acids [121]. In [19] transformational grammars
were considered for modelling the gene regulations, while [122] used
definite clause grammars, which were constructed on the backbone
of context-free grammars with appropriate specifications associated
to nonterminals, for investigating gene structure and expression or
different forms of mutation and rearrangement. More recently, gram­
matical formalisms based on string operations suggested by life-like
interactions [24] or large scale rearrangements in genomes [33] and
[34] have been introduced.

In this paper we present a language generating mechanism, called
evolutionary system, inspired by the evolution of cell populations,
which might model some properties of evolving cell communities at
the syntactical levei. We represent cells by strings which describe
their DN A sequences. Informally, at any moment of time, the evo­
lutionary system is described by a collection of strings, where each
string represents one cell. The cell belongs to species and their com­
munity evolves according to mutations and divison which are defined
by operations on strings. Only those cells are accepted as survival
(correct) ones which are represented by a string in a given set of
strings, called the genotype space of the species. This feature paral­
lels with the natural process of evolution.

The first problem discussed in the paper concems the languages
(sets of strings) of the species of the evolutionary systems. We show
that any recursively enumerable language is a language of a species
of an evolutionary system with point rnutations of restricted forms.
Then we present results 011 the dynamics of cell population in the
system. We prove that there is no algorithm for deciding whether
or not the population of an evolutionary system of regular genotype
space is finite, but such an algorithm does exist for systems of finite

https://biblioteca-digitala.ro / https://unibuc.ro

192 CHAPTER 4. OTHER OPERATIONS

genotype space. We establish a r.onnection between Linclenmayer
systems (langua.ge theoretical models of development al systems) and
evolutionary systems by showing that the growth function of any
cleterrninistic OL system can be obtained frorn the population growth
relation of some (deterministic) evolutionary system.

Now we proceed to the rnain definition of the paper, namely that
of the evolutionary system. In order to illustrate the parallelism be­
tween the formal model and the natural process of evolution, we
provide each component of the defined system with some informal
explanations.

Let n, m be two positive integers. An evolutionary system of type
(m, n) (an ES, for short) is a construct:

where

• V is the alphabet of the system;

• S; = (L;, M;, B;), 1 :S i :S m, are the species of the system, with

L; being pairwise disjoin t su bsets of v+, called the geno­
type space of the species i,

M; = (Ins;, Del;, Sub;), being the sets of point mutations
(insertions, deletions and substitutions, respectively), where

Ins;,Del; c (Vu{c})xVx(Vu{c}),

Sub; C (V U { E}) X V x (V U { c}) X V,

B; being fini te su bsets of Li X Li, called the sets of division
rules.

• The strings x j over V, w here for each j, 1 :S j :S n, there exists
k, 1 :S k :S m, with Xj E Lk, describe the cells of the system.

If Deli,Ins; ~ {E} X V x {c} and Sub;~ {c} x V x {c} x V for
all 1 ::; i :S m, then the evolu tionary system is called context-free.

Evolutionary systems with L; E F for all 1 :S i :S m, where F
is a class of languages, are called evolutionary systems of F-genotype

https://biblioteca-digitala.ro / https://unibuc.ro

4.4. EVOLUTIONARY SYSTEMS 193

space. In the present paper we shall focus our attention on evolution­
ary systems of finite or regular genotype spaces.

A configuration (or a state) of an evolu tionary system r is an
element in (v+y, for some. r 2: 1, representing the cells which are
present in the system at some moment.
The configuration (x1 , x 2, ... , xn) is said to be the initial configura­
tion.

An evolutionary system is functioning by. changing its configura­
tions, defined by the direct derivation relation =>r .

By a direct derivation step a configuration is transformed into
another one such that each cell either di vi des into two offsprings (two
new cells) according to a division rule or it evolves into a new c:ell
by some point mutation provided that this new cell belongs to some
genotype space. If a cell cannot divide or evolve, it dies disappearing
from the new configuration.

Formally, for two configurations y = (Y1, Y2, ... , Yk) and z =
(z1, z2, ... , zt) we define the relation y =>r z by the procedure
derivation.

The reflexive and transitive closure of the relation =>r is denoted
by => r · The language of the species k, l :S k :S m, in an ev olu tionary
system r is

{y E Lkl(x1,x2, ... ,xn) =>r (Y1,Y2,···,Y,···,Yt)

for some t}.

That is, the language of species k in the evolutionary system is the
set of cells which arise from the initial configuration ancl belong to
the genotype space of species k.

Algorithm 4.4.1 Procedure derivation(y,z);
begin
t := O;
for i := 1 to k do

if y; E L,, for some s then choose nondeterministically
arule p from B, U Del, U Ins, U Sub,;

ifp = (u,v) E B, and Yi = uv then
t := t + l;

https://biblioteca-digitala.ro / https://unibuc.ro

194

Zt := U,'

t:=t+l;
Zt := V,'

endif

CIIAPTER 4. OTIIER OPERATIONS

{ The cel/ y; divides into two offsprings according to a division rule

frnmBs.}

if (p = (a, c, b) E Del,) and (y; = uacbv) and (uabv E LJ:: 1 L;)

then

then

then

t := t + I;
z 1 := uabv;

endif
if (p = (a, c, b) E Ins,) and (y; = uabv) and (uacbv E LJ:: 1 L;)

t:=t+l;
z1 := uacbv;

endif
if(p = (a,c,b,d) E Sub,) and (y; = uacbv) and (uadbv E LJ:: 1 L;)

t:=t+I;
z1 := uadbv;

eudif

·{ The cel/ y; evolves by mutations. Informally, y; is rewritten
nondeterministically in one of the three if statements.}

endif
endfor
end.

The population of a configuration (y1 , Y2, ... , Yt) of an evolution-
ary system r = (V, 51, S2, .. . , Sm, X1, x2, .. . , Xn) is defined by

where q; = card{YrlYr EL;, 1 :S r :St}, 1 :S i :S m.

The population of r is defined by

https://biblioteca-digitala.ro / https://unibuc.ro

4.4. EVOLUTION ARY SYSTEMS 195

4.4.1 Language of Species

We .first show that context-freeness does not diminish the genera­
tive power of the evolutionary systems regarding the languages of
species. Then we prove that each recursively enumerable langu,1ge is
a language of a species of an evolutionary system of regular genotype
space.

Theorem 4.4.1 For each evolutionary system r = (V, 5\, 52 ., ... ,

Sm, x1, x2, ... , Xn) there exists a context-free evolutionary system
r' = (U, s~, s~, .. . , s;,., Sm+l, X1, X2, ... , Xn) of the same genotype
space as f such that Lk(f) = Lk(f') for all l ~ k ~ m.

Proof. Take

m

U V U {[a,b,c,I]l(a,b,c) E LJ Insk} U
k=l

m
{[a,b,c,D]l(a,b,c) E LJ Delk} u

m

U{[a,b,c,d]l(a,b,c,d) E LJ Subk}
k=l

and E = U~1 Lk.
Then the context-free evolutionary system f' is defined by

S' I

M'
I

Ins;

Sub;

=
=

(L;, M[, B;),

(Ins;, 0, Subi),

{(c,[a,b,c,I],t:)l(a,b,c) E Insi},

{ (c, b, €, [a, b, c, D]) I (a, b, c) E De li} U { (E , b, € , [a, b, c, dl) I

(a,b,c,d) E Subi}

for all 1 ~ i ~ m and

m
Lm+I Pref(E){a[a, b, c,I]cl(a, b, c) E LJ Insk}Su.f(E) U

k=l
https://biblioteca-digitala.ro / https://unibuc.ro

196

Mm+I

Delm+I

Subm+l

CJ-IAPTER 4. OTHER OPERATIONS

m

uPref(E){ a[a, b, c, D]ci(a, b, c) E LJ Delk}Suf(E) U
k=I

m

uPref(E){a[a, b, c, d]ci(a,b, c, d) E LJ Subk}Suf(E),
k=I

(0, Delm+I, Subm+I),

= {(c,[a,b,c,D],c)l[a,b,c,D] EU},
{(c,[a,b,c,J],c,b)l[a,b,c,J] EU} U {(c,[a,b,c,d],c,d)I

[a, b, c, d] E U}.

It is easy to notice the double role of the last component of f'. It
filters the strings obtained by applying the point mutations at wrong
sites and restores the other ones. Note that Pref(E), Suf(E) are
finite or regular sets provided that E is finite or regular, respectively.

o
Obviously, if every species has a finite genotype space, then the

language of each species is finite as well. However, regular genotype
spaces lead to very complex languages as the next theorem states.

Theorem 4.4.2 For each recursively enumerable language L there
exists an evolutionary system r of type (2, 1) and of regular genotype
space such that L = L1 (f).

Proof. Let L <:;; v· bea recursively enumerable language generated by
a grammar G = (N, V, S, P) "in the Geffert normal form [48], namely
N = {S,A,B,C} and P contains only rules of the form 5---> a,
where a E (NU V)+ and ABC--->€. (N denotes the set of nonter­
minals of G, V is its terminal alphabet, 5 is the startsymbol and P
denotes its prud uction set.)

Put k = max{lg(a)IS---> a E P} and let us define an alphabet
U by

U = Vu{$,#,#'}u{[a]iaEV+,1s;l9(a)Sk}U

{[a]'ja E V",O S lg(a) < k},

where $. #,#'are new letters not in NU V.
https://biblioteca-digitala.ro / https://unibuc.ro

4.4. EVOLUTIONARY SYSTEMS

Now, we consider the evolutionary system

where

S1 (V*,Mi,0), M1 = (0,0,{(c,a,€,a)la EV}),

S2 (U* \ V'"; M2, 0), M2 = (Ins2, Del2, Snb2)

with

Ins2 { (c, $, S), (c, #, A)} u

{($,a,[a,6])1a EV} U

{(c,$,[,6]')11 '.S lg(,6) < k},,6 Ev·

Del2 {(c, $,c), (c, #', c), (#, A, B), (#, B, C), (#', C', c),

(c, [c]', c)},

Sub2 {(#,C,c,C'),(c,#,C',#')}u

{($, S, €, [a])IS __. a E P} u
{(a, [a,6],c, [,6]')10 '.S lg(,6) < k, a EV} U

{($, [,6]', c, [,6])11 '.S l g (,6) < k} , ,6 E V* .

197

We state that for each sentential form I in G, conta.ining at least one
nonterminal, there is a derivation (S) ===}M

2
(6), with o E (NU V U

{$, #, #'})* such that 1 = h(o), where h is a morphism which erases
the symbols $, #, #' and leaves all the other symbols unchanged. We
have preferred to use the notation ===} M2 instead of ===}r in order to
indicate that all rules used are from M2 .

We prove this assertion by induction on the number of derivation
steps macle in the generation of 1 . The induction basis is obvious.
Therefore, it is enough to show how a rule in P, used in the last
step of a derivation in G, can be simulated with point mutations in
M2. To begin with, we explain the simulation of the clerivation step

,1S12 ==}a ,1X1X2 ... Xp12•

https://biblioteca-digitala.ro / https://unibuc.ro

198 CHAPTER 4. OTHER OPERATIONS

From the hypothesis of induction, there exists a derivation in r
of the form (5) =;,t,-

2
(b1Sb2) such that Îi= h(b;),i = 1,2. This

derivation shoul<l be continued as follows:

(81582) =?M2 (81$582) =?M2 (81$[X1X2 ... Xp]82) ==?-M2

(o1$X1[X1X2 ... Xp]82) =?M2 (81$X1[X2 ... Xp]
1
82) =?M2

(b1$X1$[X2 ... Xp]'b2) =?M2 (81$X1$[X2 ... Xp]b2) =?M2

(b1$X1$X2[X2 ... Xp]82) =?M2 ••• (81$X1$X2$...

$Xp[E]'82) =?M2 (81$X1$X2$... $Xp82)-

The dollar signs will be removed by using arule (E,$,E) in Deh.
Now we consider the simulation of the rule ABC ___, E used in

the derivation step Îl ABCÎ2 =?G ÎlÎ2 · The respective derivation
in r runs in the following way:

(81ABCb2) =?M2 (81#ABC82) =?M2 (81#BC02) =?M2 (81#C82)

=?M2 (81#C'b2) =?M2 (81#
1
C

1
82) =?M2 (81#

1
82) =?M2 (0182)-

Finally, each string in L1 (f) is obtained from a string in L2(f),
in which no nonterminal occurs, by removing all occurrences of the
syrnbols $, #, #'. When the simulation of the derivation in G îs com­
plete, the obtained word, which is a terminal word, is in L1(f). Thus,
L(G) ~ L 1(f) holds.

Conversely, if w E L1 (f), then it is generated by means of rules
from M 2 . The reverse inclusion, L1(f) ~ L(G), follows immediately
from the fact that for any derivation (5) =;,M

2
(8) there exists a

sentential form Î in G containing at least one nonterminal occurrence
such that Î = h(o), where h is defined above. The proof of this
fact can be obtained by a similar reasoning to that previously used.
Therefore, L = L 1 (r) holds which concludes the proof. O

As a consequence, by Theorem 4.4.1 we obtain

Theorem 4.4.3 For each recursively enumerable language L there
exisL~ a context-free evolutionary system r of type (3, 1) and of regular
yenotype space such that L = L 1 (f).

https://biblioteca-digitala.ro / https://unibuc.ro

4.4. EVOLUTIONARY SYSTEMS 199

lt is worth mentioning here that characterizations of recursively enu­
merable languages based on context-sensitive insertion and deletion
operations have been reported in severa! papers, see, e.g., the chap­
ter devoted to this topic in [104] and the references thereof. Un­
like the aforementioned characterizations, Theorem 4.4.3 provides a
characterization based on context-free operations but with a control
language.

4.4.2 Population of Evolutionary Systems

Theorem 4.4.2 has a series of important consequences regarding the
population of the evolutionary systems.

Theorem 4.4.4 Let r be an evolutionary system of regular genotype
space. The following problems are undecidable:

1. The finiteness of <p(f) i.e. is <p(f) finite?

2. Is <p(f) a semilinear set?

3. The membership problem for cp(f).

Proof. We first prove the undecidability of the finiteness of cp(f). To
this end, let us consider an arbitrary grammar G = (N, V, S, P) in
the Geffert normal form and the following evolutionary system

where U and 52 are de:fined in the same way as in the proof of The­
orem 4.4.2, & is a new symbol not in U and 5\ consists of

L1 {&,&&,ax,&x,x}, for an arbitrary string a.r

with a E V, X E v+'
M1 ({(c,&,&)},0,{(c,a,€,&)u {(c,b,c,b) I b EV}),
B1 {(&, x), (&, &)}.

i,From the above construction one can immediately inf er that ax E
L(G) if and only if <p(f) is infinite, hence the undecidability status
of the finiteness of cp(f) follows.

https://biblioteca-digitala.ro / https://unibuc.ro

:200 CHAPTER 4. OTHER OPERATIONS

Ivloreover, note that cp(f) is a semilinear set if and only if it is
finite. Indeed, if a:r E L(G), then we have the following derivation in
r:

(S) =:,+(ax)=> (&x) => (&,x) => (&&,x) => (&,&,x) =>

(&&,&&,x) => (&,&,&,&,x) =>+ (&,&, ... ,&,x) -...,_,
2" times

for some n 2'. 4. Consequently, cp(f) = {1} U {2n + 1 I n 2'. O} which
is not a semilinear set. As ip(f) is finite provided ax ~ L(G), the
secon<l point of the theorem is proved.

A similar construction, left to the reader, can be used in proving
the last assertion of the theorem. D

A question that immediately arises is, what one can say about the
same problerns for evolutionary systems of finite genotype space. We
first present a result which will turn out tobe a useful tool in giving an
answer to this question. The result establishes a connection between
evolutionary systems and OL systems (Lindenmayer systems without
interactions), which are language theoretic models of developmental
systems.

An OL system is a triple G = (V, s, w), where V is an alphabet, s
is a finite substitution on V into the set of subsets of V*, and w is an
element of V*. The language of G is defined by L(G) = LJ;>o si(w).

Theorem 4.4.5 For each evolutionary system r = (V, S1, S2, ... ,
Sm, xi, Xz, ... , xn) of finite genotype space there exists an OL system
G and a morphism h such that a 1 a2 ... aP E L(G) if and only if
(x1,x2, ... ,x,,) =>r (h(ai),h(a2), ... ,h(ap)) holds.

Proof. Let us consider the alphabet

m

U = {[x]lx E LJ Li}
i=l

and the sets

m

A[r] {[y]l(x) =>r (y) and y E LJ L,},
i=l

https://biblioteca-digitala.ro / https://unibuc.ro

4.4. EVOLUTIONARY SYSTEMS 201

C[x) {[xi][x2]lx = x1x2, x E Lj and (x1, x2) E Bj,

for some 1 :S j '.S m}

for all [x] E U. Then the OL system satisfying the requirements of
our theorem is defined by G = (U, s, [xi][x2] ... [xn]), where the finite
substitution s is determined as follows:

s([x]) = { Â[x) U C'[x), ~ff Â[x) U C[x] =/= 0
{ €}, otherw1se.

It is easy to notice that all requirements of our assertion are fulfilled
if we choose the morphism h in the following way:

h: U* -----. V*, h([x]) = x, for all [x] E U.

o
Returning to the decision problems of evolutionary systems of

finite genotype space we can state:

Theorem 4.4.6 Let r be an evolutionary system of finite genotype
space. Then the following problems are decidable:

1. The finiteness of cp(f).

2. The membership for cp(f).

Proof. 1. In the previous proof <p(f) is finite if and only if L(G) is
finite which is decidable for OL systems.

2. Let (k1, k2, ... , km) be an arbitrarily given m-tuple consisting
of nonnegative integers. It belongs to cp(r) if and only if at least one
t-tuple (y1,y2, ... ,yt) can be generated from (x1,x2, .. -,xn), where

m

j=l

(ii) k; cornponents in (y1 , Y2, ... , y1) are in L; for all 1 '.S i '.S m.

The number of all t-tuples satisfying the aforementioned two condi­
tions is finite which, together with the decidability of the membership
problem for OL systems, implies the decidability of the membership
problem for cp(r). o

https://biblioteca-digitala.ro / https://unibuc.ro

202 CHA.PTER 4. OTHER OPERA.TIONS

4.4.3 Some Growth Relation Considerations

1n this section we discuss evolutionary systems with respect to the
growth of their cel! populations.

Let f = (V,S1,S2,,,,,Sm,X1,X2,,,.,xn) be an evolutionary sys­
tem. A derivation in r consisting of k steps is denoted by ~~.

The growth relation associated to r is a function from positive
integers into finite subsets of positive integers defined by

If card(fr(k)) = 1 for all k ~ 1, then Jr is called deterministic growth
relation or a growth function.

The growth functions have been very profoundly investigated for
DOL systems. By restricting the substitution of a OL system, we
obtain a DOL (deterministic OL) system. As in the DOL system
G = (V, h, w) h is an endomorphism, the derivation process results
in a sequence of strings Wo = w, W1 = h(wo), ... , Wn = h(wn-d,
The growth function associated to G is defined by fc(n) = lg(wn)-

The next resuit establishes a connection between the growth func­
tions of DOL systems and the growth relations of evolutionary sys­
tems.

Theorem 4.4. 7 For each DOL system G there exists an evolutionary
system r with deterministic growth relation and a constant k such
that

/G(p) = fr(kp)

holds for all p ~ O.

Proof. Let G = (V, h, w) be a DOL system with V = { b1 , b2, ... , bm}
and w = a1a2 .. ,an, Denote by c(G) = max{lg(h(a))la EV} and
take k = 3(c(G) + l). Consider

U = V U { < b, s > lb E V, 1 :S s :S k - 5} U { ~ b, s ~ lb E V,

O :S s :S k - 6} u u{[x, s]Jx E Suf(h(b)), b E V, O :S s :S c(G)}

and construct

https://biblioteca-digitala.ro / https://unibuc.ro

4.4. EVOLUTIONARY SYSTEMS 203

where the components of each S; = (L;, (Ins;, Del;, Sub;), B;) are
defined in the following way: •

L; =

Ins; =
Sub; =

{ b;} u { < b;' s > 11 s s s k - 5} u { « b;' s » I

OS s S k - 6},
Del; = 0,

{ (c, < b;, s >, €, « b;, s - 1 ») I 1 S s S k - 5} u
U { (c, « b;, s », €, « b;, s - 1 ») I 1 S s S k - 6} U

u{(c, « b;, O», E, b;), (c, b;, €, [h(b;), c(G)])},

B; = 0

for all 1 S i S m,

Lm+i = {[x,s]lx E LJ Suf(h(b)),O S s S c(G)} u

{< a,3s - 2 > [x,s - l]la E V,x E LJ Suf(h(b)),
bEV

1 S s S c(G)-1} U {< a,3s- 2 > [x,s]la = Prefi(x),

x E LJ Suf(h(b)), 1 S s S c(G)},
bEV

Insm+I = {(€,<a, 3s - 2 >, [x, s])la = Prefi(x),

x E LJ Suf(h(b)), 1 S s S c(G)},
bEV

Delm+I = {(€, [c, s],c)IO S s S c(G)},

Subm+I = {(< a,3s- 2 >,[ay,s],E,[y,s- l])la EV,

y E LJ Suf(h(b)), 1 S s S c(G)},

Bm=I = {(<a,3s-2>,[y,s-1])/aEV,yE LJSuf(h(b)),
bEV

1 S s S c(G)}.

By induction, one can easily prove that

https://biblioteca-digitala.ro / https://unibuc.ro

204 CHAPTER 4. OTHER OPERATjONS

for all p 2: O. At the same time, for each positive integer p, there
is a unique t-tuple (x 1 ,x2 , .. ,,xt) such that (a1,az, ... ,an) ==>ţ
(x1 , x2 , ... , xt), ln conclusion, the growth relation associated to r
is deterministic and Jc(p) = Jr(kp), for all p 2: O. D

If there exists a polynomial P such that max(Jr(k) < P(k)) for
every positive integer k, then Jr is polynomially bounded; otherwise
Jr is of exponential type.

Corollary 4.4.1 There are evolutiona.ry systems whose growth rela­
tions are polynomially bounded.

There are evolutionary systems whose growth relations are of ex­
ponential type.

Proof. Remember that every DOL growth function is either exponen­
tial or polynomially bounded [113]. □

As one might anticipate, it is undecidable whether or not the
growth relation of a given evolutionary system of regular genotype
space is deterministic. The reader interested in a proof may con­
sult Theorem 4.4.4. As far as the same problem for evolutionary
systems of finite genotype space is concerned, we have no complete
answer. However, some simple observations can be stated. Given an
evolutionary system of finite genotype space r and the OL system G
constructed in the same way asin the proof of Theorem 4.4.5, denote
by

6. {[x]JB[x] -/- 0},
0 {[x]JA[x]-/- 0}, •
A {[x]Js([x]) = E}.

Clearly, An 0 = An 6. = 0. A necessary but not sufficient condition
for Jr to be deterministic is 6. n 0 = 0. Supposing that 6. n 0 = 0,
we state that Jr is deterministic iff for every k 2: 1 and every x, y E
sk(w), 2JxlA + Jxle = 2JYIA + IYle- The notations used above are w
for the axiom of G and Jxlu for the number of all occurrences in x of
the symbols in U.

https://biblioteca-digitala.ro / https://unibuc.ro

Bibliography

[1] Adleman, L.: Molecular computation of solutions to combinato­
rial problems. Science 266 (1994) 1021-1024

[2] Angluin, D: Inductive lnferenceof Formal Languages from Posi­
tive Data. Information and Control 45 (1980) 117-135

[3] Angluin, D., Smith, C.: Inductive lnference: Theory and Meth­
ods. Computational Surveys 15 (1983) 237-269

[4] A. Apostolico, F. P. Preparata, Optimal off-line detection of
repetitions in a string, Theoret. Comput. Sci., 22 (1983) 297-
315.

[5] Arkin, R.C. (Ed.): Robot Colonies. Kluwer Academic Publishers,
Boston, Mass., 1997

[6] Arkin, R.C.: Behavior-Based Robotics. The MIT Press, Cam­
bridge, Mass., 1998

[7] Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall,
London, 1961

[8] V. Bafna, P.A. Pevzner, Sorting by transpositions. In Proceed­
ings of the 6th A CM-SIAM Symposium on Discrete Algorithms,
1995.

[9] V. Bafna, P.A. Pevzner, Sorting by reversals: genorne rearrange­
ments in plant orgauelles and evolutionary history of X chromo­
some. Technical Report CSE-94-032, Departrnent of Computer
Science, Pennsylvania State University, 1994.

[10] Boden, M. (Ed.): T!te Philosophy of ArtificialLife. Oxford Uni­
versity Press, Oxford, 1996

[11] Brendel, V., Busse, H.G.: Genorne structure described by formal
languages, Nucleic Acids Res. 12 (1984) 2561-2568.

https://biblioteca-digitala.ro / https://unibuc.ro

206 BIBLIOGRAPHY

[12] Bro, P.: Chemical reaction automata. Complexity 2 (1997) No.
3, 38-41

[13] Brooks, R. A.: Cambrian Intelligence. The MIT Press, Cam­
bridge, Mass., 1999

[14] Burks, A. W. (Ed.): Essays on Celtu/ar Automata. University of
Illinois Press, Urbana, III., 1970

[15] Choffrut, C., Karhumăki, J.: Combinatorics on Words. In: [114],
Voi. 1, 329-438.

[16] Chomsky, N.: Three models for the description of languages.
!RE Transactions on Information Theory IT-2 (1956) 113-124

[17] Chomsky, N .: Syntactic Structures, Mouton, The Hague, 1957.

[18] Chomsky, N., Schiitzenberger, M. P.: The algebraic theory of
context-free languages. ln: Computer Programming and Formal
Systems (P. Braffort, D. Hirschberg, eds.). North-Holland, Am­
sterdam, 1963

[19] Collado-Vides, J .: A transformational-grammar approach to the
st udy of the regulation of gene expression. J. Theor. Bio!., 136
(1989), 403-425.

[20] Collado-Vides, J .: The search for grammatica] theory of gene
regulations is formally justified by showing the inadequacy of
context-free grammars, CABIOS, 7(1991),321-326.

[21] Copeland, N.G., et al. A genetic linkage map ofthe mouse: Cur­
rent applications and future prospects. Science, 262(1993), 57-
65.

[22] M. Crochemore, An optimal algorithm for computing repetitions
in a wor<l, Inform. Processing Letters, 12 (1981) 244-250.

[23] Csuhaj-Varju, E., Dassow, .J., Kelemen, .J., Paun, Gh.: Gram­
mar Systems - A Grammatical Approch to Distribution and Co­
operation. Gordon and Breach. Yverdon, 1994

[24] Csuhaj-Varju, E., Kelemen, .J., Kelemenova, A., Paun, Gh.:
Eco-grammar systerns - a gramrnatical frarnework for studying
lifelike interactions. Artificial Life 3 (1997) 1-28

[25] Csuhaj-Varju, E., Mitrana, V.: Evolutionary systems: A lan­
guage generating device inspired by evolving communities of
cells, Acta Informatica, 36 (11), 2000, 913-926.

https://biblioteca-digitala.ro / https://unibuc.ro

BIBLIOGRAPHY 207

[26] Culik II, K., Harju, T.: Splicing semigroups of dominoes and
DNA, Discrete Appl. Math., 31 (1991), 261 - 277.

[27] Darnell, J., Lodish, H., Baltimore, D.: Molecular Celt Biology,
2nd Edition. Scientific American Books, Inc., New York, 1990

[28] Dassow, J.: Grammars with valuations - a discrete model for self­
organization of biopolymers. Discrete Applied Math. 4 (1982)
161-174.

[29] Dassow, J.: Eine neue Funktion fiir Lindenmayer-Systeme, EIK
12 (1976) 515-521.

[30] Dassow, J., Mitrana, V.: Splicing grammar systems, Computers
and AI 15 (1996) 2-3, 109-122.

[31] Dassow, J., Paun, Gh., Rozenberg, G.: Grammar systems.
ln:Handbook of Formal Languages voi. 2. (G. Rozenberg, A. Sa­
lomaa, eds.). Springer-Verlag, Berlin, 1997, 155-213

[32] Dassow, J., Mitrana, V.: On some operations suggested by
genome evolution. ln: Proc. Second Pacific Symposium on Bio­
computing (R. B. Altman, A. K. Dunker, L. Hunter, T. Klein,
eds.), World Scientific, 1997, 97-108.

[33] Dassow, J., Mitrana, V.: Evolutionary grammars: a grammati­
cal model for genome evolution. In: Bioinformatics (Proc. Ger­
man Conference on Bioinformatics, R. Hofestădt, Th. Lengauer,
M. Loffier, D. Scomburg, eds.), Lectures Notes in Comp. Science
1278, Springer Verlag, 199-209.

[34] Dassow, J., Mitrana, V., Salomaa, A.: Context-free evolutionary
grammars and the structural language of nucleic acids, BioSys­
tems 43 (1997), 169-177.

[35] Dassow, J., Mitrana, V.: Self cros-over systems. Computing with
Bio-Molecules (Gh. Păun ed.), Springer-Verlag Singapore, 1998,
283-294.

[36] Dassow, J., Păun, Gh.: Remarks on operations suggested by
mutations in genomes, Fundam. Inform. 36 (1998) 183-200.

[37] Dassow, J., Păun, Gh.: On the regularity oflanguages generated
by context-free evolutionary grammars. To appear in Discrete
Appl. Math.

https://biblioteca-digitala.ro / https://unibuc.ro

208 BIBLIOGRAPHY

[38) Dassow, J., Mitrana, V., Păun), Gh.: Point mutations in
context-free languages. Proc. of DLT'97 (S. Bozapalidis ed.),
1997, 429-446.

[39) Dassow, J., Mitrana, M., Păun, Gh.: On the regularity of dupli­
cation closure, Bull. EATCS, 69 October 1999, 133-137.

[40) Dassow, J.: Numerica! parameters of evolutionary grammars.
In: J. Karhumăki, H. Maurer, Gh. Păun, G. Rozenberg, eds.,
Jewels are Forever, Springer-Verlag, Berlin, 1999, 171-181.

[41) Dennett, D.: Artificial life as philosophy.Artificial Life l (1994)
291-292

[42) Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational
aspects of gene (u)scrambling in ciliates. In Evolution as Com­
putation, (L. Landwerber, E. Winfree, eds.), Springer Verlag,
Berlin, 2000, 45-86.

[43] Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: Uni­
versal and simple operations for gene assembly in ciliates. In
Where Mathematics, Computer Science, Lingusitics and Biol­
ogy Meet, (C. Martin-Vide, V. Mitrana, eds.), Kluwer Academic,
Dordrecht, 2000, 329-343.

[44) Farmer, J. D., d'A Belin, A: Artificial life: the coming devel­
opment. In: Artificial Life II. (Ch. G. Langton et al., eds.).
Addison-Wesley, Redwood City, Cal., 1991, 815-840

[45] Freund, R., Martin-Vide, C., Mitrana, V.: On some operations
suggested by gene assembly in ciliates (submitted).

[46) Fu, S. K.: Syntactic Methods in Patters Recognition. Academic
Press, New York, 1974

[47] A. Gabrielian, Pure grammars and pure languages, Univ. of Wa­
terloo, Dept. of Computer Research Report CSRR 2027, 1970.

[48) Geffert, V.: Normal forms for phrase-structure grammars.
RAIRO/Theoretical Informatics and Applications, 25, 5 (1991),
473-496.

[49) McGeoch, D.J.: Molecular evolution of large DNA viruses of
eukaryotes. Seminars in Virology, 3 (1992), 399-408.

[50) Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Amer.
Math. Soc.17 (1966) 1043-1049

https://biblioteca-digitala.ro / https://unibuc.ro

BIBLIOGRAPHY 209

[51] Ginsburg, S.: An Introduction to Mathematical Afochine Theory.
Addison-Wesley, Reading, Mass., 1962

[52] Ginsburg, S.: The Mathematical Theory of Context-Free Lan­
guages. McGraw Hill, New York, 1966

[53] Grate, L. et al.: RNA modelling using Gibbs sampling and
stochastic context-free grammars. ln Proc. of Second Int. Conf.
on Intelligent Systems for Molecular Biology, Menlo Park, CA,
August 1994, AAAI/MIT Press.

[54] Gruska, J.: Descriptional complexity of context-free languages.
ln: Proc. Math. Found. Comp. Science, 1973, 71-83.

[55] S. Hannenhalli et al. Algorithms for genome rearrangements:
herpesvirus evolution as a test case. 1n Proc. of the 3rd Inter­
national Conference an Bioinformatics and Comple:r Genome
Analysis, 1994.

[56] Harrison, M. A.: Introduction to the Formal Language Theory.
Addison-Wesley, Reading, Mass., 1978

[57] Hartl, D.L., Freifelder, D., Snyder, L.A.: Basic Genetics, Jones
and Bartlett Publ., Boston, Portola Valley, 1988.

[58) Hartmanis, J .: On weight of computations. EATCS Bullctin 55
(1995) 136-138.

[59] Head, T.: Formal language theory and DNA: an analysis of
the generative capacity of specific recombinant behaviour. Eul!.
Math. Biology 49 (1987) 737-759.

[60) Head, T., Păun, Gh., Pixton, D.: Language theory an<l molecu­
lar genetics. In: [114), Vol. 2, 295-360.

[61] Herman, G., Rozenberg, G.: Developmental Systems and Lan­
guages. North-Holland, Amsterdam, 197,5

[62] Holland, J. H.: Emergence - From Chaos to Orrlcr. Addison­
Wesley, Reading, Mass., 1998

[63) Hopcroft, J., Ullman, J. D.: Formal Languages and Their Rela­
tion to Automata. Addison- Wesley, Reading, Ma.ss., 1969

[64] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Thc­
ory, Languages, and Computation. Addison-Wesley Pu bi. Co.,
Reading, 1979.

https://biblioteca-digitala.ro / https://unibuc.ro

210 BIBLJOGRA-PHY

[65] Ilie, L., IVIitrana, V.: Crossing-over on languages. A formal rep­
resentation of the recombination of genes in a chromosome, Sub-

[66]

[67]

(68]

mittecl, 1995.

J. Kececioglu, D. Sankoff, Exact and approximation algorithms
for sorting by reversals, with application to genome rearrange­
ments. In Pmc. of the 4th Symposium on Combinatorial Pattern
Matching, Springer-Verlag, LNCS 684, 1993, 87-105.

J. Kececioglu, D. Sankoff, Efficient bounds for oriented
chromosome-inversion distan~e. ln Proc. of the 5th Symposium
on Combinatorial Pattern Matching, Springer-Verlag, LNCS
807, 1994, 307-325.

J. Kececioglu, R. Ravi, Of mice and men: Algorithms for evolu­
tionary distances between genomes with translocation. 1n Pro­
ceedings of the 6th ACM-SIAM Symposium on Discrete Algo­
rithms, 1995, 604-613.

[69] Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching
in strings, SIAM J. Comput. 6 (1977), 323-350.

[70] Kari, L.: On Insertion and Deletion in Formal Languages, PhD
Thesis, University of Turku, 1991.

[71] Karlin, S., Mocarski, E.S., Schachtel, G.A.: Molecular evolu­
tion of herpesviruses: genomic and protein comparisons. J. of
Virology, 68(1994), 1886-1902.

[72] Kelemenova, A., Kelemen, J .: An interview with A. Linden­
mayer.Bulletin of the EATCS 23 (1984) 185-198

[73] Kelemen, J., Kelemenova, A., Martin-Vide, C., Mitrana, V.:
Colonies with limited activation of components, Theoretical
Computer Science, 244, 1-2 (2000), 289-298.

[74] Kleene, S. C.: Representation of events in nerve nets and finite
automata. ln: Automata Studies (C. E. Shannon, J. McCarthy,
eds.). Princeton University Press, Princeton, 1956, 1-41

[75] Kobayashi, S., Mitrana, V., Păun, Gh., Rozenberg, G.: Formal
properties of PA-Matching, Theoretical Computer Science 2000
(in press).

[76] Landweber, L.F., Kari, L.: The evolution of cellular comput­
ing: nature's solution to a computational problem, Proc. of the

https://biblioteca-digitala.ro / https://unibuc.ro

BIBLIOGRAPHY 211

4th DIMACS Meeting on DNA Based Computers, Philadelphia.
1998, 3-15.

[77] Landweber, L.F., Kari, 1.: Universal molecular rnmputation in
ciliates, Evolution as Computation, (L. Landwerber, E. Winfree,
eds.), Springer Verlag, Berlin, to appear.

[78] Langton, Ch. G.: Artificial life. ln: Artificial Life, Proc. In­
terdisciplinary Workshop on Synthesis and Simulation of Living
Systems. (Ch. G. Langton, Ed.). Addison-Wesley, Redwood City,
Cal., 1989, 1-47

[79] Langton, Ch. G. (Ed.): Artificial Life - An Introduction. The
MIT Press, Cambridge, Mass., 1995

[80] Ledlay, R. S.: High-speed automatic analysis of biomedical pic­
tures. Science 146 (1964) 216-223

[81] Ledlay, R. S., Rotolo, L. S., Golab, T. J., Jacobsen, J. D., Gins­
burg, M. D., Wilson, J. B.: FIDAC - film input to digital au­
tomatic computer and associated syntax-driven pattern recogni­
tion programming system. ln: Optica[and Electro-Optical Infor­
mation Processing. (J. T. Tipplett et al., eds.). The MIT Press,
Cambridge, Mass., 1965, 591-614

[82] Lindenmayer, A.: Life cycles as hierarchical relations. ln: Form
and Strategy in Science. (J. R. Gregg and F. T. C Harris, eds.).
Reidel, Dordrecht, 1964, 416-470

[83] Lindenmayer, A.: Mathematical models of cellular interactions
in development, I. Filaments with one-sided inputs, II. Simple
and branching filaments with two-sided inputs . .Journal of The­
oretical Biology 18 (1968) 280-299, 300-315

[84] M. G. Main, R. J. Lorentz, An O(n log n) algorithm for finding
all repetitions in a string, ./. of A lgorithms, 198-l.

[85] M. G. Main, R. J. Lorentz, Linear time recognition of squarefree
strings, în (A. Apostolico, Z. Galii, eds.) Combinnlm·ial Algo­
rithms on Words, Springer, 1985, 271-278.

[86] Manaster Ramer, A.: Uses and misuses of mathernatics in lin­
guistics, Proc. X Congreso de Lenguajes Naturales y Lenguajes
Formales, Sevilla, 1994.

https://biblioteca-digitala.ro / https://unibuc.ro

212 BIBLIOGRAPHY

[87] Marcus, S.: Linguistics as a pilot science. ln Current Trends in
Linguistics, Th. Sebeok, vol. 12, Mouton, The Hague, 1974.

[88] Marcus, S.: Linguistic structures and generative devices in
molecular genetics, Cahiers de Linguistique Theorique et Ap­
pliquee, 11, 1 (1974), 77-104.

[89] Martin-Vide, C., Păun, Gh.: Duplication grammars, Acta Cy­
bernetica 14 (1999) 151-164.

[90] Martin-Vide, C., Mitrana, V.: On context-free duplications, Re­
cent topics in mathematical and computational linguistics, (C.
Martin-Vide, Gh. Păun, eds.), The Publishing House of the Ro­
manian Acaderny, 2000, 196-206.

[91] Maurer, H.A., Salomaa, A., Wood, D.: Pure grammars,' Infor­
mation and Control, 44 (1980) 47-72.

[92] Ming-wei Wang, On the irregularity of the duplication closure,
EATCS Bulletin, 70 (2000), 162-163.

[93] Mitrana, V.: Crossover systems. A generalization of splicing sys­
terns, J. of Automata, Languages and Combinatorics, 2(1997),
151-160.

[94] Mitrana, V., Rozenberg, G.: Some properties of duplication
gramrnars, Acta Cybernetica 14 (1999) 165-177.

[95] V. Mitrana, G. Rozenberg, A. Salomaa, On the crossover dis­
tance, (subrnitted).

[96] Maurer, H.A., Salomaa, A., Wood, D.: Pure grammars, Infor­
mation and Control, 44 (1980) 47-72.

[97] von Neumann, J.: Theory of Self-Reproducing Automata. Uni­
versity of Illinois Press, Urbana, ill., 1966

[98] Newell, A.: Unified Theories of Cognition. Harvard University
Press, Cambridge, Mass., 1990

[99] Newell, A., Simon, H. A.: Human Problem Solving. Prentice­
Hall, Englewood Cliffs, NJ., 1972

[100] Palmer, J .D., Herbon, L.A.: Plant mitochondrial DNA evolves
rapi<lly in structure, but slowly in sequence. Journal of Molecular
Evolution, 27 (1988), 87-97.

[101] Paun, Gh. (Ed.): Artificial Life - Grammatical Models. The
Black See University Press, Bucharest, 1995

https://biblioteca-digitala.ro / https://unibuc.ro

BIBLIOGRAPHY 213

[102] Păun, Gh.: Regular extencle<l H systems are computationally
universal, J. Automata, Languages, Cornbinatorics, 1, 1 (1996),
27 - 36.

[103] Paun, Gh. (Ed.): Computing with Bio-Molecules - Theory and
Experirnents. Springer- Verlag, Singapore, 1998

[104] Paun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing -
New Computational Paradigms. Springer-Verlag, Berlin, 1998

[105] Păun, Gh.: On the splicing operation, Discrete Applied Math­
ematics, to appear.

[106] Prescott, D.M.: Cutting, splicing, reordering, and elimination
of DN A sequences în hypotrichous ciliates, BioEssays, 14, 5
(1992), 317-324.

[107] Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty
of Plants. Springer-Verlag, New York, 1990

[108] M. O. Rabin, Discovering repetitions in strings, in (A. Apos­
tolico, Z. Galil, eds.) Combinatorial Algorithms an Words,
Springer, 1985, 279-288.

[109] Reif, J .H.: Parallel molecular computation: Models and simu­
lations, Proc. of Seventh Annual ACM Symp. an Parallel Algo­
rithms and Architectures, Santa Barbara, 1995, 213 - 223

[110] Rounds, W.C., Manaster Ramer, A., Friedman, J.: Finding
natural languages a home in formal language theory. 1n Mathe­
matics of Language (A. Manaster Ramer ed.), John Benjamins,
Amsterdam, 1987, 349-360.

[111] Rozenberg, G., Salomaa, A. (eds.): L Systems. Springer-Verlag,
Berlin, 1974

[112] Rozenberg, G., Salomaa, A. (eds.): The Book of L. Springer­
Verlag, Berlin, 1986

[113] Rozenberg, G., Salomaa, A.: The Mathematical Theory of L
Systems. Academic Press, 1980.

[114] Rozenberg, G., Salornaa, A. (Eds.): Handbook of Formal Lan­
guages, voi. I-III, Springer, Berlin, 1997.

[115] Sakakibara, Y.: An Efficienl Lcarning of Context-Free Gram­
mar·s from Positive Strncluml Examples. Intern. lnst. for Ad-

https://biblioteca-digitala.ro / https://unibuc.ro

214 BIBLIOGRAPHY

vanced Study of Social Inform. Sci. Research Report 93, Nu­
mazu, 1989

[116] Sakakibara, Y. et al., Stochastic context-free grammars for t­
RNA modelling, Nucleic Acids Research, 25 (1994) 5112-5120.

[117] Salomaa, A.: Formal Languages. Academic Press, New York,
1973

[118] Salomaa, A.: Jewels of Formal Languages. Computer Science
Press, Rockville, 1981.

[119] Sankoff, D.: Edit distance for genome comparison based on
non-local operations. In Proc. of the 3rd Symposium on Combi­
natorial Pattern Matching, Springer-Verlag, LN CS 644, 121-135,
1992.

[120] Sankoff, D. et al. Gene order comparisons for phylogenetic infer­
ence: Evolution of the mitochondrial genome. Proc. Natl. Acad.
Sci. USA, 89(1992),6575-6579.

[121] Searls, D.B.: The computational linguistics of biologica! se­
quences. ln Artificial Intelligence and Molecular Biology (L.
Hunter ed.), AAAI Press, The MIT Press, 1993, 47-120.

[122] Searls, D.B.: Formal grammars for intermolecular structure. ln
IEEE Symp. on Intelligence in Neural and Biologica[Systems,
IEEE Computer Society Press, 1995, 30-37.

[123) Searls, D.B.: String variable gramrnar: A logic grammar for­
malism for the biologica! language of DNA, Journal of Logic
Programming, in press.

[124) Shanon, B.: The genetic cade and human language, Synthese,
39 (1978), 401-415.

[125] Shyr, H.J.: Free Monoids and Languages. lnst. Applied Math.,
Univ. Taichung and Hon Min Book Co., Taichung, Taiwan.

[126] Sirnovici, D. A., Tenney, R. L.: Theory of Formal Languages
with Applications. World Scientific, Singapore, 1999

[127) Therman, E., Susman, M.: Human Chromosomes, Structure,
Behavior, and Effects. Springer-Verlag, 1993.

[128) Thue, A.: Uber unendliche Zeitchenreihen. Norske Vid. Selsk.
Skr. I. Mat. Nat. Kl. Christiania 7 (1906) 1-22.

https://biblioteca-digitala.ro / https://unibuc.ro

BIBLIOGRAPIIY 215

[129] A. Thue, Uber die gegense1t1ge Lage gleicher Teile gewiisser
Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat.
Kl. (Kristiania), 1 (1912) 1-67.

[130] Walter, G.: The Living Brain. Norton & Co., New York, 1953

[131] Watson, J ., D.: The Double Helix - A Personal Account of the
Discovery of the Structure of DNA. Weidenfeld and Nicolson,
London, 1968

[132] Wilson, S. W.: The animate path to AI. ln: From Animals
to Animates. (J.-A. Meyer et al., eds.). Cambridge, Mass.: The
MIT Press, 1991, 15-21

[133] Woodger, J. H.: The Axiomatic Method in Biology. Cambridge
University Press, Cambridge, 1937

[134] Yokomori, T, Kobayashi, S.: DNA evolutionary linguistics and
RNA structure modelling: a computational approach. 1n IEEE
Symp. an Intelligence in Neural and Biologica/ Systems, IEEE
Computer Society Press, 1995, 38-45.

https://biblioteca-digitala.ro / https://unibuc.ro

VERIFICAT
2007

Tiparul s-a executat sub cda 798/200 I
la Tipografia Editurii Universităţii din Bucureşti

https://biblioteca-digitala.ro / https://unibuc.ro

https://biblioteca-digitala.ro / https://unibuc.ro

ISBN: 973-575-535-1 Lei65500

https://biblioteca-digitala.ro / https://unibuc.ro

	0001_ main
	0002_ main_1L
	0002_ main_2R
	0003_ main_1L
	0003_ main_2R
	0004_ main_1L
	0004_ main_2R
	0005_ main_1L
	0005_ main_2R
	0006_ main_1L
	0006_ main_2R
	0007_ main_1L
	0007_ main_2R
	0008_ main_1L
	0008_ main_2R
	0009_ main_1L
	0009_ main_2R
	0010_ main_1L
	0010_ main_2R
	0011_ main_1L
	0011_ main_2R
	0012_ main_1L
	0012_ main_2R
	0013_ main_1L
	0013_ main_2R
	0014_ main_1L
	0014_ main_2R
	0015_ main_1L
	0015_ main_2R
	0016_ main_1L
	0016_ main_2R
	0017_ main_1L
	0017_ main_2R
	0018_ main_1L
	0018_ main_2R
	0019_ main_1L
	0019_ main_2R
	0020_ main_1L
	0020_ main_2R
	0021_ main_1L
	0021_ main_2R
	0022_ main_1L
	0022_ main_2R
	0023_ main_1L
	0023_ main_2R
	0024_ main_1L
	0024_ main_2R
	0025_ main_1L
	0025_ main_2R
	0026_ main_1L
	0026_ main_2R
	0027_ main_1L
	0027_ main_2R
	0028_ main_1L
	0028_ main_2R
	0029_ main_1L
	0029_ main_2R
	0030_ main_1L
	0030_ main_2R
	0031_ main_1L
	0031_ main_2R
	0032_ main_1L
	0032_ main_2R
	0033_ main_1L
	0033_ main_2R
	0034_ main_1L
	0034_ main_2R
	0035_ main_1L
	0035_ main_2R
	0036_ main_1L
	0036_ main_2R
	0037_ main_1L
	0037_ main_2R
	0038_ main_1L
	0038_ main_2R
	0039_ main_1L
	0039_ main_2R
	0040_ main_1L
	0040_ main_2R
	0041_ main_1L
	0041_ main_2R
	0042_ main_1L
	0042_ main_2R
	0043_ main_1L
	0043_ main_2R
	0044_ main_1L
	0044_ main_2R
	0045_ main_1L
	0045_ main_2R
	0046_ main_1L
	0046_ main_2R
	0047_ main_1L
	0047_ main_2R
	0048_ main_1L
	0048_ main_2R
	0049_ main_1L
	0049_ main_2R
	0050_ main_1L
	0050_ main_2R
	0051_ main_1L
	0051_ main_2R
	0052_ main_1L
	0052_ main_2R
	0053_ main_1L
	0053_ main_2R
	0054_ main_1L
	0054_ main_2R
	0055_ main_1L
	0055_ main_2R
	0056_ main_1L
	0056_ main_2R
	0057_ main_1L
	0057_ main_2R
	0058_ main_1L
	0058_ main_2R
	0059_ main_1L
	0059_ main_2R
	0060_ main_1L
	0060_ main_2R
	0061_ main_1L
	0061_ main_2R
	0062_ main_1L
	0062_ main_2R
	0063_ main_1L
	0063_ main_2R
	0064_ main_1L
	0064_ main_2R
	0065_ main_1L
	0065_ main_2R
	0066_ main_1L
	0066_ main_2R
	0067_ main_1L
	0067_ main_2R
	0068_ main_1L
	0068_ main_2R
	0069_ main_1L
	0069_ main_2R
	0070_ main_1L
	0070_ main_2R
	0071_ main_1L
	0071_ main_2R
	0072_ main_1L
	0072_ main_2R
	0073_ main_1L
	0073_ main_2R
	0074_ main_1L
	0074_ main_2R
	0075_ main_1L
	0075_ main_2R
	0076_ main_1L
	0076_ main_2R
	0077_ main_1L
	0077_ main_2R
	0078_ main_1L
	0078_ main_2R
	0079_ main_1L
	0079_ main_2R
	0080_ main_1L
	0080_ main_2R
	0081_ main_1L
	0081_ main_2R
	0082_ main_1L
	0082_ main_2R
	0083_ main_1L
	0083_ main_2R
	0084_ main_1L
	0084_ main_2R
	0085_ main_1L
	0085_ main_2R
	0086_ main_1L
	0086_ main_2R
	0087_ main_1L
	0087_ main_2R
	0088_ main_1L
	0088_ main_2R
	0089_ main_1L
	0089_ main_2R
	0090_ main_1L
	0090_ main_2R
	0091_ main_1L
	0091_ main_2R
	0092_ main_1L
	0092_ main_2R
	0093_ main_1L
	0093_ main_2R
	0094_ main_1L
	0094_ main_2R
	0095_ main_1L
	0095_ main_2R
	0096_ main_1L
	0096_ main_2R
	0097_ main_1L
	0097_ main_2R
	0098_ main_1L
	0098_ main_2R
	0099_ main_1L
	0099_ main_2R
	0100_ main_1L
	0100_ main_2R
	0101_ main_1L
	0101_ main_2R
	0102_ main_1L
	0102_ main_2R
	0103_ main_1L
	0103_ main_2R
	0104_ main_1L
	0104_ main_2R
	0105_ main_1L
	0105_ main_2R
	0106_ main_1L
	0106_ main_2R
	0107_ main_1L
	0107_ main_2R
	0108_ main_1L
	0108_ main_2R
	0109_ main_1L
	0109_ main_2R
	0110_ main_1L
	0110_ main_2R
	0111_ main

