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Chapter 1 

Introduction 

The 20th century contributed to the development of human civiliza­
tion in two main directions, namely the scientific understanding of 
universe and of human being as its part, and shifting technical, en­
gineered devices into the interplanetary space, into the human body, 
and into the processes reserved before for the activities of human 
minds only. Cross-fertilization of different branches of science and 
technology has been running during the last hundred years very 
rapidly and it appeared very productive in many directions. The 
most interesting for our further intentions are the mutual influences 
of biology and the mathematical study of computing and natural 
language. 

Symbols like letters in alphabets, words in languages, symbols 
used in chemistry, pictograms which orient us in railway-stations or 
airports, and many other symbols play an important role in our every­
day life. Generally speaking, we live in a world of symbols similarly 
as we live in the real physical world. A very important feature of 
our intellect is that it can recognize and manipulate symbols in very 
different contexts. The patterns of ink in a sheet of paper we consider 
as letters which refer to some sounds produced by us, for instance. 
The sequences of such letters - words - refer to all of real or imagined 
things, events, or states in our real or virtual world which we are able 
to communicate. Complicated chemical structures can be usefully 
condensed into the form of short and clear structures of symbols. 
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6 CHAPTER 1. INTRODUCTION 

Ali human problem solving capability can be considered in a certain 
sense as a manipulation with symbols and structures composed with 
them [99), (98]. 

In a rather general sense, symbols are patterns which are rela­
tively stable in space-time with the ability to designate things other 
than themselves only. There are many possibilities to "materialize" 
symbols (ink-lines in the paper sheet, structures in the memory of 
a computer, etc.) but all "materializations" must have some basic 
properties like (relative) stability in space-time, possibility to be a 
part of more complicated structures - symbol structures - to be "cre­
ated" and "discharged" if necessary, etc. Symbols can be organized 
into symbol structures - letters into words, words into sentences, pic­
tograms into maps leading us from the entrance of an airport through 
the check-in desk further to the boarding-gate, the symbols A, C, G, 
and T, denoting the basic nucleotides, into DNA sequences which 
eneode the genetic information of organisms, etc. We are able to des­
ignate things by using symbols or symbol structures, which represent 
an important attribute of symbols. 

We can also recognize such structures, this is another very im­
portant attribute, and to process them in certain ways. There are 
different theoretically investigated and well understood possibilities 
of how to organize symbols into more complicated structures. The 
simplest structures, in a certain sense, are the strings of symbols. 
The formal definition of a string of symbols from a finite set of sym­
bols, called alphabet, can be given. Also other types of structures 
can be defined in a formal and correct way (graphs, pictures, etc.). 
In a more general setting, we always are confronted with mappings 
between symbol systems and other systems, which can also be symbol 
systems. 

1.1 The Basic Inspirations 
(Linguistics, DNA, and Computing) 

Language - in its two basic forms: natural and artificial - is a par­
ticular case of symbol system. More and more approaches in science 
corresponds to a general process of transferring methods and tools 
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1.1. THE BASIC INSPIRATIONS 7 

from mathematical linguistics to other areas of research. An early 
and deep investigation of this phenomenon can be found in [87]. 

1n following sections, we are going to discuss about the formal 
language paradigm as a possible basic link between DNA, as a part 
of the genetic language, computation and artificial systems. More 
specifically, we present some developments in the framework of for­
mal lariguage theory suggested by genetics and molecular biology as 
well as artificial life. First, we start with some considerations about 
the origins of the ·aforementioned sciences which have influenced the 
formal language theory. 

A very significant scientific event of the 20th century was the 
discovery of the structure of deoxyribonucleic acid (DNA) by James 
D. Watson and Francis Crick in the first half of the century; a good 
easy-to read presentation of the story of this discovery is described 
in [131]. The huge macromolecules of DNA were found tobe double 
stranded strings composed of only four types of basic nucleotides 
called adenine, cytosine, guanine, and thymine, abbreviated usually 
by the letters A, C, G and T, respectively. 

Genetics is concerned in the study of the biologica! information of 
a living organism, the heredity material of all species. This informa­
tion turned out to be stored in macromolecule of nucleic acids called 
genes and in their composition in chromosomes. Molecular biology 
is concerned in the relationships between nucleic acids and amino 
acids, between genes and proteins known to be the molecules which 
are responsible for almost all the functions of a living organism. 

One among the most important technical achievements of the 
20th century was the construction of the first electronic computers 
at the end of 40s. These computers were huge, of the size of a large 
room. The processors were based on vacuum tubes and were very 
expensive. So, the only way of using these machines was to execute 
basic computations step-by-step on a single processor. The idea of 
sequential computing using one processor had been supported also 
by prevailing theoretical results on computing theory reported dur­
ing thirties and forties by Alan Turing, Emil Post, Kurt Gădel, A. 
Church. Despite that the notion of an algorithm has been used since 
Euclid and Archimedes, this notion was not macle mathematically 
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8 CHAPTER 1. INTRODUCTION 

rigorous and nobody knew whether this would ever be clone. 
Turing imagined a device, called later Turing machi ne, w hich at 

every moment is in a state, from a finite set of states, and can scan a 
a cell on a arbitrarily long tape. Depending on the current state and 
the scanned symbol, it writes a symbol on the cell scanned, moves to 
the next cell to the right or to the left, and enters a new, possibly the 
same, state. It is easy to note that an algorithm in this approach is 
a sequence of symbol manipulations in a deterministic way. 

1.1.1 Chomsky's Initiative in Linguistics 
(The Origin of Formal Grammars 
and Languages) 

The study of symbols and symbol structures has been revolutionized 
by the pioneering work of Noam Chomsky. Chomsky's contribution to 
the study of natural languages and his invention of the notion of gen­
erative grammars ,[16], [17], the precise mathematical formalization 
of notions like language and grammar, [18], and the discovery of rela­
tions between formal languages, grammars and the (mathematically 
described) models of computing engines (like the Turing machine and 
numerous variants of automata) were reflected very early [63]. The 
way în which Chomsky's ideas influenced computer science and engi­
neering in the sixties and seventies illustrated very impressively the 
power of the basic paradigm of early cybernetics. 

Chomsky's view on natural languages opened a new way to con­
sider 

- words and more complicated parts of phrases as abstract sym­
bols, 

- sentences of languages as strings of symbols, 
- modes of forming new strings from other oness through concate-

nation, and 
- rules for replacement or rewriting symbols or strings by other 

syrnbols or strings. 
Prograrnrning languages - artificially engineered tools for commu­

nication with computers - were designed using ideas previously con­
sidered in the study of human (natural) languages, formulated with 
mathematical precision, and elaborated using tools and techniques 
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1.1. THE BASIC INSPIRATIONS 9 

of mathematics and skills of computer programmers. lt happened 
that the theory of formal grammars and languages loosed its original 
roots in traditional linguistics and raised up as a branch of theoretical 
computer science - as the theory of formal grammars and languages. 
Starting with the book [52] through the "classics" like [117], or [56] up 
to [114] and [126], for instance, the theory of formal grammars and 
languages became the traditional core of the theoretical computer 
science. 

A good example is the use of formal grammar and language theory 
oriented techniques in pattern recognition [46], e.g. in recognition of 
different types of chromosomes [80], [81]; more on the importance 
of chromosomes forms from biological point of view see in [27]. In 
this approach, patterns are viewed as strings of symbols and the 
recognition process consists in an effective generation of an answer to 
the question whether or not a given string (representing a pattern) 
can or cannot be generated by a given grammar. In the positive case, 
the analyzed pattern belongs to the corresponding class of patterns, 
in the negative one it does not belong to it. We shall return to this 
topic in a forthcoming section. 

Another interesting way of using grammars and languages was 
related to the learning process. It îs also of practical interest how 
are human beings able to learn grammars from finite samples of the 
language they are using. The theory of syntactic inference repre­
sents an approach to this question amenable to be investigated with 
tools and techniques of the theory of formal grammars and languages 
[3]. It consists of presenting samples (finite or potentially infinite se­
quences) of sentences ( words) with an additional information regard­
ing the membership of just presented sentence (word) to a language 
in order to infer the grammar generating that language (generating 
all the words/sentences belonging to that language and no others), if 
possible. (See e.g. [2], [115]) 

Ali the mentioned approaches of using the basic grammatical 
paradigm to study different phenomena, were bâsed on the sequential 
application of the grammar rules for generating or analysing (parsing) 
words in the corresponding languages. 
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10 CHAPTER 1. INTRODUCTION 

1.1.2 Inspirations from the Filamental Growth 
(Lindenmayer Systems) 

The idea of sequential rewriting used in the theory of formal lan­
guages was very productively modified for needs of describing parts 
of processes studied in biology. Complete parallel rewriting was ini­
tiated by the work of Aristid Lindenmayer, a biologist interested in 
the phenomenon of biologica! growth. Aristid Lindenmayer himself 
explained his motivation in the interview [72] as follows: 

After my Ph. D. in 1956 from the University of Michi­
gan, Ann Arbor, I spent an academic year with Woodger 
in London, England, learning logic from him [133] and 
on an axiom system for life cycles [82]. ( ... ) During 
these years, until 1968, I was also engaged in experimen­
tal work on development in Philadelphia and New York. 
Against this background came my first acquaintance with 
au tomata theory. This happened in the (academic) year 
1962-63 which I spent in the biomathematics group at 
North Carolina State University, during which time I had 
the opportunity to have frequent discussions with the em­
bryologist J. R. Gregg of Duke U niversity. He had also 
worked previously with Woodger and had written papers 
on set-theoretical foundations of taxonomy and embry­
ology. By this time he had discovered automata theory 
(which was initiated in 1956 by Moore and Mealy) and 
together we studied the first systematic account of this 
theory by Ginsburg [51]. About the same time a book [7] 
came out which macle control theory accessible to non­
mathematicians (I was already using this book in teach­
ing a course to biologists in 1963). Our training in logic 
with Woodger was indispensable for us, as biologists, to 
be able to enter automata theory at that time. 

The discovery of L systems was due to a problem in 
Ashby's book. ln a chapter on finite automata he asked 
the question (Exercise 4/7 /7): What behavior would one 
expect from a long chain of coupled finite automata, re-
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1.1. THE BASIC INSPIRATIONS 

ceiving inputs from each other? The Kleene's paper from 
1956 on nerve nets has of course given the answer con­
cerning a constant size network of finite automata - it has 
as complex behavior as a single finite automaton. But 
I wonder how everywhere expanding arrays of finite au­
tomaton would behave. Such arrays could provide re­
alistic simulations of growing cellular filaments such as 
found în algae, mosses and fungi. The ramifications of 
this exercise were more extensive than I expected. But 
in any case, L systems came to be defined în 1968 [83] 
as interacting, linear, growing arrays of finite automata. 
( ... ) They are basically different from cellular automata 
of von N eumann and tesselation systems in that they grow 
not only at the edge. Eventually we came to realize that 
we work with grammar-like constructions. This realiza­
tion resulted in an intensive cooperation with G. Rozen­
berg, G. Herman, and D. van Dalen after my move from 
New York to Utrecht în 1968. Instead of speaking of lin­
ear arrays of automata with states, inputs and outputs, 
and of transforming these arrays in discrete time steps to 
other arrays of possible different length, we then treated 
these structures as words over given alphabets (the set of 
states) and formulated context-free or context-sensitive 
productions which, when applied in parallel to the words, 
produced the following words, without distinguishing be­
tween terminal and non-terminal symbols. 

11 

Note that this motivation leads directly to parallelism. From 
the biologica! point of view, it cannot he expected that a growth 
runs sequentially, that the cells reproduce in some sequential order. 
More expectable is that reproduction runs in parallel; in each moment 
severa! cells can reproduce. So, the initiative of Lindenmayer started 
from the study of parallelism through the optics rooted in cybernetics 
and resulted in introducing parallel rewriting into the theory of formal 
grammars and languages. 

ln the theory of L systems, a colony of biologica! cells is repre­
sented by a string of symbols: one appearance of a symbol states for 
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12 CHAPTER 1. INTRODUCTION 

each individual cell, and different states of cells are represented by 
different symbols. Changes of the cell states are modeled by rewriting 
rules replacing symbols by other symbols or by several symbols (this 
is the case of reproduction) like in formal grammars. The parallel 
nature of the changes of cell states and cell division is modeled by 
the parallel execution of rewriting according to the rules in each place 
where symbols which can be rewritten appear. This special kind of 
rewriting appeared as theoretically highly interesting and was devel­
oped to a large and interesting theory of L systems as presented in, 
e.g. [111], (61], (113], [112]. 

Besides, L systems have been used in computer graphics for de­
picting imaginary "gardens of L" full of imaginary life forms [107]. 
By their simplicity and flexibility, L systems appear tobe suitable to 
model different phenomena of artificial life. 

1.1.3 Language-Theoretic Models of Molecul~r 
Computing 

The idea that molecular complexes can be viewed as components of an 
information processing device dates back to the late 1950's when R. 
Feynman discussed the possibility of building "sub-microscopic" com­
puters. Despite huge advances in computer miniaturization, the un­
derlying von Neumann computational architecture has still remained 
the same together with its boundaries (speed, memory, etc.) 

In the last decade many researchers have looked beyond these 
boundaries and investigated new media and computational models 
as quantum, optical and molecular-based computers. 

ln the last years it was observed an increasing interest of com­
puter scientists for the structure of biological molecules and the way 
in which they can be manipulated in vitro in the aim of defining 
theoretical models of computation based on the genetica! engineering 
tools. 

The fundamental mechanism by which genetic material is merged 
is recombination. DN A sequences are recombined under the effect of 
enzymatic activities. 1n 1987, T. Head [59] introduced the splicing 
operation as a language theoretical approach of the recombinant be­
havior of DNA under the influence of restriction enzymes and ligases. 
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1.1. THE BASIC INSPIRATIONS 13 

Roughly speaking, the main idea of the splicing operation is that 
two sequences are cut at specified sites, and the first substring of one 
sequence is pasted to the secon1 segment of the other and vice versa. 

A new type of computability model - called H systems - based 
on the splicing operations has been considered. Many variants of 
H systems have been invented and investigated (regulated H sys­
tems, distributed H systems, H system_s with multisets, etc.) U nder 
certain circumstances, the H systems are computationally complete 
and universal. This resuit suggests the possibility to consider the H 
systems as theoretical models of programmable universal DNA com­
puters based on the splicing operation. Furthermore, a hybrid model 
involving grammars and splicing, connecting in a certain way the the­
ory of grammar systems with the theory of the splicing operation was 
considered in (30). Other operations on strings inspired from genetic 
engineering like annealing, PA-match, cut and paste, etc. have led to 
computational grammatical models. The monograph [104] presents 
the majority of achievements in this direction. 

Another interesting model is the supercell system model ( called 
also P-system) based on the cell membrane which serves as an in­
terface between the interior and the exterior environments of a cell 
within a multicellular structure. Many and sound theoretical results 
have been reported. P systems are a class of distributed parallel 
computing devices of a biochemical inspiration borrowing ideas from 
Lindenmayer systems, grammar systems, the chemical abstract ma­
chine, multisets rewriting, etc. 

However, it was L. Adleman who described in 1995 how a small 
instance of a computationally intractable problem known as the di­
rected Hamiltonian Path Problem might be solved using molecu­
lar methods. The information is encoded as sequences of bases in 
DNA molecules, the algorithm employing a massively parallel ran­
dom search in a test tube. Both enthusiastic and pessimistic views 
have been expţessed, see, e.g. [104], [58], but this new idea has opened 
new directions of research both for computer scientists and biologists. 

Significant efforts are being macle now towards finding computa­
tions with practicai importance which can be carried out in a molec­
ular framework in a better way than using classical cornputers. 
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14 CHAPTER 1. INTRODUCTION 

1.1.4 Language-Theoretic Models of Genome 
Evolution 

Much of the current data for genomes· is in the form of maps which 
are now becoming available and permit the study of the evolution of 
such organisms at the scale of genome for the first time ([21]). 

On the other hand, there is an increasing trend throughout the 
field of computational biology toward abstracted, hierarchical views 
of biologica! sequences, which is very much in the spirit of computa­
tional linguistics. The last decades pointed out results and methodes 
in the field of formal language theory which might be applied to bi­
ologica! sequences. For instance, the structural representation of the 
syntactic information used by any parsing algorithm is a parse tree, 
which would appear to any biologist to be a resonable representation 
of the hierarchical construction of a typical gene. 

We can fairly ask to what extent a grammar-based approach could 
be usefully generalized. Moreover, is this approach sui table to be used 
for computing? To further explore this question at a pragmatic level 
we need to implement the model and check its relevance. 

Also, it may be supposed that the distinction between structural 
and functional or informational view of biologica! sequences corre­
sponds to the conventional one drawn between syntax and semantics. 
The functional view will allow us to expand our horizons beyond the 
local phenomena of syntactical structure to large regions of DN A. lt 
appears very important, in this respect, to define the _semantics of 
DNA, which is mainly based on evolutionary selection, in such a way 
to reason linguistically about the processes of evolution as well as 
about the computational capacity. 

The genomes of complex organisms are organized into chromo­
somes which contain genes arranged in linear order. It is rather com­
monly asserted that DNA and RNA structures can be described to a 
certain extent as words; for instance a DN A strand can be presented 
as a word over the alphabet of the four complementary pairs of nu­
cleotides (A,T), (T,A), (C,G), (G,C). Thus DNA may be wieved 
as a language for specifying the structures and processes of life. 

Treating chromosomes and genomes as languages raises the pos­
sibility to generalize and investigate the structural information con-
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1.1. THE BASIC INSPIRATIONS 15 

tained in biologica! sequences. Despite of this view, biological se­
quences have not been investigated very vividly so far by methodes 
developed in the field of formal language theory. A pioneer's work 
has been reported in [11] where very simple genes were described 
by means of regular grammars, though different features of nucleic 
acids cannot be modelled by regular expressions ( see the paragraph 
devoted to the structural language of nucleic acids at the end of this 
section). 

Since then severa! approaches have been proposed so far, most 
investigations along these lines dealing with grammar formalisms, 
see, e.g., [19, 20, 53, 116, 121, 122]. Collado-Vides [19] has consid­
ered transformational grammars for modelling the gene regulations, 
Grate et al. [53] and Sakakibara et al. [116] ~onsidered stochastic 
context-free grammars for modelling RNA, and more recently, Searls 
[121, 122] has used definite clause grammars and cut grammars for 
investigating gene structure and expression or different forms of mu­
tation and rearrangement. 

The present work starts from the premise that genomes can be 
interpreted as languages, hence are amenable to be studied by means 
of the formal language theory. In the course of its evolution, the 
genome of an organism mutates by different processes. At the level 
of individual genes the evolution proceeds by local operations (point 
mutations) which substitute, insert and delete nucleotides of the DN A 
sequence. Evolutionary and functional relationships between genes 
can be captured by taking into considerations only local mutations 
([120]). These operations viewed as operations on strings and lan­
guages have been considered from different points of view [121, 134] 
and the their references. 

However, the analysis of the genomes of some viruses (Epstein­
Barr and Herpes simplex viruses, see for instance [49], [71]) have 
revealed that the evolution of these viruses involved a number of 
large-scale rearrangements in one evolutionary event. On the other 
hand, comparing plant and animal mitochondrial DNA, the point 
mutation is estimated to be 100 times slower in plant than in animal, 
many genes are nearly identica! (more than 99% of them are identica!) 
in related species [100]. See also [49], for further discussions on this 
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16 CHAPTER 1. INTRODUCTION 

topic. 
Chromosomal rearrangements include pericentric and paracentric 

inversions, intrachromosomal and interchromosomal transpositions, 
translocations, etc. For a description of these rearrangements, the 
reader is referred to [127]. The formal linguistic formulations of some 
known modes of rearrangements at a genomic level might be consid­
ered as follows: 

• Inversion replaces a segment of a chromosome with its reverse 
DNA sequence. 

• Transposition moves a segment to a new location in chromo­
some. 

• Duplication copies a segment to a new location. 

• Deletion cancels a segment of a chromosome. 

• Crossover results in recombination of genes in a pair of homol­
ogous chromosomes by exchanging segments between parental 
chromatides. Crossover can be modelled as a process that ex­
changes segments at the end of two chromosomes. 

1.1.5 The Artificial Life Challenge 
(Eco-Grammar Systems) 

"Can we build a gradualist bridge from simple amoeba-like automata 
to highly purposive intentional systems, with identifiable goals, be­
liefs, and so forth ?" asks Daniel Dennett contemplating about the 
philosophical background of the meaning of "artificial life" [41). Stu­
art Wilson [132] proposed a research methodology for understanding 
intelligence through simulations of artificial life in progressively more 
challenging environments while retaining characteristics of holism, 
pragmatism, perception, and other phenomena that remain often 
underrepresented in traditional approaches of Artificial Intelligence 
(AI). 

According to the pioneer of artificial life (AL) Christopher Lang­
ton [78], artificial life îs the study of man-macle systems that exhibit 
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1.1. THE BASIC INSPIRATIONS 17 

behaviors characteristic for natural living systems. It is concerned 
mainly with the formal basis of the life, and with tuning the behaviors 
of simple, low-level components - the behavors in Langton 's terminol-_ 
ogy - upwards, constructing large aggregates of simple rule governed 
components which interact with one another non-linearly in the sup­
port of the global and complex dynamics so that the behavior that 
emerges at the global level of interactions of the behavors is essentially 
the same behavior exhibited by the natural living systems. For more 
information on motivations for, goals of, and techniques used in AL 
see (79] and (10]. Thejust mentioned kind offunctionality ofliving be­
ings is examined from different perspectives, through different optics, 
and using different conceptual frameworks. The field of AL concen­
trates towards understanding ( and technical reconstruction) of the 
information-processing aspects of the life. 1n other words, it focuses 
to the phenomena which are identified as information-processing in 
their virtue. 

The essential features of AL models are usually (78] summarized 
as follows: 

- The models consist in population of simple components (pro­
grams or some formal specifications). 

- There is no single program in the model that controls the inter­
action, cooperation or communication of all of the other programs. 

- Each program in the model details the way in which a simple en­
tity reacts to local situations in its environment, including encounters 
with other entities. 

- There are no rules in the model that prescribe the global be­
havior of the modeled system. 

- Any behavior of the modeled system at higher than the in­
dividual component level emerges from the lowest level individual 
behaviors of components. 

Life and living systems (systems ofliving agents) form some struc­
ture. So, it can be taken somehow literally the first ( of the eight) 
criteria associated with life in (44]: "Life is a pattern in space-time, 
rather than a specific material object". Accepting this, we have then 
to ac~ept the idea that life, living organi~ms and J!s,tefr/Si 19~]ving 
orgamsms can be approached at a symbolic level, r,v1ţ~_CelnN1a~fs~on 

https://biblioteca-digitala.ro / https://unibuc.ro



18 CHAPTER 1. INTRODUCTION 

syntax of the above mentioned structure. This is nothing else than 
to say that ( one of) the main framework for studying life at this level 
is mathematics in general and formal language theory in particular. 
This last assertion has also a convincing a posteriori justification: 
several syntactic models, such as von Neumann's cellular automata, 
Lindenmayer systems or Chomsky grammars in general, proved to be 
both adequate and relevant tools used in modeling various real life 
aspects. 

We should stress in this place the substantial difference between 
the adequacy of a conceptual tool ( understood as its capability of a 
model to fit the features of the modeled object) and its relevance (the 
possibility to obtain non-trivial insights about the object by study­
ing the model, insights which cannot be obtained without using the 
model). In general, and roughly speaking, the adequacy is ensured 
by a good-inspired definition, but the relevance needs efforts in order 
to be proved, needs mathematical investigations which may last a 
significant period. 

Formally, our approach fits very well with the main goal of AL, as 
stated in [78]: "the study of man-macle systems that exhibits behav­
iors characteristic to natural living systems", by synthesizing "life-like 
behaviors within computers and other artificial media", putting em­
phasis on the "logical dynamics" of living systems, not necessarily on 
their actual chemical-physical functioning. (By the way, in spite of 
the debates seeming to push AL to the opposite direction, we think 
that AL should remain as much as possible focused on the "logical" 
or "syntactical", "symbolic" aspects of life, if it has to survive as an 
independent scientific area, not as a part of, say, biochemistry.) 

In [24] the living system is modeled using the conceptual frame­
work of the theory of formal languages and consists of several agents 
"living" (sensing and acting) together in a shared environment (sirri­
ilarly asin the case of grammar systems). However, the environment 
has its own dynamics. This is the reason, why ecosystems becomes 
in our mind as a good illustration and typical example. However, 
the same structure can be met in many other circumstances, as eco­
nomic, social, even in artificial intelligence and computer science ( col­
lective robotics, distributed computer architectures, etc.). Therefore, 
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the system proposed in the above mentioned article is called an eco­
grammar ( or EG in short) system. In this model we assume that both 
the agents and the environment develop (the environment indepen­
dently of the agents, the agents in dependence on the environment ), 
but the agents are able to sense and to make changes in environment. 

An EG system consists of several agents described by strings of 
symbols, developing according to rules applied as in L systems and 
acting on the environment by pure rewriting rules applied sequen­
tially, and of an environment described by a string of symbols and 
developing according to rules like in L systems, too. The rules used by 
each agent for development depend on the state of the environment. 
The rules used for acting on the environment depend on the state of 
the agent. Further features can be introduced, such as agent-to-agent 
action, birth and death of agents, etc. In such a way, a lot of real 
life-like features can be captured: changes of seasons, overpopulation, 
pollution, stagnation, cyclic development, immigration, hibernation, 
carnivorous animals, and so on and so forth. Some of the technical 
approaches can be found in [101]. 

Now, a few words about the overall organization of the book. 
In the next section we recall the basic concepts and notations used 
throught the book. Then, employing formal language theoretic frame­
work, we consider the aforementioned operations as operations on 
strings and languages and investigate them with respect to some 
usual problems· in formal language theory. It is worth mentioning 
here that these operations on languages have been considered in [121] 
and [134] as well. The operatîons investigated in the present book 
are generalizations of the operations studied in [121] but restrictions, 
by dîscarding the contexts, of those studied in [32]. Furthermore, the 
iterated versîons of operations in debate are also consîdered. 

Afterwards, we present a language generating mechanism based 
on the operations suggested by all the mutations mentioned above, 
following [34] în a more comprehensive way. Our results address to 
some classical problems in formal language theory, such as generative 
power, closure propertîes, decidability, descriptional complexity, etc. 
Nevertheless, some of these matters might also have biologica! signif­
icance. We mention that our model may be not satisfactory în order 
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to describe the process of evolution because we take into considera­
tion all genomes .created by the given mutations whereas only some 
of them can or might support life. Two other language generating 
devices based on particular types of genome operations are further 
presented. 

The last chapter is dedicated to other operations appearing in 
biochemistry, either in vivo or in vitro for which we apply the "clas­
sical" program in formal language theory: closure properties, com-
pu tational power, decidability, etc. • 

1.2 Basic Definitions 

1.2.1 Formal Language Prerequisites 

We now recall some notation from formal language theory. This 
section offers to the reader the basic notions and notations from the 
formal language theory which will be used throught the book. For 
all undefined notions the reader is refereci to [114]. 

An alphabet is always a finite set of letters (symbols). For an 
alphabet V we denote by V* the free monoid generated by V under 
concatenation; by € the empty string, and by v+ the free semigroup 
generated by V, i.e. v+ =V*\{€}. The elements of V* are called 
words (strings). The length of the string x is denoted by lxl, and 
lxla. delivers the number of occurrences of the letter a in x. The 
cardinality of a finite set A is denoted by card(A). 

Each subset of V* is called language over V. For each word x E 

V*, V= {a1,a2,--·,an}, we define: 

• The Parikh mapping '1jJ defined by 

• The set of all the prefixes of x, denoted by Pref(x). 

• The set of all the suffixes of x, denoted by Suf( x ). 

• The mirror image of x, denoted by mi(x). If x = a1a2 .. . an, 

ai EV for 1 :S: i :S: n, then mi(x) = anan_1 ... a1. 
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• The set of all permutations of x E •V*, Perm( x) = {y I 1P(Y) = 
?j;(x)}. 

Furthermore, for a set of words A we write a(A) = UxEAa(x) for all 
a E {Pref,Suf,mi,Perm}. 

Let U and V be two alphabets, with each letter a from V one 
can associate a language, denoted by s( a), over U. One gets an 
application s : V ----+ P( U) which can be extended to V* as follows: 

s(xy) = s(x)s(y), x, y Ev• 

This application is called substitution. Depending on the languages 
s(a), one gets different types of substitutions. For instance, if the 
languages s(a), for all a from V, are finite, s is called a finite sub­
stitution. In particular, those substitutions s for which the image of 
every letter is a word are called (homo )morphisms. If no language 
s( a) contains the empty word, the morphism is called non-eraszng. 
Every substitution may be extended to languages as 

s(L) = LJ {s(x)}. 
xEL 

If L ~ V*, k 2: 1, and h : V* ----+ U* is a homomorphism such that 
h(x) -/- € for all the substrings x of any string in L, lxl = k, then 
we say that h is k-restricted on L. A homomorphism is said to be 
restricted if it is k restricted on some language, for some k 2: 1. 

A finite automaton is an accepting device consisting of an input 
tape, a reading head able toscan the cells of the input tape from right 
to left. The device can be at any moment in a state from a finite set 
of states. Initially, a word is placed on the input tape, the reading 
head is positioned on the first letter of the word, and the automaton 
is in its initial state. A move of the automaton consists in reading 
the currently scanned symbol, changing the current state ( the new 
state may be the former one) and moving the reading head to the 
next cell to the right. The input word is accepted if the automaton 
reads entirely this word and reaches a final state. 
Formally, a nondeterministic finite automaton is a structure A = 
( Q, V, J, qo, F), where Q is a finite and non-empty set of states, V is 
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an alphabet, q0 is the initial state, F is the set of final states, and f 
is a mapping f: Q x V----+ P(Q). A configuration of the automaton 
A is determin ed by a pair formed from a state and a word over V. 

The configuration (q,ax) moves to (s,x) if s E f(q,a), written in 
the form ( q, ax) I- ( s, x ). The reflexive and tranzitive closure of the 
relation I- is denoted by 1-*. 

The language recognized by the automaton A is 

Rec(A) = {x E V*l(qo,x) I-* (s,t:),s E F} 

Any language recognized by a finite automaton is call.ed regular. A fi­
nite automaton A = ( Q, V, f, q0 , F) is deterministic if card(!( q, a)) :'.S 
1 for all q E Q and a E V. It is known that for each nondeterministic 
finite automaton one can construct a deterministic finite automaton 
such that both automata recognize the same language. 

There exist important languages, as the set of all the words formed 
by brackets which match correctly, which are not regular. A correct 
word is that word which can be reduced to the empty word by itera­
tively removing adjacent pairs of brackets. The reader can easily find 
an argument for proving that the aforementioned language is not reg­
ular. However, these languages can be accepted by other automata, 
more powerful than finite automata, namely pushdown automata. A 
pushdown automaton is a finite automaton endowed with a push­
down memory, the next configuration of the automaton depends on 
the current state, input symbol currently scanned and the top sym­
bol of the pushdown memory. Formally, a pushdown automaton is 
a structure A = ( Q, V, U, f, qo, Z0 , F), where Q is a finite and non­
empty set of states, V is the input alphabet, U is the pushdown 
memory alphabet, qo is the initial state, Z0 is the initial content of 
the stack (pushdown) memory, F is the set of final states, and f is 
a mapping f : Q X (V U {c}) x U ----+ P{(Q x U*). A configuration 
of the automaton A is determined by a triple formed from a state, a 
word over V, and a word over U. 

The configuration ( q, ax, Aa) moves to ( s, x, {3a) if ( s, /3) E /( q, a, A), 
written in the form (q,ax,Aa) I- (s,x,{3a). The reflexive and tranz­
itive closure of the relation I- is denoted by I-*. 
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The language recognized by the automaton A is 

Rec(A) = {x E V*l(qo,x,Zo) f--* (s,t:,a),s E F}. 

An even more powerful accepting device is the linear bounded au­
tomaton which has a tape whose length is linearly bounded with 
respect to the length of the input string, a head which is able to read 
a symbol from the input tape, write a symbol in the same cell, and 
move back and forth within the input tape. A string is accepted if 
the automaton starts with that string on its input tape and reaches 
a final state. The class of languages recognized by linear bounded 
automata is called the class of context-sensitive languages. 

Now, we define some generative devices, called grammars. 
A grammar is a four-tuple 

G = (N,T,S,P), 

where 

• N and T are two disjoint alphabets whose symbols are called 
nonterminals and terminals, respectively. 

The nonterminal alphabet contains a distinguished nonterminal 
denoted by S, called the axiom of the grammar. 

• P is a finite set of production rules written in the form x -> y, 
with x E (NU T)* N(N U T)* and y E (NU T)*. 

The derivation relation is defined for two words a, /3 E (NU T)* by: 

/3 
'ff a = uxv, /3 = uyv 

a ==i>G 1 
X-> y E P. 

The index G will be omitted when it is self-understood. The 
language generated by G is 

Gen(G) = {x E T*IS ==i>c; x }. 

If each rule of a grammar contains just one nonterminal in its 
left-hand side, the grammar is called context-free while the language 
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generated by such a grammar is called also context-free. The family 
of languages generated by context-free grammars is exactly the family 
of languages accepted by pushdown automata. 

For example, the next context-free grammar (we listed the pro­
ductions only, the other parameters can_ be infered immediately) gen­
erates the language of all the correctly bracketed words mentioned 
above: 

S--tSS 

S --t (S) 

s --t € 

The next lemma is a necessary (but not sufficient) condition for a 
language to be context-free. 

Lemma 1.2.1 (Pumping lemma) For every context-free language 
L there exist two natural constants p, q, such that for any z E L with 
lzl > p, z = uvwxy satisfying the following conditions: 

(i) luvwl::; q 

(ii) iuvl > O 

(iii) uviwxiy EL, for all i ~ O. 

By this lemma one can prove that the languages 

Li {anbncn I n ~ 1}, 

L2 = {a2nln~O}, 

are not context-free. 
The languages generated by the arbitrary grammars are called 

recursively enumerabile. This class of languages is exactly the class 
of languages accepted by Turing machines. 

The next results will be very useful in what follows: 

Theorem 1.2.1 (Geffert Normal Form) For each arbitrary gram­
mar there exists an equivalent grammar (they generate the same lan­
guage) G = ( {S, A, B, C}, T, $, P) having productions of the 
following forms, only 

S --t x,x E ({S,A,B,C}UT)* 

ABC --t E. 
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Let G = (N,T,S,P) be an arbitrary grammar; for a derivation 

D : S = Wo ===> W1 ===> ... ===> Wn = Y, Y E T* 

we define WS(D,G) = max{jwjl 11 S: j S: n}. For y E Gen(G) we 
write 

WS(y,G) = min{WS(D,G) ID is a derivation for yin G}. 

Theorem 1.2.2 (Working Space Theorem) IJWS(x,G) for all 
x E Gen(G), then Gen(G) is a context-sensitive language. 

1.2.2 Closure Properties 

Let C and Q be two families of languages. We say that the operation 

op: cn---+ Q 

is dos ed under op if, for any sequence of languages L1, L2, ... , Ln E C, 
op(L1, L2, ... , Ln) E C holds. 

We shall esspecially consider the following operations: 

• Usual operations on sets: union, intersection, complementation. 

• Substitutions. 

• Inverse morphisms: if h : V* ---+ U* is a morphism, the the 
inverse morphism associated with h is h-1 : U* ---+ P(V*) 
defined by h- 1(x) = {y E V*jh(y) = x}, for any x E U*. 
Moreover 

h- 1(L) = LJ h-1(x), 
xEL 

for any language L. 

• The Kleene closure L * of a language L is define recursi vely as 
follows: 

Lo {c} 
Lk+l L-Lk 

L* u Lk 
k>O 
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• For two words x, y E V*, we define the shuffie operation 

Shuf(x,y) = {x1Y1X2Y2 .. . XpYp Ix= X1 .. . xp,Y = YI .. ·Yp, 
p 2: 1,x;,y; EV*, 1::; i::; p}. 

Furthermore, for two languages L1 , L2 ~ V*, we define 

LJ Shuf(x, y). 

• The next operation is very similar to the previous one, defined 
for words of equal length only: 

SShuf(x,y) = a1b1a2b2 . .. apbp,a;,b; E V,1::; i::; p, 

where x = a1 ... ap, y = b1 ... bp. Naturally, 

• A generalized sequential machine, shortly gsm, is a construct 

M = (Q, V,U,f,qo,F), 

where Q, V, qo, F have the same meaning as for finite automata, 
U is the output alphabet, and f : (Q X V) ------, P1(Q X U*). 
The relation f- defined for finite automata is extended to gsm's 
by 

(q,ax,y) f- (s,x,yz) dac'a (s,z) E J(q,a). 

For x E V* we write 

TM(x)={ E, ifx=E 
y, if (qo,x,E) f-* (s,E,y),s E F, 

As usual, for any language L, 

TM(L) = U TM(x). 
xEL 

A family is closed under gsm mappings if it is closed under the 
operation TM, for any gsm M. 

https://biblioteca-digitala.ro / https://unibuc.ro



1.2. BASIC DEFINITIONS 27 

The family of regular languages is closed under all operations from 
above while the family of context-free languages îs not closed under 
intersection, complementation, Shuf and SShuf. 

The families in the Chomsky hierarchy are denoted by FIN, 
REG, LIN, CF, CS, RE: the families of finite, regular, linear, 
context-free, context sensitive and recursively enumerable languages, 
respectively. Moreover, we recall that a family F of languages is called 
a trio, if F is closed under c-free homomorphisms, inverse homomor­
phisms and intersections with regular sets. It is well-known that any 
trio is closed under restricted homomorphisms, too (see [114]). 

1.2.3 Decidability 

There are lots of questions requiring algorithmic answers. A very im­
portant questions asks whether or not a word belongs to a language. 
This problem is known as the membership problem. A language for 
which this problem is algorithmically solvable is called recursive. The 
family of recursive languages is a proper subfamily of the family of 
recursively enumerable languages. 

Other important decidabilty problems in the formal language the­
ory are: 

• Equivalence problem: Are the languages L1 and L2 equal? 

• Finiteness problem: Is the language L finite? 

• lnclusion problem: ls the language L1 a subset of L2? 

• Emptyness problem: Is the language L empty? 

The finiteness and emptyness problems are decidable for the class 
of context-free languages, but the equivalence problem is undecidable. 
This problem, as well as the inclusion problem, are decidable for 
regular languages. 

The undecidability status of some problems is proved by reducing 
them to a famous combinatorial problem known to be undecidable. 
This is the Post Correspondence Problem (PCP for short ): let V an 
alphabet with at least two letters, n 2'. 1, and x, y two n-tuples of 
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non-empty words over V. If 

Y = (YI, Yz, · • ·, Yn), 

is an instance of PCP, we say that PC P( x, y) has a solution if there 
exist k 2'. 1 and ij E {1,2, ... ,n},j = 1,2, ... ,n, such that 

The sequence ij E {1,2, ... ,n} is called a solution. There 1s no 
algorithm for deciding whether or not PCP has any solution. 

1.2.4 A Structural Language of Nucleic Acids 

In this section we will establish some notations and recall some prop­
erties of nucleic acids complementarity [121]. The uniformly con­
sidered alphabet îs the alphabet consisting of the four bases (nu­
cleotides ), namely adenine, cytosine, guanine, and thymine, abbrevi­
ated usually by the letters A, C, G and T, respectively, • 

VvNA = {A,C,G,T} 

and the homomorphism (called complementarity) - : VDNA ----. 

VvN A, defined by: 

A=T, G=C, T=A 

that corresponds to simple base complementarity. 
For a DNA string w its opposite strand is mi(w) because they 

are the strands of a double helix complementary oriented in opposite 
directions. We shall consider here some interesting features of DNA 
encoding secondary and recursive secondary RNA structure, respec­
tively. Secondary structure we consider here îs a simplification of the 
base-pairing within the same strand, namely a substring and its re­
verse complement, which are both found nearby on the same strand, 
fold back to base-pair with itself and form a steam-and-loop struc­
ture. We associate a linear string with each double helix, whenever a 
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secondary structure is identified, as follows ( the orientation custom­
arily indicated by 5' and 3' is largely irrelevant for our purposes): 

5' - xaymi( a )z - 3' 
==} ami(a) 

3' - xfrf}mi( a )z - 5' 

As one can see, from a "stem-and-loop" structure we keep the 
stern pattern and ignore the loop one. The set of all these linear 
strings consists of those strings w E V!JN A such that 

w = mi(w) 

or, equivalently 
w = umi(u), for some u. 

The above equivalence is a simple linguistic expression of the notion 
of dyad symmetry. 

In a more general form, recursive secondary structures are com­
mon in RNA, hence in DNA which eneode them, as shown in Figure 
3.1. 

n 
i( X3) X4 

mi(x2) 

Figure 1.1. 

A linear string identifying this structure can be defined as a string 
that leads to the empty string E by cancelling any adjacent comple­
mentary pair (a,ii). These strings are called orthodox in [121] Denote 
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by LDNA the set of all strings defined as above. Clearly, LDNA is a 
context-free language as shown by the context-free grammar 

S ----. S SlaSalaa 

for all a E VDNA• (This is the well-known grammar for the Dyck 
language.) 

Furthermore, we define the reduced word of a string x E VDNA as 
being obtained by erasing any adjacent complementary pair from x. 
Obviously, the reduced string of any string is unique and the reduced 
string of any word in LDNA is €. 
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Chapter 2 

Operations Suggested by 
the Genome Evolution 

2.1 lnversions, Transpositions, Duplications 

This section is dedicated to the study of some operations on strings 
and languages suggested by the arrangements in genomes. These 
operations are investigated in the frame of formal language theory; 
we investigate the interrelationships among them and some necessary 
conditions for classes oflanguages tobe closed under these operations. 

We shall not consider the crossover operation in this section be­
cause this operation, viewed as a formal operation (regardless its bio­
logical motivation and significance) is actually the splicing operation 
which will be investigated in more detail in a forthcoming section. 

For formal language theoretic considerations with respect to dele­
tion we refer to [70]. Some relations between inversion, transpositions 
and duplications very similar to those presented below are shown in 
[32], where lexical contexts are considered. 

Let O be a pair O = (V, O'), where V is an alphabet and O' is 
a finite subset of v+. For a string x E v+ we define the following 
operations with respect to the pair O = (V, O'): 

• Inversion: Io(x) = {x1mi(x2)x3 Ix = X1X2X3, X2 E O', X1, 

x3 EV*}. In this case O is called inversion scheme. 
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• Transposition: To(x) = {x1x3x2X4 I x = X1X2X3X4, X2 E 
O' or x 3 E O', x1 , x 3 E V*}. In this case O is said to be a 
transposition scheme. 

• Duplication: Vo(x) = {x1x2x2x3 I x = x1x2x3, X2 E O', x1, 

x 3 E V*}. In this case O is called duplication scheme. 

If the pair O is obvious from the context, we write I, T, and V 
instead of Io, To, and 'Do, respectively. 

For each 5 E {I, T, V}, the operation S can naturally be extended 
to languages by 

S(L) = LJ S(x). 
xEL 

The iterated versions of the above operations are naturally defined 
as follows. For SE {I, T, V} we set 

S0(L) 
5i+1(L) 

S*(L) 

L, 

S(S;(L )), 

LJS;(L). 
i>O 

2.1.1 Relationships Between the Above Operations 

ln this section we investigate some relationships between the afore­
mentioned operations. We shall distinguish two cases: non-iterated 
and iterated versions. A family F of languages is closed under the 
operation 5 E {I, T, V}, if So(L) E F holds for all LE F and any 
scheme O. 

Non-iterated Versions 

The inversion operation looks similar to the mirror image operation 
mi defined in the introductory section. lt consists in the application 
of mi to a subword. However, the two operations are quite different 
as shown in the following proposition. 

Theorem 2.1.1. There are families of languages closed under the 
mirror image but not closed under inversions and vice versa. 
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Proof. A DOL system is a triple G = (V, h, w ), where Vis an alphabet, 
w E v+, and h is an endomorphism on V. The language generated 
by G is L(G) = {w} U {hi(w) Ii 2: l}. lt is known that the farnily of 
DOL languages is closed under mi. 

Consider the DOL language 

and the inversion scheme 

I= ({a,b},{ab}). 

The language 
I1(L) = {a2"-1 bab2"-l I n 2: O} 

cannot be generated by a DOL system. Indeed, let us suppose that 
there exists a DOL systern G = ( { a, b }, w, h) such that L( G) = I1( L ). 
Since h(a2"- 1bab2"-1 ) E I1(L), for sorne n 2: 2, it follows that 
lh(a)lb = lh(b)la = O. Therefore, h(a) = ak and h(b) = bP for sorne 
k,p 2: l. 

If k = p = l, then L(G) is finite, which contradicts the infinity of 
I1(L) = L(G). 

If k > lor p > l, then h(a2"-1 bab2"-1 ) contains a substring of the 
form bPak, which contradicts the form of the words in I1(L) = L(G). 

Now, we shall provide a family of languages closed under inver­
sions but not closed under the mirror image. To this end, take the 
language 

Lo = {anbn I n 2: 1} 

and construct recursively the following sequence of language classes: 

Fo {Lo}, 

Fk+1 {I1(L) I LE Fk,I is an inversion scheme}. 

The family 

F = U Fk 
k>O 

îs obviously closed under inversions. 
The following fact is essential in our proof. 
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Fact. For every language L E F and any n ~ 1 there exists a 
finite set A(L, n) ~ L such that every string x in L \ A(L, n) can be 
expressed as x = aPybq with p, q ~ n and y E { a, b} *. 

lf L = L0 , then the assertion is trivially true. 
Assume that the assertion is true for any language L' E Fk and 

take L E Fk+l. Then there ex.ists an inversion scheme I= ( { a, b}, I') 
such that L = I1(L'). Let n ~ 1 bea given integer and m = max{lxl I 
x E I}. By the induction hypothesis it follows that L' = A(L', n + 
m) UL, where A(L', n + m) is a finite set and every string x in L can 
be written as x = aPybq, p, q ~ n + m. Consequently, 

L = I1(L') = I1(A(L', n + m)) u I1(L). 

Note that I1(A(L',n + m)) is a finite set and any string w in T1(L) 
can be decomposed as w = ar zb3 with r, s ~ n and z E { a, b }*, which 
completes the proof of the fact. 

Now it is clear that the mirror image of any language in F cannot 
be in F because it does not satisfy the requirements of the aforemen­
tioned fact. O 

We now prove that ·the three operations introduced above also 
differ in that sense that the closure under one operation does not 
imply the closure with respect to another one. 

Theorem 2.1.2. For any pair (X, Y) with X, Y E {T, T, V}, X# Y, 
there is a language family [, such that [, is closed under X and is nat 
closed under Y. 

Prnof. First we consider the family F defined in the second part 
of the proof of Theorem 2.1.1. By construction :F is closed under 
mvers10n. On the other hand, if we apply the transposition scheme 

T = ({a,b},{aa}) 

to the language L0 E :F we obtain a language, which contains the 
set of all words an- 2 bn- 1aab with n ~ 2. This contradicts the fact 
showu in the proof of Theorem 2.1.1. Therefore :F is not closed under 
transposi tion. 
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Let V be an alphabet. Then we consider the family [, consisting 
of all languages L such that there is an integer n 2'. 1 with L ~ vn. 
Obviously, [, is closed under inversion and transposition since these 
operations do not change the length of a word. 

On the other hand, applying the duplication scheme 

(V,{a,aa}), 

where a E V, to the language { a2} E [, yields the language { a3 , a4} 
which is not in .C. 

Let V = { a, b}. Then let [,' be the family of all languages L over 
V such that each word in L can be expressed as x 1 ax2bx3 , i.e. any 
word of L contains ab as a scattered subword. Obviously, [,' is closed 
under duplication, since duplication adds additional subwords and 
does not destroy scattered subwords. 

On the other hand, the application of the inversion scheme (V, ab) 
and the transposition scheme (V, {a}) to the language { ab} E [,' 
yields {ba} fţ ,C', which proves the nonclosure of ,C' under inversion 
and transposition. 

It rernains to provide a family of languages closed under trans­
positions but not closed under inversions. To this end, let C be the 
family which contains all languages {anbn}, n 2'. 1, and is closed un­
der transpositions. Applying the inversion scheme ( { a, b}, { ab}) to 
the language {a3 b3

} one gets {a 2 bab 2

} which cannot be in C. □ 

However, the situation changes if we restrict the families of lan­
guages under consideration. 

Theorem 2.1.3. Let ,C bea family of languages which is closed under 
restricted homomorphisms and inverse homomorphisms. Then the 
following statements hold. 

i) ,C is closed under duplications if and only if it is closed under 
inversions. 

ii) The closure of .C under transpositions implies the closure of .C 
under duplications. 

iii) If .C is closed under union or intersection with regular sets 
and inversions, then ,C is closed under transpositions. 
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Proof. i) Let L be an arbitrary language in C over V and let I = 
(V,{x 1,x2, ... ,xn}) be an arbitrary inversion scheme. Then we con­
sider 2n+ 1 additional letters c,c1,c2,•••,cn,d1, d2, ... ,dn and the 
homomorphisms h1, h2, h3, h4 given by 

h1 (VU{c1,c2,••·,cn})*-V*, 

h1(a) = a for a EV, h1(ci) = x;, 1 S i S n, 

h2 (V U { C1, C2, ... , Cn} )* - (V U { C} U { C1, C2, • • •, Cn} )*, 

h2(a) = a for a EV, h2(c;) = c;c, 1 S i S n, 

h3 (VU{c1,c2, ... ,cn}U{d1,d2,--·,dn})* -(VU{c}U 

h3(a) = a for a EV, h3(c;) = c;c, h3(d;) = c;cc, 1 S i S n, 

h4 : (Vu{c1,C2,--·,cn}U{d1,d2,--·,dn})*-V*, 

h4(a) = a for a EV, h4(c;) = x;,h4(di) = mi(x;), 1 S i S n. 

Then 
I1(L) = h4(h31(VD(h2(h11(L))))), 

where D is the duplication scheme which allows the duplication of 
the letter c only. This proves that I1(L) E [, holds. The converse 
part can be obtained in a similar way being left to the reader. 

ii) Let D = (V, {x; I 1 S i S n}) be a duplication schem~. We 
consider the homomorphisms 

h1 (V U { c; I 1 :s; i S n} )* - V*, 

h1 (a) = a for a E V, h1 ( c;) = x;, for 1 S i S n, 

h2 (V U { Cj [ 1 :s; i S n} )* - (V U { C} U { C1, C2, ... , Cn} )*, 

h2(a) = a for a EV, h2(c;) = c;cc,for 1 S i S n, 
n 

h3 (VU LJ{c;,d;})* -(VU{c}U{c1,c2, ... ,cn})*, 
i=l 

n 

i=l 
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and the transposition scheme 

T = (V U { C} U { C1, C2, ... , Cn}, { c; J 1 :s; i :s; n} ). 

Thus we get 

Dn(L) = h4(h31(Tr(h2(h11(L))))). 

iii) We shall give the proof in the case when .C is closed under 
union. The reader can easily infer a similar construction when .C 
is closed under intersection with regular sets. Obviously, if T = 
(V,{ti,t 2 , ... ,tn}) is a transposition scheme and T; = (V,{t;}) for 
1 :s; i :s; n, then 

By supposition, .C is closed under union, and thus it is sufficient to 
show that .C is closed under applications of transpositions schemes of 
the form f = (V, { x}) for some x E v+. We consider the homomor­
phisms 

h (V u { c, d} )* --+ V*, 

fi(a) = a for a EV, fi(c) = x, fi(d) = c:, 
h (V u { c, d} )* --+ (V u { c, d, c', d'} )*, 

h(a) = a for a EV, h(c) = cc', h(d) = dd', 

h (V u {q,q',p,p'})*---> (V u {c,d,c',d'})*, 

h(a) = a for a EV, h(q) = cc', h(q') = dd', 

h(p) = c'c, h(p') = d'd, 
f (V U {p,p'q, q'} )* --+V*, 

f(a) = a for a EV, f(q') = f(p) = c:, f(q) = J(p') = x, 

and the inversion schemes 

li = (V U {c, d, c', d'}, {cc'}) and h = (V u {c, d, c', d'}, {dd'}) 

and obtain 

Tt(L) = J(f3- 1(I1JI1i(h(f1-l(L)))))). 

Note that all homomorphisms used in this proof were restricted ones. 
o 
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Closure Properties of Some Families 

We first study the closure under (non-iterated) inversion, duplication, 
and transposition of some language families. 

Theorem 2.1.4. Any trio is closed under duplications, transposi­
tions and inversions. 

Proof. Let F be a trio. By the previous theorem it suffices to prove 
the closure of :F under inversions only. We recall that all trios are 
closed under restricted homomorphisms [114]. 

Let L <:;; V* be a language in :F and 

be an inversion scheme. We consider the homomorphisms 

h1: (V U {c; 11 s; i s; n})*----, V*, h1(a) = a for a EV, 
h1(c;) = x; for 1 s; i :s; n, 

h2 : ( V U { c; I 1 :s; i :s; n} )* ----, V*, h2 (a) = a for a E V, 
h2( c;) = mi( x;) for 1 :s; i :s; n 

and the regular set 
n 

R = LJ V*{c;}V* 
i=l 

and obtain 

which proves the closure of :F under inversion. □ 

Corollary 2.1.1. Alt families in the Chomsky hierarchy are closed 
under duplications, transpositions and inversions. -

Iterated Versions 

We now start the study of closure under iterated versions. The fol­
lowing lemma is a helpful tool. 
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Lemma 2.1.1. Every family of languages closed under iterated in­
versions or iterated transpositions is closed under permutations. 

Proof. For any language L E V* let us construct the inversion scheme 

I = (V, { ab I a, b E V, a -:J b}) 

and the transposition scheme 

The relations 
Ij(L) = Tf(L) = Perm(L) 

follow immediately. o 

Theorem 2.1.5. The families of regular and context-free languages 
are closed neither under iterated inversions nor under iterated trans­
positions. 

Proof. Since the families of regular and context-free languages are not 
closed under permutations, the nonclosure with respect to iterated 
inversions and iterated transpositions follows by Lemma 2.1.l. O 

It remains an open problem which of these two families are closed 
under iterated duplications. 

Theorem 2.1.6. The families of context-sensitive and recursively 
enumerable languages are closed under iterated inversions, iterated 
transpositions and iterated duplications. 

Proof. Let L bea context-sensitive language generated by the context­
sensitive grammar G = (N,T,S,P) and let I= (T,I') be anin­
version scheme. We construct the context-sensitive grammar G' 
(N', T, S, P'), where 

N' NU {Xa I a E T}, 

P' {Xa 1 Xa 2 ••• Xak ---+ Xak ... Xa 2 Xa 1 I a1 a2 ... ak E I'} 

U {Xa ---+ a I a E T} 
u { h( Q) ---+ h(/3) I Q ---+ /3 E P,} 
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and h : (NU T)* ____. N'* is the homomorphism defined by 

h(A) = A for A E N and h(a) = Xa for a E T. 

The equality Gen(G') = Ij(L) can be easily checked. 
Now, we are going to prove that Tx(L) is a context-sensitive lan­

guage for any transposition scheme X = (T, { x; 11 s; i s; n} ), n 2: l. 
To this end, we construct the phrase-structure grammar 

G = (N,T,S,f>) 

where 

fi= NU {S, Y} U { < Y;, y >I y E Suf(x;), 1 s; i s; n} 

and f> contains - besides all rules of P - the following rules ( the rules 
are accompanied by some informal explanations ). 

S ____. YS, 

Y a ____. aY, and aY ____. Y a, a E T. 

Obvioulsly, a string of the form Yw with w E L is obtained in G. 
The symbol Y scan the string w from left to right in order to perform 
nondeterministically a transposition of some x;. If the substring x; is 
identified in w, it is erased, and it will be moved to another location. 
This process can be clone by using the following rules: 

y - < Y;,x; >, 1s;is;n 

< Y;, ax> a - < Y;,x >, 1 s; i :S n, a E T 

<Y;,E>a - a<Y;,E>, and 

a<Y;,E> - <Y;,c>a, 1 s; i s; n, a E T 

< Y;, € > - Yx;, 1 s; i s; n. 

By the last set of rules, the process may be iterated. Clearly, we need 
also rules for finishing the process, namely Y ____. €. With the above 
explanations we infer that Gen(G) = Tf(L). Since the grammar G 
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has a linear bounded working space ([114]), it follows that Tf(L) is 
a context-sensitive language. 

By a similar proof one can show the closure under iterated du­
plications. The closure of the recursively enumerable languages class 
under these operations follows immediately. D 

2.2 A Generalization 

In [36] the non-iterated variants of the operations presented in the 
previous section are investigated in a more general framework. The 
results presented here are taken from [36]. 

Let O = (V, O') bea scheme in which we allow O' tobe an infinite 
language over V. For OE {I, T, D} and two families of languages ,C 

and ,C' we define 

O(.C,[,') = {Oo(L) I LE ,C and O= (V,O'),O' <;;;; V*,O' E ,C'}. 

For sake of simplicity we shall write O(L1 ,L2) instead of Oo(L1 ) 

with O = (V, L2). 
Obviously, since we can only reverse, transpose and duplicate sub­

words of the basic language, we obtain the following statement. 

Lemma 2.2.1 For any operation O E {I, T, D} and any two lan­
guages L1 and L2, O(L1, L2) = O(L1, L2 n sub(L1 )). 

Lemma 2.2.2 IJ L is a language over a unary alphabet and L' is an 
arbitmry non-empty language, then I(L, L') = T(L, L') = L. 

Proof. By Lemma 2.2.1, it is sufficient to consider reversals and 
transpositions of unary words which does not change the word. D 

Lemma 2.2.3 For any O E {I, T, D}, any finite language L and 
any language L', O(L, L') is finite. 

Proof. Since an arbitrary word w has only a finite number of sub­
words which can be used for the operation, O( w, L') is finite for any 
language L'. Because L is finite and O(L, L') = UwEL O(w, L'), the 
finiteness of O(L, L') follows. □ 

The following resuit follows from the definition. 
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Lemma 2.2.4 For any languages families .C1,.C2,.c;,.c; with .C1 C 
.c; and .C2 ~ .c; and any operation O E {I, T, D}, O(.C1, .C2) C 
O(.C;, .c;). 

2.2.1 Inclusions 

The aim of this section is to prove some relations of the form .C ~ 
O(.C, .C') or O(.C, .C') ~ .C' for some language families .C and .C' and 
some operation O. 

We start with a direct corollary of Lemma 2.2.3. 

Corollary 2.2.1 For O E {I, T, D} and any language family .C, 
O(FIN,.C) ~ FIN. 

This result can he extended to other families if we require some 
conditions for .C. 

Lemma 2.2.5 For any O E {I, T, D} and any language families .C 
and .C' such that {c} E .C', .C ~ O(.C,.C'). 

Proof. Ohviously, for O E {I, T, D} and any language L, L = 
O(L,{c}). Hence, LE .C implies LE O(.C,.C'). o 

Clearly, there can he given other conditions in order to get .C ~ 
O(.C, .C'). As an example we mention that V E .C' ensures .C ~ 
I(.C,.C'). 

Lemma 2.2.6 If .C is closed under morphisms, inverse morphisms 
and intersections with regular sets, then O(.C, FIN) ~ .C for any 
O.EU. 

Proof. O = I. Let L over the alphahet V he an arhitrary language 
in .C, and let L' = { w1, w2, ... , Wr} be an arhitrary finite language. 
Then we consider r additional letters a1, a2, ... , ar and the morphisms 
h1 and h2 given hy 

h1 (a) = a for a E V, 

h2(a)=aforaEV, 

h1(a;) = w; for 1 :S i :S r, 

h2( a;) = mi( w;) for 1 :S i :S r. 
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Then 

I(L, L') = h2(h11(L) n LJ V*aiV*) 
i=l 

which proves that I(L, L') E .C holds. 

O = T. Let L, L' and a1 , a2 , ... , ar as in the preceeding con­
siderations. Further, let b1 , b2 , ... , br be additional letters. Then we 
define the morphisms h1 and h2 by 

Then 

h1(a) = a for a EV, h1(ai) = Wi for 1 ~ i ~ r, 
h1(bi) =€for 1 ~ i ~ r, 

h2 (a) = a for a E V, h2 (ai) = € for 1 ~ i ~ r, 

h2(b;) = w; for 1 ~ i ~ r. 

T 

I(L, L') = h2(h11(L) n LJ(V*a;V*biV* U V*b;V*a;V*)) 
i=l 

which proves T(L, L') E .C. 

An analogous proof can be given for O= V. o 

Lemma 2.2.7 For O E {I, T}and a language family [ E {REG, 
CF}, O(REG,[) ~ .C. 

Proof. We give the proof only for[, = CF, O= I and [, = REG, 
O = T. The necessary (small) modifications for the other cases can 
be seen from the given proofs and are left to the reader. 

L = C F, O = I. Let L and L' be a regular and context-free 
language, respectively. Let L be accepted by the deterministic finite 
automaton A= (Z,X,8,z0 ,F) and M = (Q,X,f,8',q0 , 1o,F') be 
the pushdown automaton accepting mi(L') Then we construct the 
pushdown automaton 

K = (Zx(Zu{t})x(Zu{t})x(Qu{t'}),X,r,o",(z0 ,t,t,q0 ), 

10,F X {t} X {t} X {t'}) 
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where t and t' are additional symbols and, for z1,z2,z3 E Z, x EX, 

1 E f, q E Q and qF E F', o" is defined as follows: 

o"((z1,t,t,qo),x,,o) = {((z~,t,t,qo),,o) Iz~ E o(z1,x)} 

(in this first phase characterized by the presence of t and the absence 
oft', in the first component of the state of J( we simulate the work 
of the finite automaton A), 

o"((z1,t,t,qo),t:,,o) = {((z1,z,z,qo),,o) Iz E Z} 

( we guess that the word w under consideration under consideration 
can be written as w = w1vw2 with mi(v) E L' where w1 is the 
subword we have already consumed; we switch to the second phase 
characterized by absence oft and t'), 

o"((z1,z2,z3,q),x,,) {((z1,z2,z~,q1),,') I Z3 E o(z~,x), 

(q',,') E o'(q,x, 1 )}, 

o"((z1,z2,z3,q),c,,) = {((z1,z2,z3,q1),,') I (q',,') E o'(q,x,1')}, 

(in the second phase K sirnulates the work of M în the fourth com­
ponent of the state andin its stack; at the sarne tirne J( sirnulates the 
work of A backwards in the third component of the state; the first 
component of the state is not changed, i.e. it stores o(z0, w1) during 
this phase), 

( the word v read in the second ph ase belongs to mi( L') and z2 

o(z1, mi( v)) holds, i.e. 

we switch to the third phase characterized by the presence of t and 
t'), 

o"((z1,t,t,t'),x,,) = {((z~,t,t,t'),1') Iz~ E o(z1,x)} 

(again, we simulate the work of A). Therefore J( accepts w if and 
only if w can be written as w = w1vw2 such that v E mi(L') and 
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[, = REG, O = T Let L and L' be two regular languages which 
are accepted by the deterministic finite automata 

respecti vely. 
We first show that the language 

is regular. In order to do this we construct the nondeterministic finite 
automaton 

where 

(t1, t2, t3, t 4 denote the work on u1, u2, v, u3, respectively; the second 
component is used to simulate the work of A on u1 and u3 in case of 
presence of t1 or t4 and to store the state obtained after reading u1 in 
the other cases; the third component guesses the state of A obtained 
after reading u1 v and stores it; the fourth component simulates the 
work of A on u2 starting with the guessed state; the fifth component 
simulates the work on v starting with the state stored in the second 
component; the sixth component simulates the work of Bon v), 

Fc = {(t3,z1,z2,z3,z2,z4): z1,z2,E ZA,Z3 E FA,z4 E FB} 

U{(t4,z1,z2,z3,z2,z4): z2,z3,E ZA,z1 E FA,z4 E FB} 

( words with U3 = € are accepted by the first set, the other words by 
the second set), and 

{(t1, 0A(z1, x),zA, ZA, ZA, ZB)} 

U{ ( t2, Z1, Z2, O A ( z2, X), ZA, ZB)} 
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for z1 E ZA, x E X ( M simulates the work of A on a letter x of u1 in 
the second component or it reads the first letter of u2 starting with 
z2 in the fourth component and stores the state z1 obtained after 
reading u1 and the start state z2 in the second and third component, 
respecti vely), 

bc( ( t2, z1, z2, z3, ZA, ZB ), x) { ( t2, z1, z2, bA (z3, x ), ZA, ZB)} 

U { ( t3, z1, z2, z3, b A ( z1, x ), b B( ZB, x))} 

for z1, z2, z3 E ZA, x E X ( M simulates the work of A on a letter x of 
u2 in the fourth component or it reads the first letter of v in the fifth 
component starting with the state stored in the second component), 

for z1,z2,z3,z4 E ZA, zs E ZB, x E X, z2 i- z4 or q ~ FB (M 
simulates the work on letters of v ), 

bc( ( t3, z1, z2, z3, z2, zs), x) = { ( t3, z1, z2, z3, bA(z2, x ), 0B(zs, x )) } 

u{( t 4, bA(z3, x ), z2, z3, z2,, zs))} 

for z1,z2,z3 E ZA, zs E FB, x EX (M simulates the work on vor 
reads the first letter of u3), 

bc((t4,z1,z2,z3,z2,zs),x) = {(t4,0A(z1,x),z2,z3,z2,zs)} 

for z1,z2,z3 E ZA, zs E ZB, x EX (M simulates the work of A on 
u3). 

By the given explanations we obtain the equivalence of the fol­
lowing statements for a word w = u1 u 2vu3 with u3 #- € 

a) M accepts w, 

b) bA(zA,u1) = z1, bA(z2,u2) = z3, bA(z1,v) = z2, bA(z3,u3) E FA 
and 0B(ZB,v) E FB, for some states z1,z2,z3 E ZA, 

c) bA(zA,u1vu2u3) E FA and bB(zB,v) E FB, 

d) u1vu2u3 EL and v EL', 

e) w E L1. 

Analogously we can show that M accepts w' = u 1 u2v if and only 
if w' E L1 
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Thus M accepts L1 which proves the regularity of L1. 
By a similar construction we can show that 

L2 = {u1vu2u3 [ U1U2VU3 E L,v E L',v -f:. c:,u2 -f:. c} 

is regular, too. 
Since 

T(L,L') =Lu L1 u L2 

47 

and L, L1 , L2 E REG, we obtain the regularity of T(L, L'). □ 

For duplications the analogon of Lernma 2.2. 7 does not hold, be­
cause 

V($V*$, $V*$) = {$w$$w$ I w E V*} 

implies the existence of a non-context-free language în V( REG, REG). 
Therefore we present another upper bound. 

First we recall the definition of simple matrix grammars and their 
languages. A k-simple matrix gram mar ( with regular cornponents) is 
a (k + 3)-tuple 

where 

• N1, N2, ... , Nk and T are pairwise disjoint alphabets (the sets 
N;, 1 :S i :S k, are the sets of nonterrninals, T is the set of 
terminals), 

• S ~TU N1 U N2 U ... U Nk (is the axiom), 

• M is a finite set of productions of the following forms: 

S ---. w with w E T*, 
S---. A1A2 .. . Ak where A; E N; for 1 :S i :S k, 
(A1 ____, w1B1,A2---. w2B2, ... ,Ak---. wkBk) with w; E T*,B; E 
N; for 1 :S i :S k, 
(A1 ____, w1,A2 ____, Wz, ... ,Ak---. wk) with w; E T* for 1 :S i :S k. 

For x, y E {S} U T* U T* N 1T* N 2 ... T* Nk, we say that x directly 
derives y ( written as x ==> y) if and only if either 

x = S and S ---. y E M 
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or 

y = X1 V1XzV2 .•. XkVk, 

(A1 --> v1 , A2 --> v2, ... , Ak --> vk) E M. 

The language L( G) generated by G is defined as 

L(G) ;=: {z Iz E T*,S ===>* w}. 

A language L is called a simple matrix language if there is an integer 
k and a k-simple matrix grammar G such that L = L(G). By SM we 
denote the family of simple matrix languages. We note that { anbn I 
n ~ 1} E SM. 

Lemma 2.2.8 D(REG,REG) ~ SM. 

Proof. Let Land L' be two regular languages L and L'. Moreover, 
let G = (N,T,P,S) and G' = (N',T,P',S') be the regular grammars 
(with the sets N and N' of nonterminals, the set T of terminals, the 
sets P and P' of productions and the axioms S and S') generating L 
and L', respectively. Without loss of generality we can assume that 
all productions in P and P' are of the form A--> xB or A --> € where 
A and B are nonterminals and x is a terminal. 

We consider the 5-simple matrix grammar 

where, for i E {1, 2, 3, 5}, 

and 
N(4) = {A( 4) I A E N'} U {X(4)} 

are pairwise disjoint sets (with additional letters X(i) and y(i), 1 :S 
i :S 5), and PH consists of the following rules 

Group 1 
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sH - x(1)x(2)x(3Jx(4)x(s), 

(X{l) - 5(1),x(2) - x(2),x(3) - x(3),x(4) - x(4),x(5) - x(s)), 

Group 2 
(A(l) - vB(l),x(2) - x(2),x(3) - x(3),x(1) - x(4),x(5) -

X(5l) for A - vB E P, 
(A(1) - y{l),x(2) - A(2),x(3) - x(3),x(4) - (S')(1 l,x(5 ) -

X(5l) for A E N, 

Group 3 
(Y(l) - y(ll,A(2) - vB(2),x(3) - x(3),c(4) - vD(4),x(s) -

x(s)) 

for A - vB E P,C - vD E P', 
(Y(l) _ y(1),A(2) _ y(2),x(3) _ A(3),c(4) - y(4),x(s) - x(s)) 

for C - t: E P', 

Group 4 
(Y(l) - y(1),y(2) - y(2),A(3) - vB(3),y(4) - y(1),x(s) - x(s)) 

for A - vB E P, 
(Y(1) _ y(1J,y(2J _ y(2J,A(3) _ y(3l,y(4J _ y(1J,x(s) _ A(sJ) 

for A E N, 

Group 5. 
(Y(l) _ y(1), y(2) _ y(2), y(3) _ y(3); y(1) _ y(1), A (s) _ vB(s)) 

for A- vB E P, 
(Y(l) _ y(1),y(2) _ y(2)

1
y(3) _ y(3),y(1) _ y(1),A(s) _ y(s)) 

for A- t: E P, 
(Y(l) _ E:, y(2) _ E:, y(3) _ E:, y(1) _ E:, y(s) _ c:). 

The application of the two rules of Group 1 yields the derivation 

Any of the first given rules of phase 2 simulates a derivation step in 
G and such steps can be iterated, i.e. a derivation S ===}* w1Fi in G 
is simulated. Thus we obtain the derivation 

5(1) x(2) x(3) x(4) x(s) ===}* W1 (Fdl) x(2) x(3) x(4) x(s) 

===} W1y{l)(F1)(2)x(3\S')(4)x(s) 
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in H. Now by iterated use of the first given rules of group 3 we simu­
late simultaneously a derivation F 1 ==>* w2F2 in G and a derivation 
S' ==>* w2F in G' because the terminals in the rules for A and C 
coincide. Hence we get 

W1y(l)(Fi )( 2) x(3l(s')(4) x(5) ==>" W1 y(l)w2(F2)(2)(F2)(3)w2 

F(4) x(s) ==> W1y(l)w2Y(2l(F2)(3)w2Y(4) x(s), 

By the first given rules of group 4 we simulate a derivation F2 ==>* 
w3F3 in G and obtain 

W1 y(l) w2Y( 2) ( Fd3lw2Y(4) x(s) ==>" W1 y(l)W2 y(2lw3 

(F3/3lw2Y(4) x( 5) ==> w 1Y(1)w2Y(2)w3Y(3)w2Y(4)(F3/5l. 

Finally, by the first given rules of group 5 we simulate a derivation 
F3 ==>* w4F4 in G and terminate by the other rules which yields 

w1Y( 1)w2Y(2)w3Y(3)w2Y(4)w4(F4P) ==>* W1y(l)w2Y(2lw3 

y(3)w2Y( 4lw4y(5) ==> w1w2w3w2w4. 

Therefore w1 w2w3w2w4 E L(H) if and only if there are derivations 

5 ==>* W1F1 ==>* W1W2F2 ==>* W1W2W3F3 ==>* 
W1 W2W3W4F4 ==> W1 W2W3W4 

in G and S' ==>* w2 in G'. Thus 

Analogously we can construct a 5-simple matrix grammar H' such 
that 

L(H') = {w1W3W2W3W4 I W1W2W3W4 E L,w3 EL'}. 

Moreover, D(L, L') = L(H) U L(H'). The closure of SM under union 
implies D(L, L') E SM. o 

Lemma 2.2.9 Let OE {I,T,D}. Further, let [' E {CS,RE} and 
let [,bea language family with [, s;; [,'. Then O(i,[') s;; ['. 
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Proof. We give the pro of only for {,' = C S. The same proofs wor k 
for {,' = RE, too ( one only has to omit the considerations on the 
space corn plexi ty). Moreover, we give an informal proof; the formal 
details are left to the reader. 

O = I. It is sufficient to show that I(L, L') E C S holds for any 
two context-sensitive languages L and L'. 

We construct a Turing machine M accepting I(L, L'). M works 
as follows on a given input word w: 

1. M copies w on the first work tape, marks non-deterministically 
a subword v of w and writes ·a copy of v on the second worktape. 

2. M replaces the marked word v by mi(v) yielding w1mi(v)w2 

on the first worktape. 

3. M checks v E mi(L') by taking the word on the second work­
tape as input and simulating the linear-bounded automaton 
accepting the context-sensitive language mi(L'). 

4. M checks w1mi(v)w2 EL by taking the word on the first work­
tape as input and simulating the linear-bounded automaton 
accepting L. 

M accepts w if and only if both checks in phases 3 and 4 are successful. 
Thus w = w1 vw2 is accepted by M if and only if w1 mi( v )w2 E L and 
v E L'. Hence w is accepted if and only if w E I(L, L'). 

Moreover, phase 1 needs space O(lwl+ Ivi). Phase 2 requires space 
O(lvl). Phases 3 and 4 need O(lvl) and O(lwl), respectively. Because 
Ivi :S lwl, M needs space O(lwl) on w. Since the languages accepted 
by Turing machines with linear space are context-sensitive, I(L, L') 
is context-sensitive. 

O= T. We change the proof for O= I as follows: In phase 2, M 
cancels the marked word v in the word w which yields w' and inserts 
v at some place in w' w hich yields w". In ph ase 3, lvf checks v E L'. 
In phase 4, M checks w" E L. 

Then w E T(L, L') holds if and only if w is accepted by M. 
Moreover, M only uses linear space. 

https://biblioteca-digitala.ro / https://unibuc.ro



52 CHAPTER 2. GENOME EVOLUTION: OPERATIONS 

O = V. ln this case we copy two non-overlappings subwords v1 

and v2 of the input word w on the second and third worktape. Then 
we check whether or not v1 = v2 . If this is the case, then we copy w 
to the first worktape and cancel either v1 or v2 in the word on the 
first worktape. Finally, we check whether or not the word on the first 
worktape belongs to L and the word on the second worktape belongs 
to L'. 

M only accepts if all checks give a positive answer. Again, we 
need only linear space which proves V(L, L') E C S. O 

2.2.2 Strictness of Some Inc1usions 

The preceeding lemmas prove some inclusion of the form .L ~ O(.C, .C') 
~ [,'. The following lemmas show the properness of the inclusions in 
some cases. For this it is sufficient to show that there are languages 
in [,' \ O(.C, [,') and O(.C, .C') \ .C, respectively. 

Lemma 2.2.10 Let O E {I, T, V}. {anbn I n 2: 1} f:- O(R, Q) for 
any regular language R and any language Q. 

Proof. O = I. Let L = {anbn I n 2: l}. Let us assume that 
L = I(R, Q) for some regular language R and some language Q. 
Without loss of generality we assume that there is no language Q' C Q 
such that L = I(R, Q'). This ensures that any word in Q is reversed 
as a subword of some word in R. 

If anbn E I(z, q) for some words z E R and q E Q, then one of 
the following conditions holci: 

- z = anbn and q E a+ or 
- z = anbn and q E b+ or 
- z = ani bi2 an3 bn4 , q = bn2 an3 and n1 + n3 = n2 + n4 = n. 

Hence 

I(R,Q) I(R n a+b+, Q na+) u I(R n a+b+, Q n b+) u 
I(Rn a+b+a+b+,Q n b+a+). (2.1) 

Because the reversal of subwords in a+ or b+ does not change the 
word 
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and 

where la and lb are the smallest lengths of words in Q na+ and Q n b+, 
respectively. Therefore I(R n a+b+, Q na+) and I(R n a+b+, Q n b+) 
are regular languages. 

We now distinguish two cases. 
Case 1: Q n b+a+ is finite. Then I(R n a+b+a+b+, Q n b+a+) 

is regular by Lemma 2.2.6. Therefore, by (2.1), I(R, Q) is regular. 
Since L is not regular, we get a contradiction to L = I(R, Q). 

Case 2: Q n b+ a+ is infinite. Then by the well-known fact that 
any set of Parikh vectors of an infinite set contains two comparable 
elements we obtain the ex.istence of two different words bkak' and 
bmam' with O < k ::; m and O < k' ::; m'. Because a•bmam' bt E R 
where s + m' = m + t = n for some n (the reversal of bmam' leads to 
anbn), we get by the reversal of bkak' that w = a•bm-kak'bkam'-k'bt 

is in I(R, Q). However, since m - k > O or m' - k' > O has to hold, 
w ~ L. This contradicts L = I(R, Q). 

O = T. Let us assume that L = T(R, Q) for some regular 
language R and some language Q. Again, we assume that there 
is no language Q' C Q with L = T(R, Q'). Since L is not regu­
lar and T(R,{c}) = R, Q contains a non-empty word w. Now let 
anbn E T(R, w). We distinguish three cases. 

Case 1: w = am for some m 2: 1. Then an-mbnam E T(R, w) ~ 
T(R, Q). Since an-mbnam ~ I( we obtain a contradiction to I( = 
T(R,Q). 

Case 2: w = aibi for some i 2: 1,j 2: 1. Hence an-ibn-iaibi E 
T(R, Q) which leads to a contradiction as above. 

Case 3: w = bm for some m 2: 1. Hence bmanbn-m E T(R, Q) 
which leads to a contradiction, again. 

O= D. First we mention that Q cannot be finite, since D(REG, 
FIN)~ REC by Lemma 2.2.6 and L is not regular. Furthermore, we 
can assume that Q contains only words of a+ U b+ because otherwise 
the duplication leads to words containing two times the subword ab 
or ba and thus not contained in L. Therefore Q contains at least ai 
and ai or at least bi and bi for some integers i and j with 1 ::; i < j. 
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Let ai, ai E Q and anbn E D(R, ai). Then an- 2(j-i)bn E D(R, ai). 

This contradicts L = D(R, Q). Analogously we get a contradiction if 
bi, bi E Q. □ 

Let h : { a, b} * -+ { a, b} * be the morphism defined by 

h(a) = ab and h(b) =ba. 

Then we set 

T = LJ {hi(a)}. 
i>l 

It is known that T is not context-free does not contain subwords of 
the form ww where lwl 2: 2 (see [15]) and that T is not context-free 
(use a pumping lemma). 

Lemma 2.2.11 For any context-free language L and any language 
Q, T -::p D(L,Q) holds. 

Proof. Let us assume that T = D(L, Q) for some context-free lan­
guage L and some language Q. Sin ce D(C F, FIN) ~ C F by Lemma 
2.2.6, Q has to be infinite. Thus Q contains a word w with lwl 2: 2 
and there is a word v E T such that v E D(L, w). Obviously, 
v = u1 wu2wu3 with u1 wu2u3 E L or u1 u2wu3 E L. Hence v1 = 
u1wwu2u3 E D(L,w) or V2 = u1u2wwu3 E D(L,w), and therefore 
v 1 E D(L, Q) or v2 E D(L, Q). However, v1 , v2 ~ T, which 1s a 
contradiction to T = D(L, Q). □ 

Lemma 2.2.12 For O E {I, T}, .C E K and .C' E {CS, RE} with 
.C C .C', 0(.C,.C') C .C'. 

Proof. By Lemma 2.2.9, O(.C, .C') ~ .C'. In order to show the strict­
ness of this inclusion we consider a unary language J( E .C' \ .C and 
assume that I( E O(.C, .C'). Then 1( = O(L, L') for some languages 
LE .C and L' E .C'. Ifalph(K) = {a}, then I(= O(Lna*,L'na*) 
also holds. Since L n a* is a unary language in .C, by Lemma 2.2.2 
we obtain I( = L n a*. This implies I( E .C in contradiction to its 
choice. o 
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Lemma 2.2.13 Let .C,1, L2, .C,3 be language families such that REG ~ 
[,1, .C, 2 \.C,3 contains a non-empty language, .C, 2 is closed under reversal 
and product with letters and .C,3 is closed under right and left quotient 
with letters. Then I(.C,1, .C,2) \ .C,3 contains a non-empty language, too. 

Proof. By s·upposition, there is a language L E L2 \ .C,3. Let V = 
alph(L) and $ (ţ. V. Then $mi(L)$ E .C,2 by the required closure 
properties of L2. Thus $L$ = I($V*$,$mi(L)$) E I(.C,1,.C,2). Fur­
thermore, by the closure of .C,3 under quotients with letters $L$ (ţ. .C,3 
which proves the statement. O 

Lemma 2.2.14 Let .C,1, .C,2, .C,3 be language families such that REG ~ 
[,1, [,2 \ .C,3 contains a non-empty language, .C, 2 is closed under prod­
uct with letters and .C,3 is closed under right and left quotient with 
letters. Then T(.C,1, .C,2) \ .C,3 contains a non-empty language, too. 

Proof. By supposition, there is a language L E L2 \ .C,3. Let V 
alph(L) and $ (ţ. V. Then $L$ E .C, 2 and $L$ = T($V*$, $L$) E 
T(.C,1, L2)- This leads to a contradiction as in the proof of Lemma 
2.2.13. o 

Lemma 2.2.15 For OE {I, T, D} and language families .C, and [,' 
of K such that REG ~ .C, c .C,', .C, C O(.C,, .C,'). 

Proof. By Lemma 2.2.5, .C, ~ O(.C,, .C,'). We have to show the strict­
ness of the inclusion. 

For O E {I, T}, this follows from Lemmas 2.2.13 and 2.2.14 with 
[, = L1 = .C,3 and .C,' = .C,2. 

Now, Jet LE .C,' \ .C,, V= alph(L) and $ (ţ. V. Then 

L' = {$w$$w$ I w E L} E 0($L$, $V*$). 

Let us assume that L' E .C,. 

If [, E { REG, C F, RE}, we can construct a generalized sequential 
machine M such that its induced function fM satisfies !M(L') = L. 
By the closure properties ofthe families under consideration fM(L') E 
[, which gives L E .C, in contrast to the supposition. 
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lf [ = C S, we first construct the .s-free generalized sequential 
machine N which induced function fN satisfies fN(L') = {$w$lwl+3 I 
w EL}. Again, fN(L') E CS. Then there exists a Turing machine 
P which accepts fN(L') with linear space. Now we construct the 
Turing machine P' which works as follows on the input w. It copies 
w to the first worktape and adds one symbol $ before w and lwl + 3 
symbols $ after w on the first worktape. Then it simulates P where 
the first worktape is considered as the input tape. P' accepts if and 
only P accepts. Therefore P' accepts L. Moreover, P' needs only 
linear space. Thus L E C S in contrast to the supposition. O 

We list below a few further relations which are direct consequences 
of the results presented so far. 

• C F C I( C F, REG). The inclusion follows from Lemma 2.2.5 
and strictness from 

I( {$w$w$: w EV*}(/: CF, 

I( I({$w$mi(w)$: w E V*},{$w$: w EV*}) E 

I(CF,REG) 

where Vis an arbitrary alphabet with $ (ţ V. 

• C F C T( C F, REG). Again, the inclusion follows from Lemma 
2.2.5. In order to show the strictness we consider the language 

If l( is context-free, then I('= I( n a+c+b+d+ is also context­
free. However, this contradicts 

which can be shown easily by pumping techniques. Therefore 
I( r/. C F is valid. 

Finally in this section we note that, for OE {I, T}, the results of 
the form O(I1, I2) C I2 with [ 1 C [ 2 are almost "optimal". This 
follows from Lemma 2.2.13 and Lemma 2.2.14 which say that a family 
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[,3 with O(.C1, .C2) ~ L3 C .C2 cannot be closed under quotients with 
[etters and the fact that most of the interesting language families are 
closed under quotients with letters. 

We mention that in the case of duplication we do not have such 
"optimalities" as for inversion and transposition. Moreover, it is open 
whether or not the inclusions C S ~ V( C S, RE) ~ RE are strict. 

A similar investigation remains to be clone for iterated versions 
of these operations. Along the same lines, the following problem 
naturally arises. For a language L ~ V*, we set 

D(L) 

D0(L) 
Di(L) 

D*(L) 

{uxxv I uxv E L,u,x,v EV*}, 

L, 

D(Di-1(L)), i:::: 1, 

LJ Di(L). 
i2:0 

Otherwise stated, D*(L) is the smallest language L' ~ V* such 
that L ~ L' and whenever uxv EL', uxxv EL' holds for all u, x, v E 
V*. 

For singleton languages L = { w} and i :::: O, we write Di ( w) and 
D*( w) instead of Di( { w}) and D*( { w} ), respectively. 

The problem asks whether D*(L) is still regular/context-free pro-­
vided L is regular/ context-free. If one restricts to the two-letter al­
phabet, then the following result holds [39]. 

Theorem 2.2.1 If L is a regular language over the two-letter alpha­
bet, then D*( L) is also regular. 

Proof. First, we prove that if w is a string over the two-letter al­
phabet, then D*( w) is a regular language. The assertion is trivial 
provided that w is the empty string or w E a+. 

Let V= {a,b} and w = a 1a 2 .. . an, where ai EV for 1 :S i :S n, 
n ~ 2. We prove that 

D*(w) = {w1a1w2a2w3a3 ... w,,_1an-1WnanWn+1 I W1 Ea;, 

Wn+I Ea~, Wi Ea; for ai-I = ai, Wi E V* 

(2.2) 
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We first prove the inclusion ;2. Obviously W1 E ai can be gener­
ated by duplications of a1 . Analogously, Wn+l E a; can be generated 
by duplications of an. If a;_ 1 = a;, then we can generated w; E a: 

by duplicatios of a;. 

Now let a;_ 1 f:- a;. Without loss of generality we assurne that 
a;_ 1 = a and a;= b. We distinguish faur cases for w; E {a,b}*. 

Case 1. w; = bi I ajI bi2 aj2 ... bik aJk. 

Then we first duplicate k-tirnes the word ab = a;_1a; which 
leads to the word 

a1a2 ... a;-1(abl+
1
a;+1a;+2 ... an= 

a 1 a2 ... a;~ 1 a;_ 1 (bal a;a;+1 a;+2 ... an-

The desired powers i1 and j,, 1 :S l :S k, can be obtained by 
duplications of the corresponding letter. 

Case 2. w; = bi I ajI bi 2 aj2 ... bik- I aJk- I bik. 

Then we first duplicate a; = b ik-tirnes and proceed asin Case 
1 to get bi I aJI bi2aJ2 ... bik-1aJk-1 _ 

Case 3. w; = ai I bhai2bh ... aikbJk. 

We first duplicate a;_ 1 = a and a; = b ii-tirnes and ]k-tirnes, 
respectively and proceed as in Case 1 in order to get the string 
bJ1 ai2 bh ... aik-1 bJk-1 aik. 

Now we first duplicate a;_ 1 = a i1-tirnes and proceed then as 
in Case 1 to obtain bJI ai2 bJ2 .•• aik-1 bJk-1 _ 

The converse inclusion is provecl by incluction. Denote by L the 
language in the righthand side of equation 2.2. Obvioulsy, D0( w) ~ 
L. Assurne that D"( w) is included in L ancl take an arbitrary string 
X from nn+l ( w). Assurne that X is obtained frorn y E Dn( w) by 
duplicating one of its substrings. Since y E L we can write: 

I E * E • Y = W1a1w2a2w3a3 ... Wn-1an-1Wnanwn+1 W1 a1,Wn+l an, 

w; Ea-; for a;-1 = a;, w; EV* for a;_ 1 f:- a;, 2 :S i :S n, 

X W1 a1 W2a2 ... U1 U2a; ... V1 U2a; ... V1 V2aj ... an-I Wnan Wn+ 1, 
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with 

w; u1 u2, u1 u2 E V*, 

Wj V1V2,V1V2EV* 

for some j > i. In other words, the substring of y that has been du­
plicated was u 2a;w;+1 a;+l ... aj-l v1. Note that the string obtained 
from y by duplicating a substring of some Ws is trivially in L. There­
fore we consider j > i. 

If a;_1 and a; are distinct letters, then x can be written in the 
form 

I 
x = W1a1 w2a2 ... w;a; ... Wjaj ... an-1 WnanWn+l, 

where w; = w;a;w;+l a;+l ... v1 u 2 which is a string in { a, b }*, hence 
X EL. 

If a;_1 = a;, then we distinguish two cases: 

Case 1. a; = a;+1 = ... aj. By the definition of L, it follows that x 
is in L. 

Case 2. a; = a;+1 
written as 

... ak-l :j; ak for some k > i. Then x can be 

where wk = Wkak ... v1 u2a;w;+1 ... Wk which is in {a, b }*. Hence 
x E L holds which completes the proof of our assertion. 

Now, let M bea gsm which translates any string w = a1a 2 ... an E 

{ a, b }* in TM( w) = b1 a1 b2a2 ... bnanbn+l, where 

{ 

[a1], if i = 1, 

b· _ [a11 ], if i = n + I, 
,- [a;],ifa;_1 =a;,2~i~n, 

(ab], if a;-1 -:/- a;, 2 ~ i ~ n. 

Consider also the regular substitution s : { a, b, [a], [b], (ab]}* ----. 2{a,b} 
defined by 

s(a) = {a}, s(b) = {b}, s([a]) = a*, s([b]) = b*, s([ab]) = {a,b}*. 
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As D*(L) = UwEL D*(w) and by the proof of the assertion from 
above, we obtain D*(L) = s(TM(L)), which implies the regularity of 
D*(L). o 

The problem has been completely solved for singleton languages 
over arbitrary alphabets by Ming in [92] in the following way. 

Theorem 2.2.2 lf w is a string containing at least three different 

symbols, then D*(w) is nat regular. 

Proof. We assume that w = abc and V = { a, b, c} below. The general 
case follows easily from this. 

Fact 1. Suppose that u = abcu', where u' E V*; then there exists 
v EV* such that uv E D*(w). 

Proof of the fact. We show how to construct z = uv iteratively. 
lnitially, we set z = abc. Suppose that u = a1a2 ... ak and z = 
b1 b2 ... b1. First we have that a; = b; for 1 ~ i ~ 3. Then for each 
4 ~ i ~ k, we do the following: we fil}d the largest index j < i such 
that bj = a;. Then we duplicate the subword of z determined by the 
indices j ... i -1. The effect of this duplication is to make the prefixes 
of u and z agree on all indices up to and including i. For example, 
suppose u = abcbacca; we construct z iteratively as follows, where 
the underlined portion shows the subword which is tobe duplicated: 

abc ---> abcbc ---> abcbabcbc ---> abcbafbabcbc ---> 

abcbaccbabcbc---> abcbaccaccbabcbc, 

which concludes the proof of the first fact. 

Fact 2. Let t( x) be the minimal number of duplications necessary 
to get x from w. We have t(x) 2:: log2 (lxl/3). 

Proof of the fact. Each duplication at most doubles the length of 
the pi'evious word and the starting word is of length 3. 

Fact 3. Suppose that u = abcu' E V* is square-free (it does not 
con tain repetitions ). Let v be the shortest word such that uv E D*( w ). 
Then Ivi 2:: log2(lul/3). 

Proof of the fact. By the definition oft, uv is obtained from w 

by a sequence of at least t( uv) duplications. Sin ce u is square-free, 
https://biblioteca-digitala.ro / https://unibuc.ro



2.2. A GENERALIZATION 61 

each of these duplications must result in at least one additional letter 
outside u, i.e., in v. lt follows that 

Ivi 2 t(uv) 2 log2(luvl/3) 2 log2(lul/3) 

and the proof of the fact is complete. 
We are now ready to prove the theorem using Myhill-Nerode's 

characterization of regular languages. We construct an infinite se­
quence of pairwise inequivalent words as follows. We start by defining 
W1 = abc. For i 2 1, we define W;+I inductively as follows: let V; 
be such that W; V; E D* ( w). Then we choose W;+ 1 to be a square­
free word starting with abc, such that log2(IW;+il/3) > 1½1- Such a 
word exists because there are infinitely many square-free words over 
a three-letter alphabet. This length condition ensures (by the third 
fact) that W;+l Vj ~ D* ( w) for all j :S i. lt follows that W; are 
pairwise inequivalent, which implies that D*( w) is not regular. O 

However, 

Theorem 2.2.3 For allw EV* and alla1,a2, ... ,an EV, the lan­
guage D*( w) n a;: a; ... a; is regular. 

Proof. Let U = {a1 ,az, ... ,an} ~ V and denote L = D*(w)n 
aia2 .. . a;. Consider the set M of minimal vectors in Wu(L); accord­
ing to Ki:inig Lemma, this set is finite ( all its elements are incompa­
rable). lt is easy to see that 

L = {a?+i 1 a?+i2 
... a~n+in I ij 2 O, 1 :S j :S n,(s1,s2, ... ,sn) E M}. 

ln conclusion, L is a regular language. O 
Here are some other combinatorial properties of languages D* ( w). 

Theorem 2.2.4 For all strings w E V*, the following assertions 
hold: 

{i} length(D*(w)) = {m E NI m 2 length(w)}. 
{ii) D*( w) is Parikh linear. 
{iii) (D*(w))+ = D*(w). 

(iv) Sub(D*(w)) = alph(w)*, where alph(w) is the minimal al­
phabet V such that w E V• and Sub(L) denotes the set of alt sub­
strings of the strings in L. 
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Proof. Assertion (i) is obvious. 
(ii) lfV = {a1,a2, .. -,an}, then \llv(D*(w)) = {vo+ I:7=1 v;j; I 

]I, .. ,,jn E N}, where Vo = \llv(w) and v; = (0, ... ,0,1,o, ... ,o), 
with 1 appearing on the i-th position, for all 1 ::; i ::; n. 

(iii) Clearly 

nii(w)Dh(w), .. nim(w) ~ ni1+ii+ ... +jm+m-l(w) 

holds for all m ~ 1 and j; ~ O, 1::; i::; m. This implies (D*(w))+ ~ 
D*(w). The opposite inclusion is obvious. 

(iv) The assertion follows from the more general fact that for each 
string z = u1 au2f]u3 E D*( w ), there is a string in D*( w) which con­
tains both af] and /Jo: as substrings, for all possible u1, u2, u3, a, f]. ln­
deed, by duplicating o:u2/J in zone gets the string z' = u1 au2/Jau2/Ju3, 
then, by duplicating /Jo: in this latter string, one gets 

z11 = u1 au2/Jaf]au2/Ju3, 

which contains both af] and /Jo: as substrings. D 

The third assertion of the last theorem implies the closure of the 
family of all languages D*( w) under Kleene +, while the last assertion 
of the same theorem implies the non-closure of this family under all 
other AFL operations: 

union: take D*(ab) U D*(ba), 

concatenation: take D*(a)D*(b), 

intersection with regular sets: take D*( ab) na+ b+ = a+ b+, 

morphisms: take D*(ab), h(a) = aa and h(b) = bb, 

inverse morphisms: for h(a) = h(b) = a we have h- 1 (a+) = {a,b}+. 

Finally we remark that in this section the three operations inver­
sion, transposition and duplication have been studied isolated from 
each other. Language generating devices based on different variants 
of duplications have been also considered, see, e.g, [89, 94]. 

However, if we want to model the evolution it is necessary to con­
sider schemes which contain rules for inversion as well as for trans­
position, duplication and deletion. A grammatical approach in this 
direction is presented in the next section. 
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2.3 The Duplication Root 

The following well-known lemma, with a very simple proof, will be 
very useful in this section. 

Lemma 2.3.1 The equation uv = vx has the solutions v = ( af3)ka, 

k 2'. O, u = a/3, x = f3a. 

A square is an immediate repeated nonempty string, that is a 
string x which can be written as x = yy, with y a nonempty string. 
A string is called square-free if it has no square as a substring. Axel 
Thue was the first who studied different problems related to square­
free strings, see, [128, 129]. 

Let V be an alphabet; for a string w E v+ we write w t> z if 
w = uxxy and z = uxy, for some u, y E V*, x E v+. We say that 
zis obtained from w by reducing the duplication (square) xx. The 
reflexive and transitive closure of the relation t> is denoted by t>*. A 
square-free string z is said to be a duplication root of w iff w t> * z. lt 
is obvious that each string has a duplication root; a natural problem 
concerns the uniqueness of this root and the complexity of computing 
this root, provided that it is uniq ue. 

Lemma 2.3.2 Let V be an alphabet and a E v+. Jf a t> f3 and a t> 1 
for some strings /3, 1 E v+, then there exists a string a E v+ such 
that f3 t>* a and I t>* a. 

Proof. Assume that a contains two duplications which can be re­
duced; more precisely let xx and yy be two duplications which ap­
pear in a. Assume that /3 and I are obtained from a by reducing the 
duplication xx and yy, respectively. We distinguish two main cases: 

Case 1: The strings xx and yy do not overlap each other in 
o:. Hence, a = uxxvyyz, /3 = uxvyyz, and 1 = uxxvyz, for some 
u, v, y E V*. We take a = uxvyz; clearly /3 t> a and I t> a. 

Case 2: The strings xx and yy do overlap each other. Severa! 
subcases are considered. 

Subcase 2a: The strings xx and yy overlap each other as shown 
in Figure 2. 
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X X 

r 
u I 

T s ] V 

l ! I 
.J 

y y 

Figure 2.1. 

It follows that f3 = uxtyv, 1 = uxryv; furthermore x = rs and 
y = st. Clearly, 

f3 urstyv = uryyv t> uryv 

1 uxryv = uxrstv = uxxtv t> uxtv = urstv = uryv 

hence the assertion holds for a = uryv 

Subcase 2b: The strings xx and yy overlap each other as shown 
in Figure 3. 

X X 

r 
w] u I T s 

I 
t z V 

I I l ! J 
y y 

Figure 2.2. 

It follows that f3 = urszv, 1 = urstv; furthermore rs = tw and 
st = wz. From the last two equalities one obtains rsz = twz = tst. 
If t = z, then f3 = 1 and the assertion is trivially true for a= f3 = 1 . 

If t # z, then we firstly assume that lzl > ltl. Thus, z = z't 
and t = rt' for some z', t' E v+. The equation r sz = tst becomes 
sz' = t' s which implies that ( see Lemma 2.3. l) 

s (opto for some k 2: O, 

z' po, 

t' op 

for some 8, p E v+. Let us suppose that k = O; equation st = wz 
becomes 8r8p = wp8r8p, which is a contradiction. 
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Consequently, k 2 1, t = rop, and z = porop, hence 

/3 = ur(op/oporopv 

for some k 2 1. Obviously, the assertion holds for a = 1 . 
We now assume that lzl < ltl; from rsz = tst one infers that 

t = t' z and r = tr'. lt follows that r' s = st' which leads to the 
solutions 

s (op)koforsomek20, 

r' po, 

t' op 

for some o, p E y+. Hence t = poz and r = potop which imply that 

By taking a= /3, the proof of this case is complete. 

Subcase 2c: The strings xx and yy overlap each other as shown 
in Figure 4. 

X X 

( 

u Jr1Y1Y1tJ V 

Figure 2.3. 

It follows that /3 = uxv and 1 = urytxv with x = ryyt. We have 

/3 uryytv t> urytv 

1 urytryytv t> urytrytv t> urytv. 

We now take a = urytv which concludes the proof of this subcase. 

Subcase 2d: The strings xx and yy overlap each other as shown 
in Figure 5. 

https://biblioteca-digitala.ro / https://unibuc.ro



66 CHAPTER 2. GENOME EVOLUTION: OPERATIONS 

X X 

( 

u I r I I t I w I 
z V 

y y 

Figure 2.4. 

It follows that /3 = urytv, 1 = uryzv. Moreover, ryt = wz and 
y = tw which imply rtwt = wz. Assume that z = z't for some 
z' E v+; one gets the equation rtw = wz' having the solutions ( see 
Lemma 2.3.1) 

z' po, 

rt op 

for some 8, p E v+. Consequently, z = pot. We infer that 

f3 urtwtv = uop(op/otv, 

Î urtwzv = uop(op/opotv 

for some k 2: O. We take a = f3 which concludes the proof of this 
sub case. 

Since any other situation can be reduced to one of those consid-
ered above, the proof is complete. □ 

Lemma 2.3.3 IJ /3 is a square-free string, a t>* /3, and a t> 1 , then 
Î e>* f3. 

Proof. We prove this lemma by induction on n, the length of a. The 
case n = 1 is vacuously true. 

We now assume that the assertion is true for any string a of length 
at most n and take the reduction a t> n' t>n f3 and a t> 1 . By Lemma 
2.3.2, there exists a string a such that n' t>* a and I t>* a. Assume 
that 

https://biblioteca-digitala.ro / https://unibuc.ro



2.4. MULTIPLE CROSSING-OVER 67 

for some k ~ l. By the induction hypothesis (la'I < lal), one can 
infer that aj 1>* /3 for all 1 :S j :S k, hence , 1>* (3, too. O 

A direct consequence of this lemma is the next resuit which states 
the uniqueness of the duplication root. 

Theorem 2.3.1 Each string has a unique duplication root. 

Moreover, in the process of finding the duplication root at any 
step it does not matter which duplication is reduced. 

We now discuss an algorithm for finding the duplication root of a 
given string. To this aim, we need an algorithm for finding a dupli­
cation in a string. There were reported several algorithms for finding 
all duplications based on the suffix tree method [4, 22, 84). Other 
algorithms can find just one duplication (85, 108]. The latter one 
is based on the fingerprinting method and determines the shortest 
duplication. Ali of them require O( n log n) time, where n is the 
length of the string. However, if the alphabet is fixed, the algorithm 
proposed in [85] can find a duplication intime O(n). 

By Lemma 2.3.3, based on these algorithms one immediately in­
fers 

Theorem 2.3.2 1. There is an algorithm for finding the duplication 
root of a string y in O(jyj 2 log jyj), provided that the alphabet of y is 
not fixed. 

2. There is an algorithm for finding the duplication root of a 
string y in O(jyj 2 ), provided that the alphabet of y is fixed. 

We finish this section by an open problem: It is known that find­
ing all duplications in a string x cannot be clone in less time than 
O(lxl log lxl) when the alphabet is not fixed. The algorithm an­
nounced in the previous theorem is based on such an algorithm. 1s 
this algorithm optimal as well? 

2.4 Multiple Crossing-over 

One was observed that the linkage between genes were never complete 
because of the exchange events between homologous chromosomes. 
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This recombination process by exchanging of segments between ho­
mologous chromosomes is called crossing-over. 

Each gene occupies a well-defined site or locus in its chromosome, 
having corresponding locations in the pair of homologous chromo­
somes. Crossing-over has the following features: 

1. The exchange of segments occurs after the chromosomes have 
replicated. 

2. The exchange process involves a breaking and rejoining of the 
two chromatids, resulting in the reciprocal exchange of equal and 
corresponding segments between them. 

3. Crossing-over occurs more or less at random along the length 
of a chromosome pair. 

In [65], an operation on strings and languages having the same fea­
tures is introduced. The operation is applicable to a pair of strings of 
equal length as the crossing-over between homologous chromosomes. 

Each string is cut in several fragments, but in the same sites for 
both of them, and crossing these fragments by ligases. A new string, 
of the same length, is formed by starting at the left end of one parent, 
copying a segment, crossing over to the next site in the other parent, 
copying a substring, crossing back to the first parent and so on until 
the right end of one parent is reached. Obviously, a new string can 
be obtained by starting with the other parent. 

Let us remark the similarity between the crossing-over on words 
and the chromosome crossing-over: 

- the words are of the same length; 
- the corresponding segments which are interchanged between 

them are of the same length; 

- the number of sites in strings is arbitrarily large; 
- the sites in strings are at random, along the strings. 
In this section, we consider four crossing-over operations, which 

are slight generalizations of those introduced in [65) and (93), and we 
study the relation between these operations and other operations in 
formal language theory, especially the shuffie operations. 

Let M be a finite subset of V*#V*$V*#V*, #, $ (ţ. V, whose 
elements are called crossover rules and w1 , w2 be two strings of equal 
length in v·. 
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We define the relation 

iff the following conditions hold: 

(i) 

( ii) 

(iii) I u; I = I v;I , l ~ i ~ k + l , 
(iv) x;#x~$y;#Yi E M, 1 ~ i ~ k. 

and 

w={ u1 V2U3 ... u;v;+l ... Uk+1 if k is even, 
u1 V2U3 ... u;v;+ 1 ... vk+1 if k is odd 

Moreover, for two ar bi trary strings w1 , w2 , 

( W1, W2) ===} M W 

iff the above conditions, excepting (iii), hold. 
For a pair of strings ( w1 , w2) we denote 

and 

For two languages L1 , L2 over V* we define: 
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(i) the (non-iterated) equal length crossing-over 

u EqlCOM(w1, wz). 

(ii) the (non-iterated) crossing-over 

As we can see, in the above definitions, the strings can be cut 
in arbitrarily many fragments. 1n the case of splicing operation the 
number of segments is limited to one and in [93] to a given integer. 

We shall consider a generalization of the operation studied in [93]. 
Let k 2'. 1 and M bea finite subset of(V*#V*$V*#V*l, #,$ ~ 

V, and w1 , w2 be two strings of equal length in V*. Both strings 
are spli t in k + 1 segments at the sites indicated by the rules of M. 
Formally, if 

and 

I U; I I Vi I, 1 s; i s; k + 1 

then 

( ) 
k-Eql { u1 VzU3 ... u;v;+1 ... Uk+1 if k is even, 

W1,W2 ==?M 
u1 VzU3 ... u;v;+1 ... Vk+i if k is odd 

The relation ==?'.w is defined by omitting the condition on the 
segments u;, v;. 
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As for the previous operations, for a pair of strings ( W1, w2) we 
denote 

and 

Note here that for 1 - CO is actually the splicing operation. 
For two languages L 1 , L 2 over V* we define: 

(i) the (non-iterated) equal length k-crossing-over 

u 
(ii) the (non-iterated) k-crossing-over 

Remember that a trio is a family of languages closed under c-free 
homomorphisms, inverse homomorphisms, and intersection with reg­
ular sets. A full trio is a trio closed under arbitrary homomorphisms. 

Lemma 2.4.1 If a trio is closed under SShuf operation, then it is 
closed under EqlCO. 

Proof. Consider an alphabet V, two languages L1 , L2 over V, in a 
trio denoted by F, and a (finite) set of rules M = {x;#y;$z;#t;[l ~ 
i::; m}. 

For any character a E V, we consider a new syrnbol a' (/_ V and 
denote V'= {a' I a EV}. Consider also 2m new symbols c;,<,1 ~ 
i::; m. 
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1n the following, by a primed word (language) we shall under­
stand that all symbols of the original word (language) are replaced 
by primed symbols. For instance, if w = a1 a2 ... an E V*, then 
w' = a;a; ... a~ and if A~ V*, then A'= {w' I w EA}. 

Take the homomorphisms 

h1 (V U {ci 11::; i::; m})*------, V*, 

h1(a) = a, for any a EV, 

h1(ci) = XiYi, for any 1 ~ i ~ m, 

h2 (V U { c; 11 ::; i ::; m} )* ------, (V U { c; I 1 ~ i ~ m} )*, 

h2(a) = a, for any a EV, 

h2(ci) = x;c;yi, for any 1 ~ i ~ m, 

h3 (V'u{c;11::;i::;m})*------,V", 

h3(a') = a, for any a' EV', 

h3(c:) = z;t;, for any 1 ~ i ~ m, 

h4 (V' U { c; I 1 ::; i ::; m} )* ------, (V' U { c; I 1 ~ i ~ m} )*, 
h4 ( a') = a', for any a' E V', 

h ( 1
) I 

1i 1 
.!' 1 < • 4 C; = Z;C; ;, !Of any _ t :::: m. 

The language 

i=I 

is in F. A string in L has the form 

a a' a a' ... a a' c. c' a a' , . , 
Pl,l q1,1 Pl,2 g1,2 Pl,n1 g1,n1 'I IJ P2,l g2,1 ••• aP2,n2 aq2,n2 C,2Ci2 ••• 

c· c' a a' , 
'k ik Pktl,l gktl,l '' 'aPktl,nktl aqktl,nk+l' 

where, for any 1 ::; r::; k + 1, 1 ~ s ~ nr, aP,,s E V, a~, .• EV', and, for 
any 2 ::; r ::; k + 1, there are some mr, lr, dr, er, 1 ::; mr, lr, dr, er ~ nr, 
such that 

aP,,1 aP,,2 ' ' 'aP,,m, = Yi,-1, 
a' a' ... a' = t' 

q,-,J qr,2 9r,lr 1r-l' 

aPr-1,dr aPr-1,dr+l '· • aPr-1,nr-l = Xir-1, 

a' a' ... a' = z' 
9r·-l,er 9r-l,e,-+l Qr-1,nr-l 1r-l • 
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Construct an E-free gsm g which leads a string in L1 as above to the 
string 

In order to do that task, g works as follows: 

• start scanning the string in the state so, 

• leave unchanged all symbols aPr,,, a~r,, until either the right end 
of the string is detected and, in this case, stop, or the next ci 
is reached, 

• leave Ci and < unchanged but change the state into s1 , 

• change any aPr,s into a;r,s and any a~r,, into aqr,, until either 
the right end of the string is detected and, in this case, stop, 
or the next Ci is reached, 

• leave Ci and < unchanged but change the state into s0 , 

• restart the work from the second step for the remained part of 
the initial string. 

Remark that both states of g are final. 
Consider now the homomorphism 

hs : (V U V' U { Ci j 1 ::::; i ::::; m} U { < j 1 ::::; i ::::; m} )* --+ V*, 
h5 (a) = a, for any a E V, 
h5(a') = E, for any a' EV', 
hs(ci) = hs(c;) = E, for any 1::::; i::::; m. 

Obviously, we have 

EqlCOM(L1, L2) = hs(g(L)). 

Because any trio is closed under c-free gsm mappings, it follows that 
the language g(L) is in F. As it could be easily seen, h5 is 4-limited 
erasing on g(L). Consequently, EqlCOM(L 1 , L2) is in the considered 
trio and the proof is over. O 
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Lemma 2.4.2 Any trio closed unde, Eq/CO operation is closed un­

de, SShuf operation. 

Proof. Let L1 ~ V(, L2 ~ V2• be two languages in a trio F. Consider 
the alphabets 

V1 {a1, a2, a3la E Vi}, 

v; {a' I a E Vi}, 
v; {a1,a2,a3laEV;} 

and the following homomorphisms: 

h1(a) = a1a2a3, for any a E V1, 
h2( a') = a~ a;a;, for any a' E V{, 
h3(a) = a', for any a E Vi, 

h4 (v1 u v;r - (Vi u Vi)*, 
h4(ai) = a, h4 (a2) = h4(a3) = €, for any a E Vi, 

h4(a;) = a, h4(a~) = h4(a;) = €, for any a' E v;. 

Consider also the set of rules M = {a 1#a2$b~#b;la E V1,b E 
V2} U {a3#db;#c:la E Vi,b E Vi}- In these conditions, it is easy to 
check that 

Mentioning that the homomorphism h4 is 1-limited erasing we 
conclude the proof. O 

Theorem 2.4.1 A trio is closed unde, SShuf if and only if it is 
closed unde, EqlCO. 

We mention now a known result concerning the interdependence 
between the S S huf and 5 huf operations in the frame of a trio, which 
will turn to be very useful in the sequel. 
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Theorem 2.4.2 Any trio is closed under SShuf if and only if it is 

closed under Shuf. 

Theorem 2.4.3 Any Juli trio closed under the operation Shuf zs 
closed under the operation CO. 

Proof. By using the same construction asin Lemma 2.4.1, the lan­
guage 

m 

L = Shuf(h2(h11(L1)), h4(h3
1 (L2))) n (LJ(V*V'*){cic;} )*(V*V'*) 

i=l 

is in the considered trio, if L1 and L2 are in the trio. 
Take the gsm, g working as follows: 

• start scanning the string in the state so, 

• leave unchanged all non-primed symbols until a primed symbol 
is reached, 

• remove all primed symbols until a symbol c; is detected, 

• change the state into s1 , erase the letters Ci, e; and replace all 
primed symbols by non-primed symbols, 

• remove all non-primed symbols until the next symbol Cj is de-
tected 

• change the state into s0 and erase the letters Cj, ci 

• go on until the end of the string is reached 

Therefore, CO M( L 1 , L2) = g( L) and the proof is over. D 

Theorem 2.4.4 Any full trio closed under EqlCO is closed under 
CO. 

Proof. The proof is a consequence of all the previous theorems. D 

Next, we shall examine the case of the prescribed number of 
crossing-overs. 
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Theorem 2.4.5 Any full trio closed under Shuf is closed under k­

CO, for any k 2:: 1. 

Proof. The proof is a slight modification of the proof of Lemma 2.4.2. 
Let k be a positive integer and L1 , L 2 be two languages over V in a 
trio F; assume that 

M = { ( Xi1 #Yi1 $zi1 #ti1, Xi2 #Yi2 $zi2 #ti2, • • •, Xik #Yik $zik #tik )I 
1::::;i::::;n}. 

Consider kn new symbols Ci
1

, 1 ::::; i ::::; n, 1 ::::; J < k, and the 
homomorphisms defined as follows: 

h1 : (V U { Cii I 1 ::::; i ::::; n, 1 ::::; j ::::; k} )* -+ V*, 
h1(a) = a,a EV, 
h1 (ci ) = x; Yi , 1 < i < n, l < y· < k. 

] ]] -- --

h2 : (V U { Ci
1 

I 1 ::::; i ::::; n, 1 ::::; j ::::; k} )* -+ (V U { c;
1 

I 1 ::::; i ::::; 
n, 1 ::::; j ::::; k)* 

h2(a) = a, 

h2(c;J = x;icijYij, 1::::; i::::; n, 1::::; j::::; k}. 

The language 

L3 = h2(h11(L1)) n E 

where E is the regular language 

n 

E = LJ V* {c;J V* {c;2} V* ... V* {c;J V* 
i=l 

is in F. 
Analogously, the language 

n 

L4 = h4(h31(L;)) n U V'* { c:1} V'* { c:2} V'* ... V'* { c:J V'* 
i=l 
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is also in F, where the hornomorphisms h3 and h4 work as h1 and h2, 
respectively, but on primed symbols and strings. 

From the closure properties of the family F we have that 

n 

L 5 = Shuf(L3, L4) n LJ V*V'* { c;1 c:J V*V'* ... V*V'* { c;kc:J V*V'* 
i=l 

is in F. 
We have k - CO M(L 1, L2) = g(L5 ), where g is a gsm similar to 

that constructed in Theorem 2.4.3. Because any full trio is closed 
under arbitrary gsrn rnappings it follows that k - CO M(L1, L2) E F. 

□ 

Theorem 2.4.6 If F is a full trio closed under union and EqlCO 
operation, then F is closed under k - CO. 

Proof. It follows from the previous theorern and Theorern 2.4.2. D 

By cornbining the ideas used for proving Lernma 2.4.1 and Theorem 
2.4.5 one can get 

Theorem 2.4.7 Any trio closed under SShuf is closed under k -
EqlCO, for any k 2 1. 

and, consequently 

Corollary 2.4.1 Any trio closed under EqlCO is closed under k -
EqlCO, for any k 2 1. 

We finish this section by pointing out some further directions of 
research and open problems. Severa] natural questions which can 
naturally arise, if we are looking to the above diagram, are: 

1. Are there trios closed under k - EqlCO and not closed 
under SShuf, for different values of k? 

2. Are there trios closed under CO and not closed under 
Shuf? 

3. Are there trios closed under k - CO and not closed 
under Shuf, for different values of k ? 

https://biblioteca-digitala.ro / https://unibuc.ro



78 CHAPTER 2. GENOME EVOLUTION: OPERATIONS 

As far as the last question is concerned, a partial answer is 

Theorem 2.4.8 There are trios closed under l - CO and 2 - CO 
but not closed under Shuf. 

Proof. Take the class of context-free languages which is a trio and is 
closed under splicing (1- CO) [105] but it is not closed under Shuf. 

On the other hand, the family of context-free languages is closed 
under 2 - CO. Let 1 1 , L2 be two context-free language over V and 
M be a set of 2-crossover rules. Assume that 

M = { ( x;1 #xi2 $y;1 #Yi2, Xi3 #xi4 $y;3 #y;JI 

l:Si:Sn}. 

Consider 4n new symbols Ci,j, and ci,j, 1 :S i :S n, j = 1, 2 and the 
homomorphisms 

h1: (VU {c;,j 11 :S i :S n,j = 1,2})* _. V*, 

h1 (a) = a, a E V, 

h1 ( Ci,j) = Xi21-1 Xi2j, 

h2: (V U {<,j I 1 :S i :S n,j = 1,2})* ._. V*, 

h2 (a) = a, a E V, 

h2(C:) = Yi2j-1Yi21 • 

The languages 

n 

L3 = h~ 1(L1) n LJ V*{c;,r}V*{c;,2}V* 
i=I 

n 

i=J 

are context-free. 
For a language L denote by Sub(L) the set of all subwords of the 

words in L. Define the substitution 

s: (Vu{ci,j 11 :S i :S n,j = 1,2})* ._. 2(Vu{c,.J, C:)ISiSn, j=I,2)}', 
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s(a)=a,aEV, 
s(c;,2) = {c;,2},l :S i :S n, 
s(c;,1) = c\,1 V*C:,2 n Sub(L4), 1 :S i :S n. 

The above substitution is a substitution with context-free languages. 
Indeed, Sub(L4) is a context-free language and C:, 1 V*C:,2 are regular 
languages for al! 1 :S i :S n. Under these circumstances, we conclude 
that s(L3) is context-free. Now, the words in s(L3) are of the form 

I I t w = uc;,1 vc;,2 c;,2z 

for some 1 :S i :S n, and u, v, t, z E V*. 

We construct a gsm g which replaces the symbol C:,1 by x; 1 , re­
moves all symbols after C:,1 until c;,2, and replaces c;,2 by x;4 , for all 
1 :S i :S n. lt follows that 2 - COM(L 1 , L2 ) = g(s(L3)) therefore, the 
class of context-free languages is closed under 2 - CO. O 

For al! operations considered here one can define, in a natural way, 
the iterated case. What are the interdependence relations between 
them in this case ? 

2.5 Two Crossover Distances 

A basic problem in the area of combinatorial algorithms for genome 
evolution is to determine the minimum number of large scale evo­
lutionary events (genome rearrangements) that transform a genome 
into another. The present section, based on [95], is a contribution 
to the algorithmic study of genom evolution by crossovers ( translo­
cations ). 
Two types of crossover distance between two sets of strings (genomes) 
are introduced; we examine the complexity of computing these dis­
tances in the case of uniform crossover, that is at each step the strings 
exchange prefixes of the same length. We present exact polynomial 
algorithms based on the "greedy" strategy when the target set is a 
singleton. When considering arbitrary target sets a 2-approximation 
algorithm is provided for computing the sequential crossover distance. 
Some open problems are also formulated. 
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Prior work dealing with the combinatorial analysis of genome op­
erations has focused on evolution distance in terms of inversions, 
transpositions or crossovers for chromosomes formed from different 
markers which correspond to unique segments of DNA. From the for­
mal point of view this means that all symbols of the strings represent­
ing the chromosomes are different. Thus Kececioglu and Sankoff [66], 
[67] developed exact and approximation algorithms for two types of 
inversion distance, Bafna and Pevzner reported approximation algo­
rithms for transposition distance [8]. More recently [68], Kececioglu 
and Ravi discussed exact and approximation algorithms for distance 
involving crossovers alone as well as together with inversions. Some 
applications of these results to biologica! data are now underway [9], 
[55]. 

Our work differs from these approaches in many respects: the 
strings representing chromosomes may have multiple occurrences of 
the same symbol, they may have common symbols, the number of 
copies of all strings in the initial set is considered to be arbitrarily 
large, the definition of the crossover distance. 

Let V be a given alphabet (practically this alphabet is the DN A 
alphabet {A, T, C, G}); chromosomes may be viewed as strings over 
this alphabet. For each string x E v+, x[i,j] delivers the substring of 
x that starts at position i and ends at position j in x, 1 :S i :S j :S lxl. 
Conventionally, x[i,j] is the empty string in all cases j < i. 

For two strings x, y over an alphabet V and two integers 1 :S i < 
lxl, 1 :S j < IYI, we define the crossover operation 

(x,y) f--(i,j) (z1,z2) iff x = tu,y = vw,z1 = tw,z2 = vu, 

and ltl = i, Ivi = j. 

The pair of natural numbers ( i, j) indicates the length of the prefixes 
they interchange with each other. When we are nat interested about 
the length of these segments, we write simply f--. Let us note that, 
from a chromosome and its replica, say xyz, one may get two other 
chromosomes xyyz and xz. It is worth mentioning here that this type 
of recombination is known as crossover between "sister" chromatids 
and it is the main way of producing tandem repeats or block deletions 
in chromosomes. 
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We extend the crossover operation to a finite set of strings A ~ v+ 
by 

CO(A) = LJ {z, wl(x, y) I- (z, w)}. 
x,yEA 

Let A be a finite set of strings that appear arbitrarily many times in 
A. Define, iteratively 

COo(A) 

COk+1(A) 

CO,.(A) 

A, 

COk(A) U CO(COk(A)), 

LJ COk(A). 
k?_O 

A crossover sequence in CO,.(A) is a sequence S = s1, s2, ... , sn, 

where for each 1 ::; i ::; n s; = (x;, y;) 1-(k,,p,) (u;, v;), for some 
x;,y;,u;,v; E CO,.(A) and 1 ::; k; < lx;I, 1 ::; Pi < IYil- Given a 
crossover sequence as above S and as above and x E CO.(A) we 
define 

P;(S,x) --' card{j::; ilx = Xj or x = Yi} + card{j::; ilxi = Yi = x}, 

{ 

oo, if X EA, 
F;(S,x) card{j::; ilu = Xj or v = Yi}+ 

card{j ::; ilui = Vj = x} 

The length of a crossover sequence S = s1 , s2, ... , Sn îs denoted 
by lg(S) and equals n. A crossover sequence S as above îs contiguous 
îff the following two conditions are satisfied: 

(i) X1,Y1EA, 
(ii) F;-1(S,x;) > P;-1(S,x;), and F;_1(S,y;) > P;_1(S,y;), 

for all 1 ::; i ::; n. 

The second condition îs very natural if one considers that the copies 
of the two strings that exchange prefixes are not available anymore 
for further crossover steps; it claims that at each crossover step at 
least one copy for any of the two strings involved in this step is 
available. By CC S we mean a contiguous crossover sequence. Let B 
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be a finite subset of CO.(A); a CC S S as above is B-producing if 
Fn(S, z) > Pn(S, z) for all z E B. In other words, S is B-producing if 
at the end of all crossover steps forrn S we have at least one copy at 
each string in B. Roughly speaking, the sequential crossover distance 
from A to B (SCOD(A, B) shortly) îs defined as the minimal nurnber 
of steps strictly necessary to get B starting frorn A, providing that 
at each step just one crossover takes place. Forrnally, 

SCOD(A,B) = min{lg(S)IS îs a B - producing CCS în CO.(A)}. 

The parai/el crossover distance from A to B (PCOD(A, B), shortly) 
îs defined as the minimal nurnber of steps strictly necessary to get 
B starting frorn A, provided that at each step all possible crossovers 
take place. Formally, 

PCOD(A, B) = max{rnin{klx E COk(A)}lx E B}. 

Example 2.5.1. Let us consider the initial set A= {x1 ,x2,x3,x4 } 

with 

xi = abcbad, x2 = bbabd, x3 = accbabd, x4 = aaab, 

and 

z1 = bbcbad 
zs = abbababd 
Zg = bbbd 

z2 = ababd z3 = ababad 
z6 = aabad z7 = abababd 

z10 = bbabad zu = bbbabad 

Z4 = bbcbd 
za= bbd 

z12 = bbababd 
Z13 = bababd z14 = accbd z15 = bbccbabd z16 = aababd 
z1 7 = abcccbabd z1a = abad· 

We provide below a B-producing CCS, B = {z4, z6, za, z11 , z15 , 

z16, z1a}. 

(x1,x2) f-(2,2) (z2,z1), (z1,z2) f-( 4,4) (z4,z3), 

(x1, x2) f-(2,2) (z2, z1), (z2, x2) f-(4,2) (z1, za), 

(z3, Z7) f-(2,1) (zs, z6), (x2, x3) f-(3,3) (z12, z14), 

(za, Z12) f-(2,s) (zg, z10), (x2, x3) f-(3,3) (z12, Z14), 

(x2, x3) f-(3,3) (z12, Z14), (z12, z10) f-(2,1) (zu, z13), 

(z12,x3) f-(2,1) (z1s,z16), (x1,x3) f-(3,1) (z11,z1a). 
https://biblioteca-digitala.ro / https://unibuc.ro



2.5. TWO CROSSOVER DISTANCES 83 

Sometimes we refer to B as a target set. ln the sequel we are 
dealing with the complexity of computing the crossover distances de­
fined above for the case of uniform crossover i.e. all strings exchange 
prefixes of equal length. We distinguish two cases depending on the 
cardinality of target sets: singleton target sets and arbitrary target 
sets. 

2.5.1 Singleton Target Sets 

As we said above, by uniform crossover we mean a special type of 
crossover so that prefixes which are to be exchanged are of the same 
length. Formally, the crossover operation f-(i,j) is said to be uniform 
iff i = j, so that we shall simply write f-; .. 

1n the case of uniform crossover with a singleton target set, we 
may assume that the initial set of strings contains only strings of the 
same length, that is the length of the target string. 

Lemma 2.5.1. Let A be a given finite set of strings and z be a string 
of length k. Consider 

A = {x E Ajjxj = k} U {x[l, !xi - l]$k-lxl+ 1 jx EA, lxl < k} U 

{x[l, k - ~]$Ix EA, lxl > k}, 

where $ is a new symbol. Then SCOD(A,z) 
PCOD(A, z) = PCOD(A, z). 

SCOD(A, z) and 

Proof. Clearly, one can construct a z-producing CC S in CO*(A), 
starting from a z-producing CC S in CO*(A), of the same length, 
hence SCOD(A,z) :S SCOD(A,z). Conversely, given a z-producing 
CC Sin CO.(A), one can construct a z-producing CC Sin CO*(A) 
of a smaller length. Consequently, SCOD(A, z) = SCOD(A, z). 

The proof is complete because we note that all strings of length 
k that do not contain the symbol $ from CO;(A) are in CO;(A), for 
all i 2'. O, and vice versa. o 

1n conclusion, throughout this section the strings in the initial set 
and the target string will be all of the same length. 
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Suppose that A = { x1, x2, ... , xn} and let z he an arbitrary string· 
of length k; the following measure will be very useful in the sequel: 

MaxSubLen(A,z,p) = max{ql there exists 1::; i::; n 

such that xi[p,p+ q- 1] = z[p,p+ q-1]. 

Note that with uniform crossover, a letter at position i in a string 
remains at position i after moving to another string. Assume that 
z E CO*(A); define iteratively the set H(A,z) of intervals of natural 
numbers as follows: 

l. H(A,z) = {[l,MaxSubLen(A,z,l)]}; 

2. Take the interval [i,j] having the largest j; if j = k, then 
stop, otherwise put into H ( A, z) the new interval [j + 1, j + 
M axSubLen(A, z,j + 1)]. 

Note that we allow intervals of the form [i, i] for some i to be in 
H(A,z); moreover, for each 1 ::; i ::; k there are 1 ::; p ::; q ::; k 
(possibly the same) such that i E [p, q] E H(A, z). 

Lemma 2.5.2. Let S bea z-producing CCS in CO.(A). Then, lg(S) ~ 
card(H(A,z))- 1. 

Proof. We prove this assertion by induction on the length k of z. 
For k = l the assertion is trivially true because z must be in A, 
hence H(A, z) contains just one element. Assume that the assertion 
is true for any string shorter than k. Let us consider a CC S S = 
s1, s2, ... , sg in CO.(A) producing z. Moreover, we may assume that 
s; = (x;,y;) f-P, (u,,v,), 1::; i::; q, and z has been obtained in 5 at 
the last step, that is either ug = z or vg = z. Let 

A' = {x[MaxSubLen(A,z,l)+ 1,k]lx EA}, 

z' = z[M axSubLen(A, z, l) + 1, k]. 

For simplicity denote r = M axSubLen(A, z, 1). Clearly, H(A', z') = 
{[i - r,j - r]l[i,j] E H(A,z) \ {[1,r]}}, hence card(H(A',z')) = 
card(H(A, z)) - l. Starting from 5 we construct a CC Sin CO*(A'), 
producing z' S' = s~, s~, ... s~ in the way indicated by the following 
procedure: 
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Algorithm 2.5.1. 
Procedure ConstrucLCCS(S, r ); 
begin 
m := O; 
for i:=1 to q begin 

if (p; > r) then 
m := m+ l; 
s~ = (xi[r + 1, k], y;[r + 1, kl) 1--p,-r (u;[r + 1, k], v;[r + 1, kl); 

endif; 
endfor; 
end. 

Claim 1: S' is a CCS. 

85 

Proof of the claim. Firstly, we note that for each 1 S i S q so that 
p; :S r, the relations u;[r + 1, k] = y;[r + 1, k] and vi[r + 1, k] = 
x;[r + 1,k] hold. Assume that p;1 ,p;2 , ••• ,p;m are all integers from 
{p1 ,P2,···,Pq} bigger than r. Because all p1 ,p2, ... ,p; 1 -1 equal at 
least r, it follows that both x;1 [r+ 1,k],y;1 [r+ 1,k] are in A'. 

Now, it suffices to prove that for a given 2 :S j :S m, the relations 

F1_1(S',x;
1

[r + 1,k]) > P1_1 (S',x;;[r + 1,k]), 

F1-1(S1 ,y;
1
[r+ 1,k]) > P1_1 (S',yi;[r+ 1,k]), 

hold. We shall prove the first relation only. It is not hard to see that 

where 

x[r+l,k)=x,
1 

(r+l,k) 

card(X) - card(Y), 

P1-1(S1,x;
1
[r+ 1,k]) = L P;

1
-1(S,x)-

x[r+l,k)=x,1 (r+l ,k) 

card(Z) - card(W), 

X { t :S i 1 - 1 IPt :S r, ut[ r + 1, k] = vt[ r + 1, k] = xi 
1 

[ r + 1, k]}, 

Y {t :S i1 - llPt :S r, ut[r+ 1,k] = x;
1
[r+ 1,k] 

or vt[r+ 1,k] = x;
1
[r+ 1,k]}, 
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Z {t ~ ij - llp1 ~ r, xt[r + 1, k] = yt[r + 1, k] = x;j[r + 1, kl}, 

W {t ~ ij - llPt ~ r, xt[r+ 1,k] = x;Jr+ 1,k] 

or yt[r + 1, k] = x;j [r + 1, kl}. 

But, as we have seen 

X= Z and Y = W. 

1n conclusion, as 5 is a CC S, it follows that Fj-1 (S', xij[r + 1, kl) > 
Pj-I (S', x;; [r + 1, kl), and the proof of the claim is complete. 

Claim 2: S' is z-producing. 
Proof of the claim. More generally, we shall prove by induction on i 
that 5' is producing u;[r + 1, k] and v;[r + 1, k] for all 1 ~ i ~ q. The 
assertion is trivially true for i = 1. Assume that the assertion is true 
for all t ~ i; we shall prove it for i + 1. If u;+i[r + 1, k] is in A' or 
Pi+I > r, we are clone. If Pi+I ~ r, then Ui+i[r + 1, k] = Yi+1[r + 1, k]; 
for Yi+i -~ A we have F;(S, Yi+i) > O, hence there exists k ~ i such 
that Ut = Yi+I or Vt = Yi+I. By the induction hypothesis, Ut[r + l, k] 
holds, which concludes the proof of the second claim. 

But there exists at least one i such that p; ~ r, it follows that 
m ~ q - 1. By the induction hypothesis, m 2'. card(H(A', z')) - 1, 
and the proof is complete. D 

The next resuit is a direct consequence of this lemma. 

Theorem 2.5.1. Let z be a string of length k and A be a set of 
cardinality n. There is an exact algorithm that computes SCOD( A,z) 
in O(kn) time and O(kn) space. 

Proof. The following algorithm indicates how to construct a CC S 

S = s1, s2dots, sm in CO*(A) producing z, when z ~ A, whose length 
is exactly card(H(A, z)) - 1. 

Algorithm 2.5.2. 
Proced ure Uni/ orm_crossover _CCS_construction( A,z); 
begin 
p := MaxSublen(A,z, l); let x bea string in A with x[l,p] = z[l,p]; 
m := O; 
while p < k begin 
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r := MaxSubLen(A,z,p+ l); 
if r = O then THE STRING z CANNOT BE OBTAINED FROM 

A; stop 
else 

let y bea string in A with y[p+ l,p+r] = z[p+ l,p+r]; 
m := m+ 1 
Sm = (x,y) f-p (u,v)}; 
p:=p+r; 
x:=u; 

endif 
endwhile; 
end. 

lt is easy to see that if the algorithm successfully terminates, then 
either u or v is exactly z, and the length of the CC S determined by 
the algorithm is exactly card(H(A,z))- l. By the previous lemma, 
this in an optimal value. As one can easily see the time complexity 
of this algorithm is given by the complexity of computing the values 
MaxSubLen(A,z,p), which is O(kn). Obviously, it requires O(kn) 
memory. □ 

We shall proceed to a similar approach for computing the parallel 
crossover distance from A to z. For a positive real number r denote 
by f r l the natural number that satisfies f r l - 1 < r :::; f r l-

Theorem 2.5.2. Let z be a word in CO*(A). Then 

PCOD(A,z) = flog2(card(H(A,z)))l-

Proof. Denote by q = flog2( card(H(A, z)))l- For the beginning we 
prove that z E C09(A). The argument is an induction on q. If 
q = O, then card(H(A, z)) = 1, that is z E A = C0 0 (A). Assume 
that the assertion is true for any set A and z E CO*(A) such that 
flog 2(card(H(A,z)))l < q and let 

H(A, z) = {[1, r1], [r1 + 1, r2l, ... , [rp-I + 1, kl} 

with 29 -
1 < p:::; 29 . Consider B = C0 1 (A); it is easy to see that 
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For flog 2 (card(H(B,z)))l = q - 1 it follows that z E COq-1(B) = 
COq(A), and the proof is complete. In conclusion, PCOD(A, z) :S 
flog 2 ( card(H(A, z)))l. 

By a similar reasoning one can prove that if z E COr(A), then r 
is at least flog2 (card(H(A,z)))l- O 

Based on the previous lemma and Theorem 2.5.1 one may state: 

Theorem 2.5.3. Let z be a string of length k and A be a set o.f 
cardinality n. There is an exact algorithm that computes PCOD( A,z} 
in O(kn) time and O(kn} memory. 

2.5.2 Arbitrary Target Sets 

We shall try to adapt the techniques used in the previous section 
for arbitrary target sets, too. Let A be a finite set of strings and 
z E CO*(A); denote by 

{ 

Iz I ' iff z E A' 

MaxPref Len(A,z) = . 
max{qlq < lzl, there ex1sts x EA, 
lxl > q, so that x[l, q] = z[l, q]}, 

MaxSuf Len(A,z) = max{ql there exists x EA, 

lxl = lzl, so that x[lxl - q + 1, lxl] = z[lzl - q + 1, lzl]}, 

ArbMaxSubLen(A,z,p) = max{ql there exists x EA and 

!xi 2: p + q such that x[p,p + q - 1] = z[p,p + q - 1]. 

We define iteratively the set ArbH(A, z) of intervals of natural 
numbers as follows: 

1. ArbH(A, z) = {[l, M axPref Len(A, z)]}; 

2. Take the interval [i,j] having the largest j; if j = lzl, then stop. 
If j < lzl - MaxSufLen(A,z), then put the new interval [j + 
l,j + ArbMaxSubLen(A,z,j + 1)] into ArbH(A,z); otherwise 
put [j + 1, lzl] into ArbH(A, z). 
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Theorem 2.5.4. 
J. Let A be a finite set of strings and B be a finite subset of 

CO*(A). Then 

LzEB(card(A;bH(A,z))- 1) S SCOD(A,B) S 

I)card(ArbH(A,z))- 1). 
zEB 

2. There exist A and B ~ CO.(A) such that 

LzEB(card(ArbH(A,z))-1) 
SCOD(A, B) = 

2 
. 

3. There exist A and B ~ CO.(A) such that 

SCOD(A,B) = L(card(ArbH(A,z))- 1). 
zEB 

Proof. 1. We shall prove the first assertion by induction on the length 
of the longest string in B, say k. The non-trivial relation is 

If k = 1, then B ~ A, hence card(H(A, z)) = 1 for all z E B, 
therefore the relation ( *) is satisfied. Assume that the relati'?n ( *) 
holds for any two finite sets X and Y, Y ~ CO.(X), all strings in 
Y being shorter than k. Assume that B \ A = { z1 , z2 , ... , Zm} and 
let S = s1 ,s2 , ... ,sq, s; = (x;,y;) f-p, (u;,v;), 1 S i S q, bea B \ A­
producing CC S in CO.(A). Note that at least one string in B \ A 
should exist, otherwise the relation ( *) being trivially fulfiled. 

Consider m new symbols a1 , a 2 , ... , am and construct the sets 

A' = {x[l,r]a;x[r + 2, lxl]lx EA, 1 S i S m}, 

B' = {z;[l, r]a;z;[r + 2, lz;l]ll S i S m}, 

where r = min{p;ll S i S q}. One can construct a B'-producing 
CC S in CO* ( A') of the same length of S, say S' by applylng the 
next procedure. 

https://biblioteca-digitala.ro / https://unibuc.ro



90 CHAPTER 2. GENOME EVOLUTION: OPERATIONS 

Algorithm 2.5.3. 
Procedure Convert{S); 
begin 
for j := 1 to m begin 

Z := Zj; t := m; 
while z eţ. A begin 

find the maximal 1 :::; t such that u1 = z or v1 = z; 
t:=1-l; 
if u1 = z then replace u1 by u,[l, r]aju1[r + 2, lu,I]; 

if PI> r then z := x1; 
replace x1 by x1[l, r]ajx1[r + 2, lx1I]; 

else z := y1; 
replace YI by y1[l, r]ajy1[r + 2, ly,I]; 

endif; 
else replace v1 by v1[l, r]ajv1[r + 2, lv,I]; 

if PI::; r then z := x1; 
replace x1 by x1[l, r]ajx1[r + 2, lx,I]; 

else z := y1; 
replace YI by Y1[l, r]ajy1[r + 2, iy,i]; 

endif; 
endif; 

endwhile; 
replace z by z[l, r]ajz[r + 2, lzl]; 

endfor; 
replace the symbol on the position r + 1 in al/ strings in S that have not 

been replaced so far by a1; 
end. 

For a better understanding of the previous procedure we pro­
vide below the effect of applying this procedure to a B-producing 
CC S, B = { abacdb, aabccb, bbaadc}, starting from the ini tial set 
A = { abbccb, aaaadb, bbbcdc }. The CC S S is 

( abbccb, aaaadb) f- 2 ( abaadb, aabccb), 

( abbccb, abaadb) f- 3 ( abbadb, abaccb), 

( bbbcdc, abaccb) f- 2 ( bbaccb, abbcdc), 

( bbaccb, aaaadb) f- 3 ( bbaadb, aaaccb), 

( bbaadb, bbbcdc) f- 5 ( bbaadc, bbbcdb ), 

( abaadb, aaaccb) f- 2 ( abaccb, aaaadb ), 
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( abaccb, aaaadb) f-- 4 ( abacdb, aaaacb ). 

The procedure Convert runs for r = 2 transforming this sequence 
into the sequence S': • 

( aba2ccb, aaa3adb) f-- 2 ( aba3adb, aaa2ccb ), 

( aba1 ccb, aba3adb) f-- 3 ( aba1 adb, aba3ccb ), 

( bba1 cdc, aba3ccb) f-- 2 ( bba3ccb, aba1 cdc ), 

( bba3ccb, aaa1 adb) f--3 ( bba3adb, aaa1 ccb), 

( bba3adb, bba1 cdc) f-- 5 ( bba3adc, bba1 cdb ), 

( aba1 adb, aaa1 ccb) f-- 2 ( aba1 ccb, aaa1 adb), 

( aba1 ccb, aaa1 adb) f-- 4 ( aba1 cdb, aaa1 acb). 

Now we apply Algorithm 1 to the sequence S' for r previously de­
fined. The obtained sequence S" is a B"-producing CC Sin CO*(A"), 
where 

A" {aix[r + 2, lxl]lx EA, 1 ~ i ~ m}, 

B" {aizi[r + 2, lzil]ll ~ i ~ m} 

due to the two claims from the proof of Lemma 2. 
For each 1 ~ i ~ m card(ArbH(A", a;z;[r + 2, lz;I])) is either 

card(ArbH(A, z;)) or card(ArbH(A, z;)) - 1. Furthermore, for each 
i such that card(ArbH(A", aiz;[r + 2, lzil])) = card(ArbH(A, zi)) - 1 
there exist at least one step in S' where the strings exchange prefixes 
oflength at most r. lt follows that lg(S") ~ lg(S')- ft/21, where t = 
card( {ilcard(ArbH(A", aizi[r + 2, lzil])) = card(ArbH(A, zi)) - l} ). 
Consequently, 

lg(S) = lg(S') 2 lg(S") + ft/21 2 
L~(card(ArbH(A", aiz;[r + 2, lzil]))- 1) f / l ~~-------------+ t 2 > 2 -
I:~(Arbcard(H(A, zi)) - 1) 

2 

The reader may easily find sets A and B fulfilling the last two 
assertions. D 
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An a-approx.imation algorithm for a minimization problem is a 
polynomial algorithm that delivers a solution whose value is at most 
a times the minimum. From the previous theorem we have: 

Theorem 2.5.5. There is an 2-approximation algorithm for comput­
ing the sequential crossover distance from two sets of strings. 

Proof. lt is easy to notice that an algorithm that computes 
LzEB(card(ArbH(A,z))- 1) requires O(nlBI), where n = card(A) 
and I BI is the sum of the lengths of all strings in B. □ 

As far as the parallel crossover distance is concerned one may 
state 

Theorem 2.5.6. There is an exact algorithm that computes 
PCOD(A, B) in O(nlBI) time, where n = card(A) and IEI zs the 
sum of the lengths of all strings in B. 

We have introduced two crossover distances between two finite 
sets of strings and proposed some algorithms for computing them 
based on the "greedy" strategy. Ali results presented here are valid 
for a particular type of crossover, namely the uniform crossover where 
the strings exchange with each other prefixes of the same length. 
Even so, the problem of finding a polynomial algorithm to compute 
the sequential crossover between two finite sets remains open. The 
next step is naturally to consider the case of arbitrary crossover; we 
hope to return to this in a forthcoming paper. 
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Chapter 3 

Language Generating 
Devices 

Generative devices based on operations suggested by the mutations 
which take place within genomes appear very attractive for formal 
language theorists ( see [33, 34, 37, 89, 94]) and hopefully, biologists 
(see [11, 19, 20, 53, 116, 121, 122, 123, 134]). It seems that an in­
creasing trend manifests itself throughout the field of computational 
biology toward abstracted views of biological sequences, which is very 
much in the spirit of language theory. 

The issues addressed by this section are basically formal language 
theoretic questions but the results presented here address a biologi­
cally important and realistic problem as well. We hope that our model 
responds to some computational aspects of bioinform~tics. Maybe it 
is worth mentioning here that, in spite of the simplicity of our model 
(no context constraints, no auxiliary symbols), the decidability status 
of many important problems is negative. 

It might also be argued that, due to practicai problems when 
dealing with arbitrarily large genomes, the length of strings is of a 
definite importance. Thus, following the approach in L-systems area, 
it appears of interest to study length sets or growth functions asso­
ciated to the evolutionary grammars. One paragraph of this section 
is a first approach in this respect. 

We introduce in this first section the most general model - the 
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evolutionary grammar - which takes into account nat only all the 
operations involved in the genome evolution but lexical context for 
controlling their application. We introduce a grammatical model for 
the evolution of genomes an the basis of gene mutations and chromo­
some mutations and present some properties of such grammars. Few 
problems which might be biologically relevant are discussed from the 
computational point of view. On the other hand, the model suggests 
a new direction in formal language theory motivated by the common 
operations of genome evolution. 

3.1 Evolutionary Grammars 

For an alph.;t,bet V we denote by C(V) = {(w)lw Ev+}, (,)~V. 
The C-length of x E C(V)+ is defined as follows: 

l { 
1, if x E C(V) 

9C X = ( ) lgc(Y) + 1, if x = yw,w E C(V) 

An evolutionary grammar is a construct 

EG = (V,GM,CE,CO,A) 

where 

• V is an alphabet ( the set of nucleotides). 

• GM ~ { Sub,I ns, Del} ( the set of gene mutations: substitu­
tions, insertions, deletions, respectively) 

- Sub is a subset of V x ( V U { (}) x ( V U {)}) x V 

- Ins,Del are subsets of V x (V U {(}) x (V U {)})\(V x 
{(}X{)}) 

• CE~ {CDel,Inv,Trans,Dupl} (the set of chromosomes evo­
lutions: deletions, inversions, transpositions, duplications, re­
spectively) 

- C Del and Inv are finite subsets of C(V)+ 

- Trans and Dupl are finite subsets of ( C(V)+ )3 
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• CO is a finite subset of (C(V)+)4 such that if (x, y, z, t) E CO, 
then (z, t, x, y) E CO, too (the set of crossing-over operations). 

• A is a finite subset of C(V)+ (the set of initial genomes) 

We define the following relations on the set of genomes C(V)+: 

( i) x ===}cM y iff one of the following conditions holds: 

1. x = uacbv, y = uadbv, (c,a,b,d) E Sub E GM, 

2. x = uabv, y = uacbv, (c,a,b) E Ins E GM, 

3. x = uacbv, y = uabv, (c,a,b) E Del E GM 

( these rules model the gene mutations) 

( ii) x ===}cE y iff one of the following conditions holds: 

1. X= X1X2X3, y = X1X3, X2 E CDel E CE, 

2. x = X1X2X3, y = x1mi(x2)x3, X2 E Inv E CE, 

3. X= X1X2X3X4X5X5, 

{ 

X1X3X4X2X5X5, (x2, X4, xs) E Trans E CE 
X1X2X5X3X4X5, (xs,x2,x3) E Trans E CE 

y= 
X1X2X3X4X2X5X5, (x2,X4,xs) E Dupl E CE 
X1X2X5X3X4X5X5, (xs, x2, x3) E Dupl E CE 

( these rules model the chromosomes rearrangements) 

(iii) x,y =}coz iff x = x 1x2x3x4, y = y1y2y3y4, and 

1. lgc(x1x2) = lgc(Y1Y2), 

2. z = X1X2Y3Y4 

( this rule models the crossing-over of the genomes x and y 

resul ting in z). 

Let us define the following sequences of languages 

A, 

{y E C(V)+ Ix===} x y for some x E L;(EG)}, 

X E {GM,CE}, i 2'. O, 

{z E C(V)+ Ix, y =}co z for some 

x, y E L;(EG)}, i 2'. O, 
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L;+1(EG) = L;(EG) u L;+1(GM) u L;+1(CE) U 

L;+ 1 (CO), i 2' O. 

The world generated by an evolutionary grarnrnar as above is 

(intuitively, L;(EG) contains all genornes which can be obtained frorn 
genornes in the set A after at most i rnutations and W(EG) is the 
union of all these sets, i.e. it consists of all genornes which originate 
from elernents of A by some given rnutations ). 

As one can easily see the aforernentioned definition of the evolu­
tionary grarnrnars tries to model all local as well as global operations 
that rnight occur during the evolution tirne. 

We say that an evolutionary gramrnar EG is local or global if 
CE = © or GM = © holds, respectively. Moreover, EG is called 
non-deleting, if Del = C Del = © holds. 

The following rnatters appear to be of interest frorn the cornpu­
tational biology point of view: 

1. lt is possible to get a given genorne frorn another one ? 
2. Is a world generated by a given evolutionary gramrnar finite 

or infinite ? 
3. Are there common genornes in two given worl<ls ? 
4. What can be said on the number of genorns derivable frorn 

a given set of genorns by a certain nurnber of given mutations ? 
5. What can be sai<l on the length of genorns derivable frorn a 

given set of genoms by a certain number of given mutations ? 
We rnention that our model is not satisfactory in order to de­

scribe the process of evolution because we take into consideration all 
genomes created by the given mutations whereas the nature takes 
only some of them which survive since the corresponding organisms 
have better properties and abilities ( the others lead to lethal situa­
tions). In or<ler to model this aspect one has to add further features 
( see [28] for an approach). 

Furthermore, we give the mutations in the grammar and allow 
only them during the evolution. However, which mutations lead to 
new organism is not known in advance. Therefore one has to add 
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a mechanism which selects the mutations and does nat require their 
knowledge in advance. We shall present answers to some of the prob­
lems mentioned above. 

3.1.1 Decision Problems 

In this subsection we are firstly interestecl in the question whether 
or nat a given genom can be transformed by some given mutations 
to a given genom. Formally, this can be written as follows: Given 
some sets V of nucleoticles, GM = {Sub,Ins, Del}, CE = { C Del, 
Jnv, Trans, Dupl} and CO of mutations and genomes x and y, does 
there ex.ist a derivation 

with n 2: 1 and X; E {GM, CE, CO} for 1 ::::; i ::::; n. Obviously, 
this is equivalent to the following problem: Given an evolutionary 
grammar EG = (V,GM,CE,CO, {x}) and a genom y, does y E 
W(EG) hold. This is the membership problem which is well-known 
and well investigated in the theory of formal languages (see [64]). 
However, the operations which are performed in one derivation step 
of a evolutionary grammar differ essentially from the replacements 
used in the classical theory of formal languages. 

Theorem 3.1.1 i} There is no algorithm which decides, for a given 
local or global evolutionary grammar EG (with a singleton set of ini­
tial genomes) and a given genome y, whether or nat y E vV(EG). 

ii} There is an algorithm which decides, for a given non-deleting 
evolutionary grammar EG and a given genome y, whether 01· nat 
y E W(EG). 

Proof. i) It is well-known that there is no algorithm which decicles 
the membership problem for arbitrary phrase structure grammar, i.e. 
which decides, for a grammar G = (N, T, P, S) and w E r+, whether 
or nat w E Gen(G) (see [64]). 

Let G be a phrase structure grammar as above, whose set of 
productions P contains only rules of the following forms: 

AB ----, AC, AB----, GB 
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A -, EC 

with A, E, C E N and a E T. For the effect of arule AE _, CD 
could be obtained without side effects by the context sensitive rules 
AE -, Y E, Y E -, Y X, Y X -, C X, C X -, CD, provided that Y 
and X have no other occurences in the rules of G and by the Kuroda 
normal form, we daim that the aforementioned forms do not induce 
any restriction of the generative capacity. 

Take the local evolutionary grammar 

EG = (V,{Sub,Ins,Del},0,0,{(S)}) 

where 

V = Nu Tu {[El, [EC]IA _, EC E P} 

Sub= {(E,A,X,C)IAE-,ACEP,XENUTU{)}} 

U {(A,X,E,C)IAE _, CE E P,X E N UTU {(}} 

u { (A, X, Y, a) I A _, a E P, X E N u T u { (}, 

YENUTU{)}} 

u {(A, X, Y, [EC])IA _, EC E P, X E Nu Tu{(}, 

YENUTU{)}} 

u {([EC],[E],X,C)IE,CEN,XENUTU{(}} 

U {([El, X, Y, E)IE E N, X E Nu Tu{(}, YEN 

Ins= {([E],X,[EC]IE,CEN,XENUTU{(}} 

Del = {(A,X,Y)IA-,cEP,XENUTU{(},YENUTU{)}} 

Clearly, w E L iff (w) E W(EG) that implies the undecidability of 
the membership problem for local evolutionary grammars. 

For the same phrase structure grammar G let us assume that 
P = { a; ---+ /Ji I 1 :S i :S n, for some n 2: 1. We consider the global 
evolutionary grammar 

EG = (V,0,{CDel,Inv,Dupl},0,{x}) 

where 
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{ c1, c2, d1, d2, #, $} n ( N u T) = 0 
X g( C1 c2d1 d2/31 d2/32 ... d2f3n)( # )( 5)($) 

CDel {g(d1a;d1d2)ll :S i :S n} U {(c1),(c2)} 
Inv {(c1)(X)IX E NU T} U {(X)(c2)IX E NU T} 

Dupl {(g(d2/3;), g(d1a;d1), (X))ll :S i :S n, X E NU TU{$}} u 
{((c1),(#),(X))IX E N UT} U {((c2),(X),($))I 

XEN u T} u {((d1), (ci), (X))IX E NU T} U 

{((d1),(X),(c2))IX E NuT} 

In the above relations g is a morphism from NU T into NU TU { (,)} 
defined as g(X) = (X), for all X E NU T. 

Thus, by deletions and duplications we are able to simulate all 
productions of P. Therefore, 

which concludes the first statement of this theorem. 

ii) Since the grammar is non-deleting, any step in the derivation 
does not decrease the length of the generated word. Thus one can con­
struct an upper bound n for the number of steps which are necessary 
in order to obtain a given PJ.ement y by a given grammar EG. Now 
we only have to determine in succession all sets L0 (EG), L1(EG), ... , 
Ln(EG) which can be done algorithmically since all these sets and 
the sets of operations are finite. Finally, we have to check whether or 
not y E Ln(EG). □ 

The next decidabili ty results are direct consequences of the pre­
vious theorem. 

Corollary 3.1.1 i) There is no algorithm which decides, for two 
given local/global evolutionary grammars EG1 and EG2, whether or 

nat W(EG1) ~ W(EG2)-
ii) There is no algorithm which decides, for two given local/global 

evolutionary grammars EG1 and EG2, whether or nat W(EG1) n 
W(EG2) = 0. 

iii) There is no algorithm which decides, for two given local/global 
non-deleting evolutionary grammars EG1 and EG2 , whether or not 

W(EG1) n W(EG2) = 0. 
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Proof. ln order to prove the first assertion it suffices to take an 
evolutionary grammar EG1 generating only one genome and another 
arbitrary one EG2 generating a nonrecursive world. An algorithm for 
solving the problem W(EG 1 ) ~ W(EG2) would imply that W(EG2) 
is recursive, contradiction. 

The undecidability of the intersection emptyness problem for local 
(non-deleting) evolutionary grammars follows obviously from Theo­
rern 3.1.1. Let G; = (N;, T;, S;, P;), i = 1, 2, be two arbitrary gram­
mars with N1 n N2 = 0 and P; = {o~ --+ ,B}ll :S j :S ni}, i = 1, 2, 
for some n1 , n2 2:: 1. As in the proof of Theorem 3.1.1 one can con­
struct two global evolutionary grammars EG1 and EG2 such that 
W(EG 1) n W(EG2) is the following set 

g( c1 c2d1 d2,8i d2,B~ ... d2,B! d2,8i d2,B~ ... d2,B~)( #) 
g(Gen(G1 ) n Gen(G2))($). 

Ofcourse, W(EG
1

)nW(EG
2

) = 0iffGen(G
1

)nGen(G
2

) = 0, which 
is undecidable. 

But the above construction does nat work for global non-deleting 
evolutionary grammars. So, we shall provide below another proof in 
the case of non-deleting evolutionary grammars. 

Let -

be an instance of the Post Correspondence Problem over the alpha­
bet { a, b}. Consider the global non-deleting evolutionary grammars 
EGx, EGy as follows: 

where 

EGz = (V,0,{Jnv2 ,Duplz},0,Az), z E {x,y}, 

V {1,2, ... ,n}U{a,b,c,d}, 

Ax {g( mi( x1)l mi(x2)2 ... mi( Xn)nmi(y1 )lmi(y2)2 ... 

mi(yn)nkcdxk)ll :S k :S n} 

Ay {g(mi(x1)lmi(x2)2 ... mi(xn)nmi(y1)lmi(y2)2 ... 
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Duplx 

Duply 

Invx 

Invy 

mi(yn)nkcdyk)ll S k S n} 

{(g(mi(x;)i),(p)(q),(c)(d))ll S i,p,q S n} 

{(g(mi(y;)i),(p)(q),(c)(d))ll S i,p,q S n} 

{g(mi(x;)icd)ll S i S n} U {(d)(c)(i)ll S i S n} 

{g(mi(y;)icd)ll S i S n} U {(d)(c)(i)ll S i S n} 

101 

Note that g is the same morphism as that from the pro of of Theorem 
3.1.1. One easily observe that W(EGx) n W(EGy) = 0 if and only if 
the given instance has no solution and the proof is complete. □ 

Theorem 3.1.2 It is undecidable whether or nota given local/global 
evolutionary grammar generates a finite number of genoms. 

Proof. By applying a reduction to the Post Correspondence Problem 
one can prove (see [96]) that the finiteness problem for the sentential 
form languages of context-sensitive grammars is undecidable. Fol­
lowing the proof of Theorem 3.1.1 we get a local/global evolutionary 
EG grammar simulating all productions of a given context sensitive 
grammar G. By that simulation every sentential form of G has a 
finite number of "similar" genomes in W(EG) (since G is length in­
creasing) and each genome in W(EG) is associated to a sentential 
form of G. Therefore, W(EG) is finite if and only if the sentential 
form language of G is finite. □ 

It is worth mentioning here that the problem remains undecidable 
for local non-deleting evolutionary grammars as well. We do not know 
whether the problem has the same decidability status for global non­
deleting evolutionary grammars. 

Ali the results above are negativist. For lightening a bit this 
sombre vision we present the next decidable result. 

Theorem 3.1.3 It is decidable whether or not a given global, non­
deleting evolutionary grammar produces all genomes consisting from 
chromosomes in a given finite set. 

Proof. The problem can be stated as follows. Let EG = (V, 0, CE\ 
{CDel},CO,A) be an evolutionary grammar and F be agiven finite 
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subset of C( V). Now, we have to decide whether or not W(EG) = F+ 
holds. Take k = max{lgc(x)lx E A}. Our problem can be reduced 
to the checking of the following relations: 

(i) F = {w E C(V)I exist x,y E C(V)* such that xwy EA 

( ii) Any w with lgc( w) :s; k + l belongs to W(EG) 

Note that the relations above can be algorithmically verified since the 
evolutionary grammar is non-deleting. If one of the above relations 
is not fulfilled, then the equality W(EG) = F+ does not hold, too. 
Now it suffices to show how can be produced any genome w E p+ 
with lgc(w) = k+2. Let wx E p+ with lgc(w) = k+l, lgc(x) = l. 
As lgc( w) = k + l there ex.ists y E A with lgc(Y) :s; k such that w can 
be obtained from y by different chromosome mutaţions. On the other 
hand, the genome yx has its C-length at most k + l; consequently it 
is produced from a genome z E A. Therefore, z can produce wx as 
well which concludes the proof. O 

lt is worth mentioning here that the theorem remains valid when F 
is a finite subset of C(V)+. 

3.1.2 A Growth Function for Genomes 

Based on the definition of the chromosome length lgc, we define the 
gmwth function JEG : N-> N of an evolutionary grammar EG by 

!Ea(n) = max{lgc(x) Ix E Ln(EG)}. 

This function is an analogon of the growth function known from the 
theory of LINDENMAYER systems (see [113]). 

First we mention that the gene mutations GM do not influence 
the growth function because they change the length of genes but 
do not change the length of a chromosome. Because L;(EG) s;;; 
L;+1(EG), !Ea is a monotonous function. 

Let 
a= max{cl(x) Ix EA}. 

If the set Dupl of duplications is empty, then no increase of the 
chromosome length is possible, i.e. 

!Ea(n) = a 
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is a constant function in this case. 
On the other hand, if k = max{cl(xi) I (x 1 , x2 , x 3 ) E Dnpl}, then 

any derivation step can increase the C-length at most by k. Thus we 
obtain 

!Ec(n)S:a+n·k. 

This shows that, for any evolutionary grammar EG, the growth func­
tion is bounded from below by an constant function and bounded 
from above by a linear function. 

However, a lot of other mappings within the aforementioned bounds 
may be growth functions of some evolutionary grammars. We provide 
now such a class of mappings. A function f : N -> N is monotonously 
increasing ultimately periodically linear (MIUPL, shortly) if there are 
numbers t 2: O ( threshold), p 2: 1 (period) and O :'S r 1 :'S r 2 :'S ... S r P 

satisfying the condition 

J(t +ip+ j) = J(t) + irp + rj, for all i 2: O, 1 s; j s; p 

We give the following result on the existence of growth functions. 

Theorem 3.1.4 i) Every MIUPL mapping is the growth function of 
an evolutionary grammar. 

ii) There is an evolutionary grammar EG such that fEc(n) 
O(fa). 

Proof. The first item is left to the reader and we only prove ii). 
It is sufficient to consider the global evolutionary grammar 

with 

EG = (V, 0, {Inv, Trans, Dupl}, 0, { eabcdaaf}) 

Inv 

Trans 

Dupl 

{ac,bc,de}, 

{(aec,a,f),(J,a,e)}, 

{(bc,a,a),(a,c,e),(e,bc,cd)} 

where a, b, c, d, e, f are the elements of C(V) used. First we obtain 
the following derivation 

eabcdaaf ===> eabcdabcaf ===> eabcdacbaf ===> eabcdcabaf ===> 

eabccdabaf ===> eabcecdabaf ===> eabcaecdabaf ===> 

eabcdabaaecf 
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which is unique in that sense that the application of other muta­
tions do not increase the C-length and lead to situations such that 
no further applications of mutations are possible). Now we can re­
peat this derivation with an additional application of the transposi­
tion (!, a, e) and two additional inversions and obtain after 10 steps 
eabcdababaaecf ec ( again, this derivation is unique in the above sense; 
however, the time w here the additional transposition is performed is 
not uniquely determin ed). N ow we can repeat this process and have 
to use two additional steps in order to obtain eabcdabababaaecf ecec 
etc. Therefore we get 

!Ea(O) = 8, !Ea(7) = 12, !Ec(l 7) = 16, !Ec(29) = 20 

and generally 

n 

!Ec(7 + 8n + 2 Li)= !Ec(n2 + 9n + 7) = 12 + 4n 
i=l 

which proves the statement. O 

ln light of the last result we suspect that the class of evolutionary 
grammar growth functions is likely quite large and it seems to be 
very diffi.cult to give an exhaustive characterization. 

3.2 Context-Free Evolutionary Grammars 

This section is devoted to the context-free variant of the evolutionary 
grammars investigated in the previous section. For sake of simplicity, 
in the rest of this section we refer to these grammars as evolutionary 
grammars but the reader should understand that they are context­
free evolutionary grammars. Besides all the problems studied for the 
evolutionary grammars in the previous section we shall consider here 
some specific problems as well. 

A context-free evolutionary grammar ([33)) is a construct 

EG = (V,A,Del,Inv,Xpos,Dup) 

where 
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• V îs an alphabet ( the set of nucleotides. Strings of V* are 
referred as genomes ). 

• Del, Inv, Xpos and D·up are finite subsets of v+ (the sets of 
deletions, inversions, transpositions and duplications, respec­
tively), 

• A is a finite subset of v+ (the set of initial genomes) 

We define the following relationships on the set v+: 

X -:=:}De/ y iff X= UVW, y = uw, V E Del 

x evolves into y by deleting a segment 

X -:=:} Inv Y iff Y E l(V,Inv) (X) 

x evolves into y by reversing the orientation of a segment 

X -:=:} X pos Y iff Y E ~ V,X pos) (X) 

x evolves into y by transposing a segment to a new position 

X ==;,Dup y iff y E 'D(V,Dup)(x) 

x evolves into y by copying a segment 

and 

x -:=:}Ec y iff x ==;,x y, for some X E {Del,Inv,Xpos,Dup} 

Denote by -:=:}X the reflexive and transitive closure of ==;,X· The 
language generated by an evolutionary grammar as above îs 

L(EG) = {w E V*lx ==;,EG w, for some x EA} 

(intuitively, L(EG) consists of all genomes which originate from ele­
ments of A by some given mutations). 

Remark. Each evolutionary grammar may be viewed as a very par­
ticular pure grammar [4 7]. Indeed, each mutation can be simulated 
by a set of pure productions as follows. 

• For each x E Del, the associated production îs x ------> E. 

• For each x E Inv, the associated production îs x------> mi(x). 
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• For each x E X pos, the associated productions are xa ----+ ax, 

for all a E V. 

• For each x E Dup, the associated production is x ----+ xx. 

An evolutionary grammar is called non-deleting if Del = 0. 
We shall give an informal biologica} interpretation _of our genera­

tive device. The alphabet of the grammar might be considered as the 
alphabet of nucleotides and the set A as the set of initial genomes. 
Evolutionary events are described by the sets Del, Inv, Xpos, Dup; 
thus the language generated by an evolutionary grammar may be 
viewed as the world consisting of all genomes which originate from 
elements of A by some given mutations. 

3.2.1 Computational Power 

Denote by {(EG) the family of languages generated by evolutionary 
grammars. 

Theorem 3.2.1 1. The family of languages generated by evolution­
ary grammars is incomparable with the family of regular languages. 

2. The family of languages generated by evolutionary grammars 
is incomparable with the family of context-free languages. 

Proof. The following evolutionary grammar generates a non-context­
free language: 

EG = ({a,b,c},{abc},0,0,{a,b,c},{abc}) 

It is easy to check that 

Let us consider the alphabet V = { a, b, c, d, e} and the language 

L = {x EV* I if x = x1a1n2x2, with x 1 ,x2 EV*, and a 1 ,a2 EV, 

then a 1 -/:- a2 and a 1a2-/:- ba}. 

It is easy to see that this is an infinite regular language. For 
instance, L contains all square-free strings over {c,d,e}, and one 
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knows that this language is infinite (see [128], [118]). The regularity 
of L can be easily checked. Moreover, if Sub(L) is the language of all 
substrings of strings in L, then obviously L = Sub(L) (the properties 
of strings in L are hereditary). 

Let us assume that L is generated by an evolutionary grammar, 
i.e. L = L(G) for some G = (V,A,Del,Inv,Xpos,Dup). 

(i) Assume that there is z E Del, z f: c:, such that z E Sub(L). 
This means that z E L. Suppose that z = a 1z1 = z2a2, for some 
z1, z2 E V* and a 1, a 2 E V. There are strings w = W1 {3zf3w2 in L, 
with w1 ,w2 E V*,/3 (ţ. {a,b,a1 ,a2} (we have card(V) = 5 and z EL, 
hence at least strings of this form with w1 = w2 = € can be found 
in L). Then w ~De/ w1{3{3w2; the obtained string is not in L, a 
contradiction. 

(ii) Assume that there is z E Xpos,z f: c:, such that z E Sub(L). 
For z = a1z1 = z2a2, for some z1, z2 E V* and a1, a2 E V, we take 
w = w1{3zf3w2 in L, with w1, W2 E V*, f3 (ţ. { a, b, a 1, a2}, and we get a 
contradiction by noticing that w ~ Xpos w1{3{3zw2 produces a string 
not in L. 

Therefore, no element of Del and X pas can be used in a deriva­
tion step with respect to G, we can replace these sets by 0 and the 
generated language is the same. Thus, we suppose that G has already 
these components empty. 

(iii) Consider now the language S F{c,d,e}, of all square-free strings 
over { c, d, e}. We have mentioned above that this is an infinite lan­
guage ([128], [118]). Construct the strings of the form 

a 1 aba2ab . .. akabak+I, 

for k > 1,a; E {c,d,e}, 1 :S i :S k + 1, and a1a2 .. ,ak+I E SF{c,d,e}· 

Denote by M the language of such strings. 
The language M is infinite (because S F{c,d,e} is infinite) and it 

is included in L (no double symbol and no substring ba appear in 
its strings ). The ax.iom set A is finite. Therefore, there are strings 
w E M which are not in A, that is there is a derivation x ~• w în 
G. Let w' ~ w be the last step of such a derivation. Without loss 
of generality we may assume that w' f: w ( we ignore the steps which 
do not observe this property ). By the definition, we have w' E L. 
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Because w contains no square, the derivation step w' ==> w is not 
a duplication. Because Del = 0 and X pas = 0, the only remaining 
possibility is to have an inversion. Let z E Inv be the string inverted 
in w' in order to obtain w, i.e. w' = v1 zv2 and w = v1 mi( z )v2 for 
some v1 , v2 E v•. If z E V, then w' = w in contrast to our choice. 
If mi(z) contains ab, then w' contains the subword ba in contrast to 
w' E L. Therefore mi(z) = o:a or mi(z) = bo: or mi(z) = bo:a hold 
for some a E { c, d, e}. In the former two cases w' contains ba, in the 
latter case w' contains aa and bb. Therefore in any case we get a 
contradiction to w' E L. 

Consequently, no operation can be used in the last step of pro-
ducing a string w as above, and this completes the proof. D 

A language L is called strictly bounded if and only if there are 
pairwise different letters a1 , a2, ... , ansuch that L ~ aîa2 ... a;. 

Theorem 3.2.2 A strictly bounded language can be generated by a 
non-deleting evolutionary grammar if and only if it is regular. 

Proof. In [50] it is shown that a strictly bounded language L ~ 
ai a2 ... a; is regular if and only if there is an integer r E N, finite 
sets F;,1 ~ N and integers m;,j E N, 1 :S i :S n, 1 :S j :S r, such that 

r 

L U {ar1,j+s1 m1,1 ar2,j+s2m2,1 arn,J +snmn,j 
1 2 • • • n 

j=l 

r;,j E F;,1,s; E N for 1 :S i :S n}. 

For 1 :S i :S n, let m; be the smallest common multiple of the integers 
m;,1, m;,2, ... , m;,, different from O ( or m; = O if m;,1 = O for all j), 

t =max{s :s E F;,1,1 :S i :S n,1 :Sj :S r}. 

Now we consider the evolutionary grammar 

with 
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Let 
r 1 ,1 +s1m1,1 r2,1 +s2m2,1 Tn,1 +snmn,J (3.l) 

W = al U2 •.• Un 

be a word in L. If a duplication of at' for sorne i, 1 :S i < n, can 
be applied to w then r;,j + s;m;,j 2': tm;. Hence, by m; = qimi,j for 
some qj E N, the word 

I r1 1 +s1m1 1 r2 1 +s2rn2 1 Ti-1 1 +s,-1m,-1 1 r, 1 +(s,+tqi)m, 1 w a 1 ' ' a 2 ' • ... a;_ 1 ' ' a; ' • 

Ti+ J ,J +si+ 1 mi+l ,J Tn,J +sn mn,j 
ai+I ... Un 

obtained by the duplication belongs to L, too. Since we start the 
generation of L(EG) with words from A ~ L and the application of 
duplications to words of L yields words of L, we get L(EG) ~ L. 

We now prove the converse inclusion by induction on the length 
of words. Obviously, the shortest words in L belong to A and A ~ 
L(EG) holds by definition. Thus let us consider a word of the form 
given in (3.1) which is not contained in A and assume that all words 
w" E L which are shorter than w belong to L(EG). Because w (ţ. A, 
there is a number i, 1 :S i :S n such that r;,j + s;m;,i > 2tm;. By 
Ti,i ~ t ~ tm;, we get s;m;,i > tm; = tq;mi,i • Thus the word 

W
II r1 1 +s1m1 1 r2 1 +s2m2 1 r,-1 1 +s,-1m,-1 1 r, 1 +(s;-tq;)m, 1 al ' ' a2 ' ' · ··ai-I ' ' a; ' ' 

Ti+1,j+Si+1 rn1+1 ,J Tn,J +sn m 11 ,1 ai+I ···Un 

is in L. By assumption w" E L(EG). Because w" ~Dup w, we 
obtain w E L(EG). 

Let EG = (V,A,0,Inv,Xpos,Dup) bea non-deleting evolution­
ary grammar generating a strictly bounded language. Obviously, one 
may assume that J nv = X pas = (jJ without modifying the language 
generated by EG. Now it is easy to see that the language generated 
by EG is regular. □ 

We conjecture that Theorem 3.2.2 is valid for arbitrary evolu­
tionary grammars as well. Next theorem proves this assertion for the 
unary alphabet. 

Theorem 3.2.3 A language over the unary alphabet is regular iff it 
is genemted by an evolutionary gmrnmar. 
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Proof. By the first part of the previous proof it suffices to prove that 
each language over the unary alphabet generated by an evolutionary 
grammar is regular. 

Consider an evolutionary grammar EG = ( {a}, Del, Inv, Xpos, 
Dup, A). vVithout loss of generality we may assume that Inv = 
Xpos = 0. Let 

and 

#(Del) 

#(Dup) 

p = gcd(d1, d2, ... , dm, C1, C2, ... Cn) 

Here gcd means the greatest common divisor. It is known that 

n m 

p = L k;c; + L q;d;, 
i=l i=l 

for some integers k;, qj, l :S i :S n, l :S j :S m. Moreover, one can 
choose k; 2: O and qj :S O, for all 1 :S i :S n, l :S j :S m. 

If L(EG) is finite, then it is obviously regular. If L(EG) is an 
infinite set, there aret;, l :S i :S s, s :S p, such that 

L(EG) =FU LJ{at,+kplk 2: O}, 
i=l 

for some finite set F. Consequently, L(EG) is regular which com­
pletes the proof. o 

A statement analogous to Theorem 3.2.2 does not hold for context­
free languages because the strictly bounded context-free language 
{anbn I n 2: l} cannot be generated by an evolutionary grammar. In­
deed, let us assume the contrary and Jet EG = ({a,b}, A, Del, Inv, 
Xpos, Dup) be an evolutionary gra.mmar generating L. Obviously, 
Dup =/:- 0. For each w E Dup we distinguish three cases: 

1. w E a+. Then, for large enough n, anbn ==?Dup an+lwlbn, 
contradiction. 

2. Analogously for w E b+. 
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3. w E a*abb*. Then anbn may provide, by duplication, a word 
having two factors ab, contradiction. 
Consequently, L cannot be generated by any evolutionary grammar. 

We do not know whether or not Theorem 3.2.2 also holds for 
bounded languages, where a language L is bounded iff there are the 
strings w1, w2, ... , Wn such that L;:: wîw; ... w~. 

In the view of the previous theorems it is of interest to look for 
features tobe added to an evolutionary grammar in order to generate 
all regular languages. A squeezing mechanism in the form of a termi­
nal alphabet is too powerful, since we get all recursively enumerable 
languages in this way as stated by the next theorem. 

Theorem 3.2.4 Each recursively enumerable language can be ex­
pressed as the intersection of a language in [(EG) with a regular 
language. 

Proof. Let G = (N, T, S, P) bea phrase-structure grammar. We may 
assume (see [48]) that N = {S, A, B, C} and 

P = {S---. xill :S: i :S: n, for some n ~ 1} U {ABC---. c} 

We consider the evolutionary grammar 

EG = (V, A, Del,Inv,Xpos, Dup) 

with 

V 

Del 

Inv 

Xpos 

Dup 

A 

NUTU{<l, t>,--l}U {1-ill :S: i :S: n}, 

{ABC, --l} U {1-;S <l t>ll :S: i :S: n} U { <lxi1-i t> --l I 
1 :S: i :S: n }, 

{<lxi1-;ll :S: i :S: n} U {S1-imi(x;)ll :S: i :S: n}, 

{<lxi1-i t> 11 :S: i :S: n}, 

{ <lx;1-; t> --l ll :S: i S n}, 

{<lx11-1 t> --l <lx21-2 t> --l ... <] Xn1-n t> --l S} 

Firstly, we shall prove that L( G) ;:: L(EG) n T*. More precisely, we 
shall prove that 
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Let 5 ===>c y be a derivation in m 2: O steps. If m = O, the assertion 
is trivially true. We assume the assertion true for any k < m and 
prove it for m. Consider S ===>8- 1 z ===> y. By the induction 
hypothesis, <lx1..L1 I> -l <lx2..L2 I> -l ... <l Xnl.n I> -l z E L(EG). 

If the rule used at the last step was ABC --'> E, then 

<lX1..l1 I> -l <lx2..l2 [> 4. • • <] Xnl.n [> -l Z ==>De/ 

<] X1 l.1 I> 4 <] X2..l2 I> -l · · · <] Xnl.n I> 4 Y 

If the rule used at the last step was 5 - x;, for some i, that is 
z = z1Sz2,y = z1x;z2, we consider the following derivation in EG: 

<lx1..L1 I> -l <lx2..l2 l> -l • • • <l Xnl.n I> -l 

z ===>Dup <lx1l.1 I> -l <lx2..L2 I> -l ... <l x;l.; I> -l <lx;..L; I> -l ... 

<l Xnl.n I> -j Z ===> De/ <l X1..l1 I> -j <l X2..l2 I> -l · · · 

<lx;..l; I> -l <lx;..l; I> ... <l Xnl.n I> -l Z ===>Xpos <lX1..l1 I> 

-l <l X2..l2 I> -l ... <l x;l.; I> -l ... <l Xnl.n I> -l z1S <l x;l.; I> Z2 

===>Inv <lX1..l1 I> -l <lx2..L2 I> -l • .. <l x;l.; I> -1 ... <l Xnl.n I> -l 

z1S..L;mi(x;) <l t>z2 ===>Jnv <lx1..L1 I> -l <lx2..L2 I> -1 ... 

<lx;..L; I> -l ... <l Xnl.n I> -l Z1X;l.;S <l t>z2 ===>ne1 

<lx1..L1 I> -l <lx2..L2 I> -l • • • <l x;..L; I> -l • • • <l Xnl.n I> -l Z1XiZ2 

N ow for any y E L( G) there exists the derivation in EG 

<lX1..l1 I> -j <lX2..l2 [> -1 ... <] Xnl.n I> -j 5 ===>t:G 

<l X1 l. 1 I> -l <l X2 ..l.2 I> -l · · · <l Xnl.n I> -l Y ===> De/ Y 

We shall discuss some considerations which lead to the conclusion 
L(EG)nT" s;:: L(EG). For sake of simplicity, denote by a= <l x1 ..L 1 I> -l 
<lx2..L2 I> -1 ... <lxnl.n I> -1. ltiseasytoseethatwheneveraS ===>EG 

/3, with /3 E (Nu T)" we have also aS ===>EG a() ==>vei (3. 
Therefore, it suffices to prove that 

where /3, 1 E (NU T)". This results from the following remarks: 
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• Each deletion of a substring ABC corresponds to an application 
of the rule ABC ---+ c. 

• Let /3 = /31/32 and a/3 ==} x pos /31 <l Xi ...Li t> /32 he the result of 
transposing the segment <lxi...Li t> /32. The symbols <l,...Li, t>, 
not in N U T can be removed only if one of the following cases 
holds: 

1. Roughly speaking, the erasing of the symbols <l, .li, t>, 
requires that the segment <l Xi ...Li t> to be preced ed by the 
symbol S. The overall effect is the substitution of S by Xi, 
Formally, a/31 ==}EG a(J~S and a/JiS <l Xi...Li t> fh ==}EG 
af3i x;/32- This case can be covered in G by applying the 
rule S---+ Xi, 

2. The symbols <l, .li, t> can be cancelled if ami(xi) ==}EG 
a.S as well. But in this case, the transposition has no 
further effect. 

□ 

3.2.2 Decidability Properties 

The last theorem has a series of consequences regarding some deci­
sion problems of evolutionary grammars. In the view of biologica] 
interpretation of evolutionary grammars given in the beginning of 
this section, some of these decision problems might also ha.ve some 
biologica! relevance. Thus, the wellknown membership problem asks 
whether or not a given genome might appear from an initial set of 
genomes by evolution. Also the following matters appear to be of 
interest from the computational biology point of view: 

1. Is the world generated by a given evolutionary grammar 
finite or infinite? 

2. Are there common genomes in two given worlds? 
3. Does the world generated by an evolutionary grammar con­

tain all genomes which would support life? Or all genomes, no matter 
they would support life? 

These problems, formally stated in the framework of our gram­
matical formalism, shall be discussed in the following. 
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Theorem 3.2.5 The following problems are undecidable for the class 

of evolutionary grammars: 
1. The membership problem. 
2. The inclusion problem. 
3. The intersection problem. (Js the intersection of the languages 

generated by two given evolutionary grammars empty?) 

4. Is R a subset of L for R being a regular language and L a 

language generated by an evolutionary grammar ? 

Proof. Let G; = (N;, T;, S;, P;), i = 1, 2, be two phrase-structure 
grammars with N 1 n N2 = 0, and EG; = (V;, A;, Del;, Inv;, Xpos;, 

Dup;), i = 1, 2, the evolutionary grammars constructed as in the 
previous proof such that Vi n Vi = T1 n T2. 

l. It is obvious that for each x E Ti*, 

hence the membership problem is undecidable. 

2. Clearly, L = { x} is a language that can be generated by an 
evolutionary grammar. Since 

the undecidability status of the inclusion problem follows. 

3. Observe that 

L(EG1) n L(EG2) -::p 0 iff L(G1) n L(G2) -:p 0, 

therefore the intersection problem is undecidable as well. 

4. Take R = Ti* and L = L(EG1). The equivalence 

R ~ L iff L(Gi) = Tt 

implies the last assertion of the theorem. o 

Theorem 3.2.6 It is nat decidable whether or nat an arbitrary given 

context-free language can be generated by an evolutionary grammar. 
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Proof. The proof is an usual reduction to the Post 's Correspondence 
Problem. Take two arbitrary n-tuples of nonempty strings over the 
alphabet { a, b}, 

Y = ( YI , Y2, • • • , Yn) • 

Then, consider the languages 

for z E {x, y}, 

Ls = {w1cw2cmi(w2)cmi(w1)lw1,W2 E {a,b}*} 

L(x,y) = {a,b,c}* - (Lx{c}mi(Ly) n Ls) 

lt is known that L(x, y) is a context-free language. For every solution 
(i1 , i2, ... , ik) of PCP(x, y) the strings 

bai1 bai2 ••• baikcx;k ... x;2 x;1 cmi(y;1 )mi(y;2 ) •.. mi(y;k) 
caikb ... bai2 bai1 b 

are not in L(x,y). On the other hand, {a,b}* ~ L(x,y). 
Clearly, when L(x,y) = {a,b,c}*, then L(x,y) can be generated 

by the evolutionary grammar: 

EG = ({a,b,c},{abc},{a,b,c},0,{a,b,c}, {a,b,c}) 

Now, it is suflicient to prove that when L(x,y) -:j:. {a,b,c}*, then 
L(x, y) is cannot be generated by any evolutionary grammar and we 
will do that in the sequel. 
LetussupposethatL(x,y) = L(EG),forsomeEG = ({a,b,c},A,Del, 
Inv, Xpos, Dup). We choose a solution (i1 , i2 , ... ik) such that 
lx;kx;k-i ... x;1 J > max{lwl I w EA}. For {a,b}* ~ L(EG), there 
exists a word w E A such that 

By the choice of the solution ( i1, i2, ... , ik) the word 
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is in L(EG). 
Therefore, 

z => EG bai1 bai2 ••• baikcx;k ... x;2 x;1 cmi(y;1 )mi(y;2 ) • • • mi(y;k) 

caikb ... bai2 bai1 b, 

contradiction, and the proof is complete. o 

Theorem 3.2.7 1. Jt is decidable whether or not the language gen­
erated by a given evolutionary grammar is finite. 

2. The problem "L(EG) = V*?" is decidable for a given non­
deleting evolutionary grammar EG. 

3. The membership problem is decidable for non-deleting evolu­
tionary grammars. 

Proof. The first assertion is immediately true. lndeed, for a given 
evolutionary grammar EG = (V, A, Del, Inv,Xpos, Dup), L(EG) is 
infinite if, and only if, Sub(L(EG1)) n Dup :j:. 0, where EG1 = 
(V, A, Del, Inv, Xpos, 0) and Sub(X) means the set of all factors of 
the strings in X. Because the set L(EG1) is finite the proof of the 
first assertion is complete. 

The second and the third items follow from [96], since any evolu-
tionary grammar îs actually a pure grammar. O 

By Theorem 3.2.2 the following open decision problems are still 
of interest: 

• Does a given evolutionary grammar generate a regular lan­
guage? 

• Can a given regular language be generated by an evolutionary 
grammar? 

3.2.3 Some Closure Properties 

Theorem 3.2.8 The family .C(EG) is not closed under union, con­
catenation, morphisms, intersection with regular sets and intersec­
tion. 
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Proof. We consider the languages: 

L1 = {x E {a,b}+I I X la=I X lb} 

L2 = a+b+ 

Both of them can be generated by evolutionary grammars. Moreover, 
L2 is regular. 

The same reasoning may be used in order to prove the non-closure 
under union and concatenation. We shall discuss it in the case of 
concatenation. We claim that L1 L2 is not in I,(EG). Indeed, let 
EG = ({a,b},A,Del,Inv,Xpos,Dup) be an evolutionary grammar 
generating L1 L2. Recall that the Parikh vector associated to a word 
x in {a,b}*, denoted by \Jl(x), is \Jl(x) =(Ix la,I x lb)- Note that 
the transpositions and inversions do not change the Parikh vector 
associated to a word. 

Sin ce there are words in L( EG) whose Parikh vector ( n1 , n2 ) sat­
isfies the requirement that n1 - n2 îs arbitrarily large, at least one 
of Del or Dup has to contain words x with I x la#I x lb- We shall 
analyse the case when Dup contains such words. A similar analysis 
for the case when Del contains such words is left to the reader. Let 
x E Dup be such a word. 

If I x la< I x [b, then the following derivation is possible in EG 

xalxlb-lxla ab ====;, EG xxalxlb-lxla ab 

which implies xxalxlb-lxlaab E L(EG), contradiction. 
If I x la> I x lb, then the following derivation is possible in EG 

xblxla-lxlbab ====;, EG xxblxla-lxlbab 

which implies xxblxla-lxlbab E L(EG), contradiction. Therefore, L1 L2 

cannot be generated by EG. 
Define the morphism h: {a,b,c,d}*----> {a,b}* by h(a) = h(c) = 

a, h(b) = h(d) = b. Since L1 U c+d+ E I,(EG) and h(L1 u c+d+) = 
L1 U L2 , it follows that I,(EG) is not closed under morphisms. 

The non-closure under intersection with regular sets and inter­
section can be settled in the same way. The language L 1 n L2 = 
{anbnjn 2'. l} cannot be generated by any evolutionary grammar by 
Theorem 3.2.1. O 
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3.2.4 Evolutionary Gramrnars and the Structural Lan­
guage of Nucleic Acids 

Theorem 3.2.9 1. There is an evolutionary grammar that generates 

LDNA· 
2. It is decidable whether or not a given non-deleting evolutionary 

grammar generates LDNA· 

Proof. 1. We consider the following evolutionary grammar: 

EG = (VDNA, A, ,Jnv, Xpos, Dup) 

with 

lnv Xpos = Dup = {AT,CG} 

A {AT,CG, ATCG} 

We claim that L( EG) = L DN A· lt is easy to verify that all strings of 
length at most 4 in LvNA are also in L(EG). Assume that all strings 
x E LDNA, lxl :S 2n are in L(EG), for some n 2: 2, and consider a 
string w E LvNA with lwl = 2n + 2. Clearly, w = x 1aax 2 , for some 
a E VvNA· By the choice of lnv it suffices to consider only the cases 
a= A and a= C. Furthermore, since CGAT E L(EG), we consider 
the case a = A only. Note that x1x2 E LvNA, lx1x2I = 2n. By our 
hypothesis x 1 x 2 E L(EG). 

If AT ==> EG x1 Xz, then the following derivation is also possible 
in EG: 

AT ==>Dup ATAT ==>ec ATx1x2 ==>xpos x1ATx2 

If CG ==>Ec x1x2, then the following derivation is also possible in 
EG: 

ATCG ==>i;;c ATx1X2 ==>xpos x1ATx2 

If ATCG ==>Ec x1x2, then the following derivation is also possible 
in EG: 

ATCG ==> Dup AT ATCG ==> EG ATx1X2 =:> Xpos X1ATx2 

Consequently, x E L( EG). We finish the proof of the first item by 
observing that L(EG) s;; LDNA· 
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2. Let EG = (VDNA, A, 0,Inv,Xpos, Dup) bea non-deleting evo­
lutionary grarnrnar. We clairn that LDNA ~ L(EG) if, and only 
if, all strings in L DN A of length at rnost 2k can be generated by 
EG. Here k = max{lxl I x E A}. lt rernains to prove that 
the aforernentioned condition is suffi.cient. We shall prove that each 
x E LDNA, lxl = 2k + 2 is in L(EG). There are two possibilities: 

(i) X= X1X2, X1,X2 E LDNA· 
Since jxj = 2k + 2, one of x1, x2 is of length bigger than k. Assurne 
that !xii > k. Then, there is y E A such that 

+ Y ~EG X1 

The word yx2 E L(EG) because IYx2I :S 2k. But 

hence x E L(EG). 

(ii) x = ax3a, for sorne a E VDNA· 
There is z E A such that z ~ kc x3 . The string aza E L(EG) and 
aza ~kc x, hence x E L(EG). lnductively, all strings in LDNA can 
be generated by EG. 

We clairn that if LDNA ~ L(EG) we have L(EG) ~ LDNA if, 
and only if, A,Xpos, Dup ~ LDNA and Inv contains only words 
that can be reduced to palindrornes. All these conditions can be 
algorithrnically checked. The "if' part is irnrnediate. 1n order to 
prove the "only if" part, we shall consider each condition separately. 
Obviously, if A contains words not in L DN A the sarne is true for 
L(EG). 

Assurne that x E Dup and let xy be in LDNA ~ L(EG). Because 
xxy has tobe in LDNA it follows that x E LDNA· 

Let x E X pos \ L DN A and y be the shortest word such that 
xy E L DN A· Note that such a word always exists. Let z be the 
reduced word associated to x. Assurne that. z starts with a and y 
ends with b. Consider xycc E LDNA such that c f:. a, c f:. b. We get 

xycc ~ Xpos ycxc 

and 

ycxc E LDNA iff yczc E LDNA 
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The only possible reduction that can take place within yczc, concerns 
the string zc, hence yczc ~ LDNA· 

Now, Jet x E Inv and z be its reduced word. Again y is the 
shortest word such that xy E LDNA· We have zy E LDNA and 
mi(x)y E LDNA· Because the reduced word associated to mi(x) is 
mi(z), it follows that mi(z) = z if mi(z)y E LDNA· Now the proof is 
complete. D 

3.2.5 Descriptional Complexity 

In this section we consider the descriptional (syntactic) complexity 
of languages generated by evolutionary grammars following [40]. We 
are interested in the minimal number of axioms and operations, re­
spectively, and the maximal length of the words associated with an 
operation. Formally, for an evolutionary grammar G = (V, A, Del, 
Inv, Xpos, Dup), we set 

a(G) card(A), 

o(G) card(Del) + card(Inv) + card(Xpos) + card(Dup), 

l(G) max{lwl I w E Del U Inv U Xpos U Dup} 

and extend these measures to a language L generated by an evolu­
tionary grammar by 

a(L) min{a(G) I L = L(G),G is an evolutionary grammar}, 

o(L) = min{o(G) I L = L(G),G is an evolutionary grammar}, 

l(L) = min{l(G) I L = L(G),G is an evolutionary grammar}. 

Theorem 3.2.10 A language L isfinite ifand only ifo(L) = O. 

Pmof. Let L be a finite language, and let V be the set of symbols 
occurring in at least one word of L. Then L = L( G) for the evo­
lu tionary grammar G = (V,L,0,0,0,0). Since o(G) = O we obtain 
o(L) = O. 

If o( L) = O for some language L, then there is an ev olu tionary 
grammar G = (V,A,0,0, 0,0) with L = L(G). By L(G) A, G 
generates a finite language which proves that L îs finite. D 
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The measure o( G) corresponds to the number of prod uctions in 
a (usual) Chomsky grammar. The context-free languages form an 
infinite hierarchy with respect to the number ofproductions (see [54]). 
Furthermore, the measure l( G) corresponds to the radius of an H 
system which is grammatical device based on splicing. With respect 
to the radius the languages generated by H systems form an infinite 
hierarchy, too (see [104]). 1n this section we shall prove analogous 
assertions for the measures for evolutionary grammars introduced 
above. 

Theorem 3.2.11 For any measure d E {a,o,l} and any natural 
number T 2 1, there is a language L generated by an evolutionary 
gram mar such that d( L) = T. 

Proof. We consider the language 

n 

L = LJ L; where L; = {(baibr J m 2: O} for 1 $ i $ n. 
i=l 

Because L is generated by the evolutionary grammar 

G = ({a,b},{baib I 1 $ i $ n},0,0,0,{baib I 1 $ i $ n}) 

with a( G) = n, o( G) = n and l( G) = n + 2, we obtain 

a(L) $ n, o(L) $ n and l(L) $ n + 2. (3.2) 

Now let us assume that H = (V,A,Del,Inv,Xpos,Dup) is an 
evolutionary grammar with L(H) = L. If there is a derivation w' ==} 

w in H with w' E L;, w E Lj, 1 $ i, j $ n and i -j; j, then there 
also is a derivation w'baib ==} wbaib. Since w'baib E L; C L and 
wbaib ~ L, we get a contradiction. Thus, for any i, 1 $ i $ n, An L; 
has tobe a non-empty set. Therefore a(H) 2: n for any evolutionary 
grammar H with L(H) = L which implies a(L) 2: n. By (3.2), we 
obtain a( L) = n. 

Let a= max{Jzl Iz E A}. We consider a word w E L;, 1 $ i $ n, 
with Jwl 2: a + l. Let w = ( baib /. By the length of w there is a 
word w' E L with w' ==} w and w' -j; w. By the above considerations 
w' EL;, too, say w' = (baib/ for some k. 
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If w' ====> lnv w or w' ====> Xpos w, then lw'I = lwl and hence w' = w 

in contrast to the choice of w'. 
Let us assume that w' ====> Dup w. Then w' = W1 xw2 and w = 

W1XXW2 for some W1, W2 E v·, X E v+. Thus 

I X la=I W la - I w' la= i(l - k) and I X lb= 2([ - k). 

Therefore 

If x = arbba3, r,s 2 O, r+s = i, i.e. l = k+ 1, then we can apply x E 
Dup to banbbanb which yields ba2n-ib and hence n = i. If, in addition, 
r > O and s > O, we can apply x E Dup to ban- 1 bban-1 bban-lb and 
obtain ba2n- 2-ibban-lb from which i = n-1 follows. This contradicts 
i = n. Thus x = arbba5 implies r + s = n and r = O or s = O. 

We now define 

Mj {arb(bajb)tba 5 
I r,s 2'. O, r + s = j, t 2 O} U 

{(baib)t I t 2 1} for 1 ~ j < n, 

Mn {arb(banb)tba 5 
I r,s 2'. O,r+ s = n,t 2 O} U 

{anbb,bban} u {(banb)t I t 2 l}. 

By the considerations above, we get X E M;. 
Let w' ====>ne1 w. Then w' = w1xw2 and w = w 1w 2. By analogous 

arguments we can show that x E M;, again. 
Thus (DelUDup)nM;-::/= 0 for 1 ~ i ~ n. Furthermore, M;nMj = 

0 for 1 ~ i, j ~ n and i -::/= j. Therefore Del U Dup contai ns at least n 
elements and o(H) 2 n holds for any evolutionary grammar H with 
L(H) = L. Hence o(L) 2 n. By (3.2), o(L) = n. 

Moreover, for 1 ~ i ~ n, lxl 2 2 + i holds for any x E (Del U 
Dup)nMi, Thus l(H) 2 n+2 for any evolutionary grammar H with 
L(H) = L. Therefore l(L) 2 n + 2 and, by (3.2), l(L) = n + 2. 

Hence the statement holds for d E { a, o}, r 2 1 and <I'= l, r 2'. 3. 
It is easy to see that l( {a}+)= 1 and l( {a2 }+) = 2, and therefore the 
statement holds in the remaining cases, too. o 
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3.2.6 The Differentiation Function 

The notion of a differentiation function of a grammar was firstly 
introduced in [29] for deterministic tabled Lindenmayer systerns. It 
presents a measure for the number of objects which can be derived 
in a given grammar by a given nurnber of derivation steps. Formally 
we obtain the following notion for evolutionary grammars [40]. 

Let G = (V,A,Del,lnv,Xpos,Dup) be an evolutionary gram­
mar. Then we define its dijferentiation function 

fc: N __, N by fc(k) = card(Lk(G)), 

where Lk( G) consists of all strings obtained from A after exactly k 
mutations. 

Example 3.2.1 We consider the evolutionary grammars 

G1 ({a,b},{aa},0,0,0,{aa}), 
G2 ({a,b},{aa},0,{aa},0,{aa}), 
G3 ({a,b},{aab},0,{aa},{b},{aa}). 

Then, for k 2: 1, 

Lk(G1) 

Lk(G2) = 
Lk(G3) 

and thus 

{a2k+2}, 

{ 2 4 2k+2} a ,a, ... ,a , 

{arba" Ir+ s = 2i, 1:::; i:::; k} U {a2k+ 2b}, 

1, for k 2: 1, 

k + 1, J or k 2: 1 , 

fc 1 (k) 

fc 2 (k) 

fc3(k) 3+5+ ... (2k+l)+l =(k+1)2, fork2: 1. 

We only show the statement concerning Lk( G3), the modifications 
for the other cases are obvious. 

From the axiom aab of G3 we can generate by inversion of aa 
the same word aab, by transposition of b the words baa, aba and by 
duplication of aa the word aaaab. Thus the statement holds for k = 1. 
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Now let w E Lk(G3). By induction hypothesis, w = arba5 with 
r + s = 2i for sorne i, 1 S: i S: k or w = a2k+ 2b. 

We first consider the forrner case. Since the transposition and 
inversion does not change the nurnber of occurrences of a and b, we 
obtain by these operation a word ar' bas' with r' + s' = 2i. If we 
applied the duplication of aa we get ar+ 2ba5 or arbas+z. Because 
r + s + 2 = 2( i + 1), in all cases the generated words have the desired 
forrn. 

In the forrner case we generate frorn w a word of the ar ba3 with 
r + s = 2k + 2 = 2(k + 1) or a2k+4b = a2(k+I)+ 2b, and all words have 
the desired forrn, again. 

Moreover, these considerations also show that all words of the 
desired forrn are contained in Lk+·1(G3). 

We now give an upper bound for differentiation functions of evo­
lutionary grammars. 

Theorem 3.2.12 For any evolutionary grammar G, there are con­
stants c1 and c2 such that fc(k) S: c1 • c~ for k 2'. 1. 

Proof. Let G = (V, A, Del, I nv, X pos, Dup) he an evolutionary gram­
rnar. We set 

d = max{l1LI I u E Dup}, a= card(A), b = max{lvl Iv EA}. 

Then, for any k 2'. O and any word in z E Lk(G), lzl S: b + k · d. Thus 

fc(k + 1) < 

< 

card({w I lwl S: b+ kd}) 
b+kd l L (card(V)r = ---- • ((card(V)i+kd+I - 1) 
. card(V) - 1 
•=O 

(card(V)i+ 1 

d(V) ( ( card(V) )d)k . car - 1 

B , crird V) btl d • 
Y settmg c1 = crird v _ 1 and c2 = ( card( V)) ) the assert10n fol-

lows. o 
The following shows that the exponential upper bound is obtained 

for sorne evolutionary grammars. 
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Theorem 3.2.13 For any natural number c, there is an evolutionary 
grammar G such that fo(k) = ck for k ~ O. 

Proof. Let c be given. We consider the evolutionary grammar 

By induction on k we prove that 

Lk( G) = { acbai1 +cbai2 +cb ... a ide bac I i1, i2, ... ik E {l, 2 ... C}} 

which implies 

for k ~ O. 
By definition, L0( G) = { acbac} and therefore the statement holds 

for k = O. 
Now let w E Lk+i(G). Then w' ===} w for some w' E Lk(G). 

By induction hypothesis w' = acbai1 +cbai2+cb ... aidcbac. Let w be 
derived from w' by duplication of some acbai, 1 :=:;; i :=:;; c, where the 
duplication involves the j-th occurrence of b. Then 

w' acbai1 +cbai2+cb ... aiJ+cbaiJ+1 +cb ... aik+cbac 

acbai1 +cbai2+cb ... aiJ acbaiaiJ+I +c-ib ... aik+cbac 

===} acbai 1 +c bai2+cb . .. a iJ ac bai an bai aiJ+l +c-i b . .. aik +cbac 

acbai 1 +c bai2+cb . .. aiJ +cbai+c baiJ+l +cb . .. aik+c bac 

which proves that w has the <lesired form. If we apply in succession 
the duplications of acbai1, acbai2, .. . , acbaik+ 1 such that in any step 
the last b is involved, then we get acbai1 +cbai2+cb ... baik+ 1 +cban E 
Lk+1(G). Hence Lk+i(G) contains all words of the considered form. 

Thus the induction statement is shown for k + 1. O 

We have shown that, for any exponential function f with a posi­
tive integer as exponent, there is a context-free evolutionary grammar 
G whose differentiation function is asymptotically equal to f. We now 
want to prove such a statement for polynomials. 

Theorem 3.2.14 For any natural number n, there is an evolution­
ary grammar G such that Jo( k) = 0( kn ). 
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Proof. For n E {O, 1, 2} the statement follows from Example 3.2.l. 
Let us assume that there is already an evolutionary grammar G' = 
(V,A,Del,lnv,Xpos,Dup) with Jc,(k) = 0(kn). Without loss of 
generality we may suppose that V n { a, b} = 0 and construct the 
evolu tionary gram mar 

G = (Vu {a,b},{aa} • A,Del,lnv,Xpos,DupU {aa}), 

where the sets Del, lnv, Xpos, Dup are taken from G'. By induction 
we show that 

By the construction of G, the statement holds for k = O. 
Let w E Lk+i(G). Then there is a word w E Lk(G) with w ===> 

w'. Furthermore there exists an integer i, 1 ::S; i ::S; k, such that 
w = a2i+ 2 v for some word v E Lk-i(G'). Let us apply an element 
x E Del U lnv U Xpos U Dup to w in order to get w'. Then we have 
to apply x to v and get w = a2i+2v ===> a2i+2v' = w' where v' E 
Lk-i+1(G'). Hence w' E {a2i+2}Lk-i+1(G') = {a2i+2}L(k+1)-i(H). 
If we apply the duplication of aa to w, we get 

w = a2i+2v ===> a2i+4v = a2(i+1)+2v = w' E {a2(i+1)+2}Lk-i(G'). 

This proves 

On the other hand let 

Then there exists an integer i such that u' = a2i+ 2 z' where z' E 
L(k+I)-i(G). If i 2: 1, a duplication of aa in u = a2iz' gives u'. 
Because u = a2iz' E {a2(i-l)+2}Lk-(i-I)(G') ~ Lk(G) and u ===> u' 
we have· u' E Lk+ 1 (G). 

If i = O, then k + 1 - i = k + 1 2: 1 and there is a word z E Lk( G') 
with z ===> z' in G'. Hence a2z ===> a2z' in G and a2z E {a 2 }Lk(G') ~ 
Lk(G). Thus a2 z' = u' E Lk+i(G). Therefore 

{a2}-Lk+1(G')u {a4 }-Lk(G')U· · ·U{a2(k+i)+2}-L0(G') ~ Lk+1(G). 
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Therefore (3.3) is shown. 
By (3.3) and the disjointness of the sets involved in the union, 

k k 

Ja(k) = card(Lk(G')) = L card( {a2i+2}Lk-i(G') = L fc,(k - i) 
i=O 

k 

L Jc( i) = 0(kn+l). 
i=O 

i=O 

o 
Without proof ( use disjoint alphabets and unions of the involved 

sets) we add the following lemma on closure properties of the set of 
differentiation functions. 

Lemma 3.2.1 Let f and g be two differentiation functions of evolu­
tionary grammars. Then their sum f + g is a differentiation function, 
too. O 

The presented results give some upper and lower bounds for and 
some examples of differentiation functions; the characterization of the 
family of differentiation functions of evolutionary grammars is left as 
an open problem. 

Finally we present two classes of evolutionary grammars with dif­
ferentiation functions bounded by a constant or linear function. 

Lemma 3.2.2 If G = (V, A, Del,Inv, Xpos, 0), then there is a con­
stant c such that fa(k) S c for k 2 O. 

Proof. Obviously, because the set of duplications is empty, L( G) is 
finite. Let c be the cardinality of L(G). Then fc(k) = card(Lk(G)) S 
card(L(G)) = c. □ 

Example 3.2.1 shows that there are evolutionary grammars with a 
non-empty set of duplications which also have a differentiation func­
tion bounded by a c·onstant. 

Before we present the other class we give the definition and a prop­
erty of a number-theoretic function. For a set A= {a1, a2, ... , an} of 
natural numbers we define the function 

k 

9A(k) = card({Lai
1 
I ai

1 
EA for 1 :S j :S k}). 

j=l 
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This function expresses the number of all distinct sums of k elements 
from A. 

Lemma 3.2.3 Let A= {a1,a2, ... ,a.} with OS a1 < a2 < a3 < 
... < as and m = max{ a;+l - a; I 1 S i S s - l}. Then 

a - a1 l s • kJ + 1 S 9A(k) S (as - ai)· k + l. 
m 

Moreover, both bounds are optimal. 

Proof. Obviously a1 -k and a.-k are the minimal and maximal number 
which can be obtained by addition of k numbers of A. Hence any sum 
S of interest satis:fies a1k S S S a5 k. This implies the upper bound. 

We now prove that any interval I;= [a 1k + im,a1k + (i + l)m), 
OS i S l(a,:'i)kJ -1, contains at least one sum of k numbers of A. 

Obviously, this holds for i = O by a 1 k E Io. Now Jet c = I:7=1 a;i 

be the maximal number in I; which can be represented by sum of 
k numbers of A. Since i S l (a,-;,,a 1 )k J - 1 we obtain c S a1 k + 
( l (a,:'i)k J - 1 )m < a5 k. Thus there exists an r such that a;r < a5 • 

Let a;r = a1. Then we consider the sum 

r-1 k 

c' = c2:= a;J + a1+1 + ( :z= a;J 
j=l 

of k numbers of A. Because c' = c + (a1+ 1 - a1) S c + m and c is 
maximal in I;, we obtain c' E l;+i • Since we have l (a,:'i)k J intervals 
and the additional sum a5 k (which belongs to no interval), the lower 
bound follows. 

The optimality of both bounds follows by considering A= {l, 2, 3, 
... ,s} or A= {m,2m,3m, ... ,sm} (for some m). □ 

Lemma 3.2.4 For any evolutionary grammar G = ( {a}, {an} ,(/), 
Inv, Xpos, Dup) where Dup contains a non-empty word (i.e. the 
underlying alphabet of the gram mar is unary, there is only one axiom, 
no deletion and at least one non-empty duplication), fc(k) = 0(k) 
holds. 
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Praaf. First we assume that I nv U X pas = 0. The applîcatîon of 
v E Dup to am leads to am+lvl_ Thus takîng A= {Ivi Iv E Dup}, we 
obtain 9A(k) = Jc(k) for k ?: 1. Hence the statement follows from 
Lemma 3.2.3. 

Now let Inv U X pas :p 0 and c (ţ. Dup. We set r = mîn{lzl Iz E 
Jnv U X pas}. If we apply an inversion or a transpositîon to a word 
w, then w is not changed by this operation because the underlyîng 
alphabet is unary. To any word w E L k ( G) wi th I w I ?: r we can 
apply an inversion or a transposition, and thus w îs alsa contaîned în 
L1(G) for l?: k. Moreover, if Dup does not contaîn the empty word, 
all words from Lr ( G) have a length ?: r. lt îs easy to see that 

9Au{o}(k) :S fc(k + r) :S card(Lr(G))9Au{o}(k) for k?: 1. 

Now the statement follows from Lemma 3.2.3. 
The proof for the case I nv U X pas :p 0 and c E Dup follows by 

analogous arguments and is left to the reader. O 

3.2. 7 Adult Languages 

Since evolutionary grammars can be considered as formal models for 
the evolution of genomes, the final stages of the development or evo­
lution are of special interest, i.e. those genomes to which no mutatîon 
taken into consideratîon can be applied. In terms of languages we are 
înterested in those words which do nat allow a contînuation of the 
derivation. Languages of such words are called adult languages and 
have been investîgated extensively alsa în connection wîth L-systems, 
[113]. In thîs sectîon we study adult languages of evolutionary gram­
mars and show that they form the family recursively enurnerable 
languages. We mention here that the adult languages of L-systerns 
do not possess this rather surprisîng property. 

Let EG = (V,A,Del,Inv,Xpas,Dup) be an evolutionary grarn­
mar. Then the adult language of EG îs defined by 

A(EG) = {w I w E L(EG) and there is no w' wîth w ==;, w'}. 

The language L(EG) contains all words which can be generated by 
iterated derivation steps, and the adult language A(EG) contaîns 
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those words from the generated language L(EG) which do not allow 
further derivation steps. Therefore a word w E L(EG) belongs to the 
adult language if w does not contain a subword which can be deleted 
or reversed or translocated or duplicated. This implies the following 
statement. 

Lemma 3.2.5 Let EG = (V,Del,lnv,Xpos,Dup,A) bea context­
free cvolutionary grammar. Then 

A(EG) = L(EG) n (V*\ V*(Del u lnv U Xpos U Dup)V*). 

We now present a characterizations of the set of recursively enu­
merable languages by adult languages of evolutionary grammars. 

Theorem 3.2.15 The family of adult languages of context-frec evo­
lutionary grammars coincides with the family of recursively enumer­
able languages. 

Proof. By Theorem 3.2.4 and Lemma 3.2.5 any adult language of a 
context-free evolutionary grammar is recursively enumerable. 

Now let L be an arbitrary recursively enumerable language. We 
construct an evolutionary grammar EG' such that A(EG') = L. 

ln order to get EG' = (V',A',Del',lnv',Xpos',Dup) we modify 
the gramrnar EG = (V,A,Del,lnv,Xpos,Dup) with L = L(EG) u 
T* given în the proof of Theorem 3.2.4 as follows: We obtain V' 
by adding a new symbol $ to the alphabet V. Then we define the 
morphisms h : V ---> V' by h(A) = A$ for A E N and h(x) = x for 
x E V \ N. Then we set 

A' h(A), 

Xpos' h(Xpos), 

Dup' h(Dup) u { <1, $}, 

Del' {A$B$C$, --i} u {.1;$5 <1 t> 11:::; i:::; n} U 

{ <1h(x;).li t> -ii 1:::; i:::; n}, 

lnv' = { <1h(x;).l; 11:::; ·i:::; n} U {5$.l;mi(h(x;)) I 1:::; i:::; n}. 

Essentially, instead of a nonterminal A we use A$ or $A (where the 
latter one only occurs since inversions can be involved). Thus the 
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deletion of all symbols $ in a word of L(EG') gives a word of L(EG), 
and conversely, for any word w E L(EG) there is a worcl w' E L(EG') 
such that the deletion of all $ in w' gives w. This implies 

L(EG) n T* = L(EG') n T*. (3.4) 

Now L = A(EG') follows from the following remarks: For any 
word w E L(EG'), by the construction 

If w E L(EG') contains $ or <l, then we can apply a <luplication. 
If w E L(EG') contains --1, a deletion can be applie<l. Thus a word 
w E A(EG') cannot contain $, <l and --1. By (3.5) w cannot contain 
I>, 1-;, 1 ~ i ~ n, and elements of N. Hence w E A(EG') contains 
only terminals. On the other hand, any word w E L(EG') n T* 
belongs to A(EG') since any derivation step requires the presence of 
symbols not belonging to T. Therefore we obtain from (3.4) 

A(EG') = L(EG') n T* = L(EG) n T* = L. 

□ 

From the proof of Theorern 3.2.15 we see that adult languages can 
be obtained as the intersection of the set of all generated words with 
an monoid. This corresponds to the situation well-known for reduced 1 

context-free grarnrnars G: On one side L( G) is the intersection of 
the set of all generated words with the set of terminal words, and 
on the other side L( G) consists of all words which allow no further 
derivation. 

Another Version of Adult Languages 

In the theory of Lindenrnayer systems another definition of adult 
languages is used (see [113], pages 70-78 and 287) . By definition, 
in a Lindenmayer systern at every moment a derivation step can be 
performed, and thus the adult language consists of all words which are 
not changed by derivation steps. For an evolutionary grarnmar EG = 

1 For any nonterminal A, there is a rule with the left-hand side A. 
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( V, A, De/ ,Inv, X pas, Dup), the modified adult language mA(EG) is 
defined as the set of all words w E L(EG) such that either w E A(EG) 
or w E L(EG) and w ===} z implies z = w. 

Let EG = (V,A,Del,Inv,Xpos,Dup) be an evolutionary gram­
mar and Jet w be a word generated by EG such that z = w holds for 
any z with w ===} z. 

Obviously, if there is an element u f. f. from Del and Dup, re­
spectively, which can be applied to w, then there is a z f. w with 
w ===} z. Thus the only applicable element from Del and Dup is f., 

and the cancellation or duplication of f. in a word does not change 
the word. 

Moreover, if we can apply an inversion u E J nv to w yielding z, 
then w = w1uw2 and z = w1mi(u)w2. Now w = z implies u = mi(u), 
and thus the application of the inversion u to an arbitrary word does 
not change the word. 

Furthermore, Jet u be a transposition from X pos such that its 
application to w does not change w. If we shift u by one letter to the 
right, we obtain w = v1uav2 and z = v1auv2. w = z implies ua = au. 
By the famous theorem by Lyndon and Schiitzenberger (see Lemma 
1.7 în [125]) we getu E {a}*. Shifting to other positions we can show 
that w E { a t- Thus the application of the transposition u to any 
word of v E {a}* with Ivi 2: lui does not change v. 

We now consider the evolutionary grammar 

EG1 = (V,A,Del\ {c},Inv\ {u I u = mi(u)},Xpos,Dup\ {c}). 

Obviously, any word w E mA(EG) \ A(EG) to which elements of 
Del or Dup or I nv can be applied without changing w is contained 
in A(EG1). Thus we obtain 

mA(EG) = A(EG1)U LJ {w / w E L(EG)n{a}*,s(a) :S /w/ :S t(a)} 

(3.6) 
where 

s(a) = min{/u/ / u E T n {a}* 
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and 

t(a) ~ { 

min{lul I u E (Dup U Del) n {a}+, 
if (Dup u Del) n {a}+ ţ 0 

oo, otherwise. 

3.3 Duplication Grammars 

133 

String duplica.tions or duplica.tions of segments of strings are rather 
frequent in both natural and genetic la.nguages. For motivations com­
ing from linguistics, we refer to [86] a.nd [110]. 

We consider here the context-free varia.nts of duplica.tion gram­
mars. We investigate their generative capacity, their mutual rela­
tionship, and their relationship to the context-sensitive duplication 
grammars. 

Based on [32], Martin-Vide and Păun introduced in [89] a gen­
erative mechanism (similar to the one considered in [33]) based only 
on duplication: one starts with a given finite set of strings and pro­
duces new strings by copying specified substrings to certa.in pla.ces in 
a string, according to a finite set of dupli~a.tion rules. This mecha.nism 
is studied in [89] from the generative power point of view. 

The section considers the context-free versions of duplication gram­
mars - this formalizes a possible hypothesis tha.t duplications appear 
more or less at random within the genome in the course of its evolu­
tion. We follow [94] where some problems left open in [89] were solved, 
new results concerning the generative power of context-sensitive <tn<l 
context-free duplication grammars were prove<l, a.nd the two classes 
of gra.mmars were compa.red. Fina.lly, sorne <lecision problems are 
discussed. 

A context-sensitive duplication rule is a triple whose components 
a.re strings over a given alphabet ( in the case of DNA the alphabet 
consists of the four nucleotids ), say ( u, x, v ), w hich has the following 
interpretation: 

• the string x, which appears to the left of nv in thc processe<l 
string, is inserted in between u and v; 
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• the string x, w hich appears to the right of uv in the processed 
string, is inserted in between u and v; 

• the string x which appears in between u and v is doubled. 

A context-free duplication rule is a string over the given alphabet, 
say x, whose effect is the duplication of x either to the right of, 
or to the left of, or immediately after, an already existing copy of 
x. Clearly, context-free duplication rules may be viewed as context 
sensitive duplication rules whose contexts are empty. 

In vivo, cross-over takes place just between homologous chromo­
somes ( chromosomes of the same type and of the same length), see 
[57]. A model of a cross-over between a DNA molecule and its repli­
cated version is considered in in the next section - this is a model 
for a cross-over between "sister" chromatides. One specifies an ini­
tial finite set of strings and a finite set of cross-over rules of the form 
(a, (3, 1 , 8 ). lt is assumed that every ini tial string is replicated so that 
two identica} copies of every initial string are available. The first copy 
is cut between the segments a and (3 and the other one is cut between 
, and 8. N ow, the last segment of the second string gets attached 
to the first segment of the first string, and a new string is obtained. 
More generally, another string is also generated, by linking the first 
segment of the second string with the last segment of the first string. 
Iterating the procedure, one gets a language. 

The main idea of this approach is schematically presented in the 
Figure 3.1. 

(3 
w ţ::I ===t====::ţ:=::::ţ:::====l 

X a y 

w 
z ' 8 

Figure 3.1. 
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Hence, the splicing operation introduced by T. Head, see, e.g., [60] 
is performed here between identica! strings. It is easily seen that one 
obtains the insertion of a substring of w in w; this induces a duplica­
tion of some chromosomes into genome. This type of recombination 
is considered to be the main way of producing tandem repeats or 
block deletions in chromosomes. 

A ( context-sensitive) duplication grammar is a construct 

where Vis an alphabet, D1, Dr, Do are finite subsets of v· Xv+ Xv·, 
and A is a finite subset of v+. The elements of D1, Dr and Do 
are context-sensitive duplication rules, and elements of A are called 
ax10ms. 

Given a duplication grammar as above and two words x, y E v+, 
we define the following three types of direct derivation relations in 
6.: 

X ~ Di y iff X = X1 UVX2ZX3, y = XJ UZVX2ZX3, 

with X1,X2,X3 Ev·, and (u,z,v) E Di, 

X ~Dr y iff X= X1ZX2UVX3, y = X1ZX2UZVX3, 

with X1,x2,X3 Ev·, and (u,z,v) E Dr, 

X ~ Do y iff X = X1 UZVX2, y = X1 UZZVX2, 

with X1,X2,X3 Ev·, and (u,z,v) E Do, 

The union of these relations is the direct derivation relation of d, 
denoted by ~, and the reflexive and transitive closure of~ is the 
derivation relation of 6., denoted by ~•. The language generated 
by the duplication grammar 6. is defined by 

L(6.) = {y Ev· I X~· Y, for some X EA}. 

Thus, the language of 6. consists of all words obtained by beginning 
with strings in A, and applying iteratively duplication rules from 
D1 U Dr U Do, The application of arule to a string means to copy one 
of its su bstrings to the left of, or to the right of, or next to its '•given" 
occurrence. Because each of the three sets of rules rnay be empty, 
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one obtains seven families of languages denoted by DU P L(X), X E 
{l,r,0,lr,lO,r0,lr0}; the presence of a letter within X means that 
the corresponding set of rules is non-empty, e.g., for X = l0, D1 -/= 
0, Do -/= 0 and Dr = 0. 

Analogously, we define a context-free duplication grammar as a 
construct 6. = (V,D1, 
Dr, D0 , A), where V and A have the same interpretation as above, but 
D1, Dr, Do are finite subsets of v+ whose elements are context-free 
duplication rules. Given a context-free duplication grammar as above 
and two words x, y E v+, we define three types of direct derivation 
relations: 

X FD, y iff X= X1X2ZX3, y = X1ZX2ZX3, 

with x1,x2,x3 EV*, and z E D1, 

X f=Dr Y jff X= X1ZX2X3, Y = X1ZX2ZX3, 

with X1, X2, X3 EV*, and z E Dr, 

X FDo y iff X= X1ZX2, y = X1ZZX2, 

with x1,x2,x3 EV*, and z E Do. 

Again, the unior1 of these relations is the direct derivation relation, 
denoted by F, and the reflexive and transitive closure of F is the 
derivation relation, denoted by p=*. The language generated by the 
context-free duplication grammar 6. is defined by 

L(.6.) = {y Ev• I x p=* y, for some x EA}. 

Again, we get seven families of languages denoted by C F DU P L( X), 
X E {l,r,0,lr,l0, 
rO, lr0}. 

3.3.1 A Short Comparison 

We begin by set tling the relationships among the seven families of 
con text- free du plication languages. 

Theorem 3.3.1 The relations in the following diagram hold, where 
an arrow indicates a strict inclusion and a dotted line links two in­
comparnble families. 
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CFDUPL(l) 

I "'-
"'­

I 
C F D U P L ( lO) --------__ 

137 

I 

I 

CFDUPL(0) CFDUPL(lr0) ---- CFDUPL(lr) 

/ CFDUPL(r0) / 

/ 
1/ 

CFDUPL(r) 

Figure 3.2. 

Proof. Thelanguage {anbmapbqln,m,p,q 2 l} is in CFDUPL(0) 
( one starts with abab and doubles either an occurrence of a or an oc­
currence of b) but not in CFDUPL(lr). To see the latter, we note 
that each context-free duplication grammar having just left and right 
duplication rules generates strings in a+ b+ a+ b+ a+ b+; a contradic­
tion. 
By a similar reasoning, the language {anbmln,m 2 1} belongs to 

CFDU P L(l0) n CFDU PL(r0) n CFDU P L(lr) 

but not to 
CFDU PL(l) u C FDU PL(r). 

The language {a,b,c}+ is in CFDUPL(r) n CFDUPL(l) (the 
initial set contains all strings of length at most 3, each letter a, b, c 
appearing at most once; <luplication rules allow copying of any let­
ter to the right/left of one of its occurrences.) Because there are 
arbitrarily long square-free strings in {a,b,c}+, [128], it follows that 
{a,b,c}+ t/:. CFDUPL(0). 

Finally, 

{a,b,c}+{$}+{d,e,J}+ E CFDUPL(lr0)\ 

(C FDU P L(l0) u CF DU P L(r0)) 
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which conclucles the proof. □ 

The following resuit concerning the relationships among the context­
sensitive families of duplication languages has been proved in [89]. 

Theorem 3.3.2.[89] 
1. The families DUPL(l) and DUPL(r) are incomparable. 
2. The following inclusions 

DUPL(r)UDUPL(l)c DUPL(lr) 

DU P L(O) c (DU P L(rO) n DU P L(lO)) 

are proper. 

It is an open problem whether or not DU P L(O) is included in 
DUPL(l) or in DUPL(r). However, we have 

Proposition 3.3.1 CFDUPL(O) is strictly included in DUPL(lr). 

Proof. Let .6. = (V,0,0,Do,A) bea duplication grammar with Do= 
{ x1, x2, ... , Xn}. Construct a duplication grammar .6.' = (V, D1, Dr, 
0, A'), where 

D1 = Di = {(xi,Xi,E)ll :S i :S n}, 

A' = { z E L( .6.) I each Xi has at most two non-overlapped 

occurrences in z}. 

It is easy to see that A' is a finite set, and L(.6.) = L(.6.'). □ 

Along the same lines, we have 

Theorem 3.3.~ C F DU P L(X) C DU P L(X), for alt X E {O, I, r, 
lO, rO, lr, lrO}. 

Proof. It suffi.ces Lo provide languages that prove all inclusions to 
be strict. The duplication grammar .6. = ({a,b}, {(E,a,a), (E,b,b)}, 
0, 0, {ab,a 2b,ab2 ,a2b2 } generates 1 1 = {anbmln,m?:: l}. Hence 
L1 is in DUPL(l) (also in DUPL(r)) but not in (CFDUPL(l) U 
CFDUPL(r). 

Similarly, {anbmapbqln,m,p,q?:: 1} E DUPL(lr)\CFDUPL(lr). 
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One can show that {anb 11 abln 2: l} cannot be generated by any 
context-free duplication grammar. On the other hand, {anbnabln 2: 
l} E DU P L(lr0) ( see [89]). 

Take now the language L2 = {abncmdPell '.S n,m,p '.S 3}+. This 
]anguage can be obtained by starting with the string abcde and iter­
atively applying rules from the set 

Do = {(c:,abcde,E),(a,b,c),(ab,b,c),(b,c,d),(bc,c,d), 

(c,d,e),(cd,d,e)}. 

Consider the homomorphism h : { a, b, c} * --+ { a, b, c, d, e}" defined 
by h(a) = ab3cde, h(b) = abc3de, h(c) = abcd3e. Let x be an ar­
bitrarily long square-free string over { a, b, c}. The string h( x) is in 
L2 . lt is easy to notice that the adjacent identical substrings in h(x) 
are only the letters from {a,b,c}. If L2 were in CFDUPL(0), then 
any context-free duplication grammar generating L2 would generate 
strings containing arbitrarily many adjacent occurrences of the same 
letter from {a,b,c}; a contradiction. O 

3.3.2 Observations on the Generative Power 

We start by considering unary alphabets. We will prove that in this 
case the generative power of duplication grammars equals the accept­
ing power of deterministic finite automata. To this end, we prove the 
following lemma. 

Lemma 3.3.1 Over the unary alphabet, the equality DU P L(X) 
CFDUPL(0) holds for any X E {l,r,0,lr,l0,r0,lr0}. 

Proof. Let 6 = ( {a}, Di, Dr, D0 , A) bea duplication grammar. Let 

Di {('ui,ai',vi)ll '.S l '.S n}, 

D,. {(:i·1,a11 ,y1)ll '.S l '.S m}, 

Do {(z1, ak1
, w1)l l :S I :S p }. 

Take 

ct=max({luxvl (u,1:,v)ED1UDrUDo}U{lxl xEA}. 
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Consider now the context-free duplication grammar 

6.' = ({a},0,0,D~,A'), 

where 

A' {xlx E 1(6.), lxl S 3a}, 
n m p 

D~ {aqlq = L a 5 i 5 + L /3„j. + L 1s k . ., a S q S 2a}. 
s=l 

We claim that 1(6.) = 1(6.'). Note that each rule in D~ is applicable 
to strings of length at least a. Furthermore, each application of 
a rule in D~ simulates the application of a sequence of rules from 
D1 U Dr U Do. Consequently, 1(6.') ~ 1(6.). 

Ali strings oflength at most 3a from 1(6.) are also in 1(6.'). Let 
z be the shortest string in 1(6.) such that lzl > 3a. Then there exists 
a derivation in 6.': 

with 

(i) .rEA, 

(ii) a S IYI S 3a, 

(iii) a S lzl - IYI S 2a. 

Because y E A' one may write y ~ 0 , z, and so z E 1(6.'). Induc­
o 

tively, 1(6.) ~ 1(6.'). O 

Theorem 3.3.4 A language over a unary alphabet is regular ij and 
only ij it is generated by a duplication grammar. 

Proof. By the previous lemma., it suffices to consider duplication 
grammars with just context-free duplication rules whose effect is to 
double an occurrence of a substring. Let L ~ {a}* be a regular 
language. Then, there exist a. finite set F an<l the positive integers 
ki, 1 S i S m, and q > max{lxl I :r E F} such tha.t 

m 

l =FU LJ{ak,+nqln 2: l} 
i=l 
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This can be easily seen if one considers a deterministic finite au­
tomaton accepting L, for which the transition function is defined 
everywhere. 

Consider now the duplication grammar: 

6. = ( {a}, 0, 0, { aq}, FU { ak,+q I 1 :S i :S m'}. 

Clearly, L = L(6.). Duplications can never be carried out on words 
of F. • 

Conversely, let us consider a duplication grarnrnar 6. = ( {a}, 0, 
0, Do, A), with Do= {ac1 ,ac2 , ... ,ac"}. Let 

where gcd rneans the greatest common divisor. If L(6.) is finite, 
then it is obviously regular. If L(6.) is an infinite set, then there are 

• ti, 1 :S i :S s, s '.S p, such that 

L(6.) =FU LJ{a1•+kPlk;::: O}, 
i=l 

for some finite set F. Consequently, L(6.) is regular which completes 
the proof. o 

The next resuit settles a problem left open in [89]. 

Theorem 3.3.5 All regular languages are in DU P L(X), X E {l, r, 
10, rO, lr, lrO}. 

Proof. We present a proof for DU P L( r), the proofs for other cases are 
analogous. Let R be a regular language recognized by the determin­
istic finite automaton M = ( Q, V, o, q0 , F) with the total transition 
function o. Let for each state q, Cq be defined as follows: 

Cq = {x E v+lo(q,x) = q by passing each state, different frorn q, 

at rnost once}. 

For strings x, y E V*, we define the equivalence relation ~Ras follows: 

(x ~R y) iff (uxv E R i:ff uyv E R), for any u, v EV*. 
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lt is well-known (see e.g. [114]) that v• / ~R (the quotient of V* by 
~ R) is finite; Jet k be the· car di na.li ty of V*/ ~ R ( the index of ~ R), 

Now, one constructs the duplicat.ion grammar .6. = (V, 0, Dr, 0, 
A), where 

Dr (j {(x,y,c:)lxy ~R x, lxl < k,y E Cq}, and 
qEQ,Cqf-0 

A { w E RI for each q E Q, each string in Cq 

has at most k non-overlapping occurrences in w}. 

We claim that A is finite. Indeed, no word longer than (k + 
l)l · card(Q), where l = ma.r{card(C7 )lq E Q}, is in A. To see this, 
assume that such a word, say w, is in A; so lwl = p 2'.'. ( k+ 1 )l·card( Q). 
Let q0 ,qi,••·,qp, qP E F, be the sequence of states that accepts w. 

At least (k + l)l states in this sequence must be the same; assume 
that q is such a state. But then w contains at least k + I identical 
substrings in Cq; a contradiction. 

Clearly, L(.6.) ~ R. Let z be the shortest word in R\L(.6.). Thus, 
there exists x E Cq, for some q E Q, such that x occurs more than k 
times in z. Let z = wxy, with lwl 2:: k, where the given occurrence 
of x is the last (rightmost) occurrence of x in z. Let z = uvxy with 
Ivi = k. Thus v has k + 1 prefixes, and so there are two prefixes 
vi, v2 of v such that vi ~ R v2 and Ivi I < I V21- We choose the closest 
pair of such prefixes. By replacing v2 by vi in v we get a string uv'xy 
which is in L(.6.) because it is in R and it is shorter than z. Moreover, 
v2 = vi t, where t must be in Cq, for some q E Q (because of the choice 
of Vi and v2). Consequently, (vi,t,c:) E Dr, and so uv'xy ==J>Dr z. 
Thus z E L(.6.); a contradiction. 

Analogously one proves that each regular language is in DU P L( l). 
o 

We recall that the family DU P L(O) is incomparable with the 
family of regular languages. 

The position of the class of regular languages with respect to 
the classes of context-free duplication languages is given by the next 
theorem. 

Theorem 3.3.6 The family of regular languages is incomparable with 
any of the families C F DU P L(X), X # O. 
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Proof. The regular language v+{c}+v+, where V contains at least 
three symbols an<l c (/;. V, cannol be generated by any context-free 
duplication grammar. Indeed, if a context-free duplication grammar 
generates all strings in v+ { c} +y+, then it must con tain left/right 
duplication rules involving strings in v+ + c+. Therefore, also strings 
in v+{c}+v+{c}+v+ can be generated. 

Consider now the Dyck language over { a, b}, denoted by Da.b, 
and the non-regular language L = { ab} Da.b· This language is in 
CF DU P L(r ). The context-free duplication grammar 6. = ( { a,b }, 
0, {ab}, 0, {abab}) with only right duplication rules generates L. 
Clearly, L(6.) ~ L; let z be the shortest string in L \ L(6.). If 
z = abxy, with x, y E Da.b, then ab yields z in 6. as follows: 

If z = abaxb, with x E Da.b, then the derivation ab F abab F* abaxb 
is possible in 6.. Consequently, L(6.) = L. □ 

The relation between C F DU P L(O) an<l the class of regular lan­
guages remains open. 

Recall that a homomorphism which erases some symbols and 
leaves the others symbols unchanged is called a projection. A projec­
tion h : (V U V')* -----+ v· that erases the symbols in V' only is the 
projection of V, denoted by prv. 

Theorem 3.3. 7 For each context-free language L E V*, there exists 
a language L in CFDUPL(r) (CFDUPL(l)) and a homomorphism h 
such that L = prv(h- 1(L')). 

Proof. Let G = (N, V, S, P) bea context-free grammar generating L. 
Assume that 

n 

P = LJ{A·-----+ x· ·11 < y· < r·} 
i i,J - - i ' 

i=l 

with S = Ar. Furthermore, we assume that c (/;. L. Let V' = N U 

V U {c;ll S i S n} U {d}, where ci,d, are new symbols. Let then 6. 
he the duplication gramrnar (V', 0, D„ 0, A), where 

D,. {(ci:Ci,1 ll S i S n, 1 S j Sri}, and 

A { ex 1 ,I dcx1,2d . .. dc.r 1 ,,. 1 dcx2.1 d ... dcx,,,,.,. dAi}. 
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Now, let h be the homomorphism 

h: (V U {[i,j]ll::::; i ::=:; n, 1::::; j::::; r;} U {c;ll::::; i::::; n}--> (V')* 

such that 

h([i,j]) 
h( c;) 

h(a) 

c;x;,jd, 1 ::=:; i ::=:; n, 1 ::::; j ::::; r;, 

A;c;, 1 ::::; i ::::; n, and 

a, a E V. 

lt is easy to see that prv(h- 1 (L(.6))) = Gen(G). Clearly, whenever 
a substring c;x;,j is copied, this is clone somewhere to the right of 
the last occurrence of d :. otherwise one gets a string "rejected" by 
applying the inverse homomorphism h. Also, all strings that contain 
nonterminal occurrences that are not immediately followed by some 
c;, to the right of the last occurrence of d, are rejected in the same 
way. Moreover, every occurrence of a non terminal A;, situated to the 
right of the last occurrence of d, has to be followed by just one oc­
currence of c;. In this way duplication rules simulate the application 
of production rules in G. □ 

3.3.3 Decision Problems 

We discuss in this section some basic <lecision problems. We begin by 
pointing out that the "totality problem" is deci<lable for all families 
of duplication languages. 

Theorem 3.3.8 Let .6 be a duplication grammar over the alphabet 
V. It is decidable whether or nat L( .6) = v·. 

Proof. We will consider <luplication grarnmars having only left <lupii­
cation rules - the other types of <luplication grarnmars can be treated 
in a similar way. Let .6 = (V, D1, 0, 0, A) be a <luplication grammar. 
The main point of our argument is the following property 

L(.6) = V* if and only if {x EV*: lxl::::; k + 1} C L(.6), 

where k = max{lxl: x EA}. 
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The "only if'' part is obvious. For the "if'' part of the proof, 
assume that z is a shortest word in V* \ L( 6. ). This word can be 
written as z = ya with a E V. Hence y E L(f:l) \ A, ancl so there 
ex.ists x E A such that x =}> b, y. Because I xal < I yal, i t follows 
that xa E L(6.). But, also xa =}> b, ya = z. To conclude, it suffices 
to note that the inclusion {x EV*: lxl:::; k + 1} C L(6.) is decidable 
due to the decidabilty of the membership problem. O 

lt is proved in [89] that the membership of a context-free lan­
guage in the family of languages DU P L(X), X -::p O, is not decidable. 
Our next theorem extends this resuit to the families of context-free 
duplication languages, as well as to DU P L(O). 

Theorem 3.3.9 It is not decidable whether or not a context-free lan­
guage is in a family C F DU P L(X), X (ţ. { r, I}. 

Proof. The proof is similar to the one in (89]. Let G be an arbitrary 
context-free grammar with the terminal alphabet { a, b}, and let 

L = Gen(G){c,d}* U {a,b}*{cndnln 2: 1}. 

If Gen(G) = { a, b }'", then L = { a, b t{ c, d}* which is in C F DU P L(X), 
for all X (ţ. {r, l}. lt is easily seen that the grammar f:l = ( { a, b, c, d}, 
0, 0, Do, A), with 

Do= {a,b,c,d,ab,ba,cd,dc}, 

and 
A= {a,b,c,d,ab,aba,ba,bab,cd,cdc,dc,dcd}, 

generates { a, b} * { c, d} *. The reader my easily check this assertion. 
If Gen( G) -::p { a, b }*, then L cannot be generated by any con-

text sensitive duplication grammar (see the proof of Theorem 4 in 
[89]). Consequently, LE CFDUPL(X) for X (ţ. {r,/}, if and only if 
Gen( G) = { a, b }*, which is undecidable. O 

This resuit can be also extended to the farnilies C F DU P L( r) and 
CFDUPL(l). 

Theorem 3.3.10 It is not decidable whethcr or not a conte.rt-Jree 
language is in a family C F DU P L(X), X E { r, l}. 
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Pmof. The proof is based on a reduction to the Post Correspondence 
Problem (PCP). Take an arbitrary instance of PCP, i.e., two arbitrary 
n-tuples of nonempty strings over the alphabet { a, b }: 

Y = ( Y1 , Y2 , • • • , Yn) • 

Then, consider the languages 

Ls = {w1cw2cmi(w2)cmi(wi)lw1,w2 E {a,b}"}, and 

L(x, y) = {a, b, c}* - (Lx{c}mi(Ly) n L.). 

lt is known that L( x, y) is a context-free language. For every solution 
(i1,i2, ... ,ik) of PCP(x,y) the strings 

are not in L(x,y). 
Clearly, when L(x,y) = {a,b,c}*, then L(x,y) is in CFDUPL(r) n 
CFDUPL(l). 

Now, it îs sufficient to prove that L(x,y) (/:. CFDUPL(l)U 
CFDUPL(r) if L(x,y) -:p {a,b,c}*. 
Let us suppose that L(x,y) = L(Li), fi= ({a,·b,c},0,Dr,0,A). We 
choose a solution (i1 , i 2 , ... ik) such that 

lxikx;k-i .. • x;1 I > max{lwl lw EA}. 

For {a, b}" ~ L(!::i), there exists a word w EA such that 

By the choice of the solution (i1 , i2 , ... , ik) the word 

is in L(6.). 
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Therefore, we get 

Z L* b i1 b i2 b ik '( ) '( ) , a a ... a cxik ... Xi 2 Xi 1 cmi y; 1 mi Yi 2 ••• 
. . . 

mi(y;k )ca'k b . .. ba'2 ba' 1 b, 

a contradiction. Hence the theorem holds. o 

Finally, we consider "nonemptiness of the intersection problem" 
for DU P L(X), X =p O. 

Theorem 3.3.11 It is undecidable whether or not L1 n L2 = 0? for 
arbitrary two duplication languages in DU P L(X), X =p O. 

Proof. Let x = (xi, x2, ... , xn), y = (Y1, Y2, ... , Yn) be an instance of 
PCP, and let 

Lx = {w$cf 1 $ci2 
••• $cikxik ... X; 2 Xi 1 lk ~ 1,1 S ij S n,l S j S k} 

U{ w$ci1 $ci2 ••• $cik$x;k ... x;2 x; 1 lk ~ 1, 1 S ij S n, l S j S k }, 

where w = cdx1cdy1cd2x2cd2y2 ... cdnxncdnYn· Ly is defined analo­
gously. 

Clearly, the duplication grammar ~ = ({a,b,c,d,$,#}, 0, Dr, 0, 
{ w$#} ), with 

Dr= {($,cix;,#)11 S i S n} U {($,cixi,X)ll S i S n,X E {a,b}} 

u{(d, $, a), (d, $, b)} 

generates Lx. 
This concludes the proof, because Lx n Ly = 0 if and only if the 

instance (x, y) of PCP has no solution. O 

3.4 Self Crossover Systems 

In this paragraph we are dealing with a very particular case of crossover 
despite that this is not the only biologically significant case. One has 
asserted [57] that in vivo, crossover takes place just between homol­
ogous chromosomes ( chromosomes of the same type and of the same 
length). A first attempt to model the homologous recombination was 
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macle in [65], where crossover between strings of equal length, which 
exchange each other segments of equal length, is proposed. 

Roughly speaking, in the present paper, we try to model crossover 
between a DN A molecule and a its replicated version. Thus, our ap­
proach appears as a model for crossover between "sister" chromatids. 
In our opinion this restriction makes up a theoretical aspect of molec­
ular biology that deserves to be investigated. What would happen if 
crossover occured only between a chromosome and its replica ? 

The main idea of our approach is schematically presented in the 
figure below: 

X /3 y 
w 1=1 ===l==l===l===:::::::j 

w 
z Î 

Figure 3.3. 
t 

One gives a starting finite set of string and a finite set of crossover 
rules ( a ,/3, 1 , o). One considers that every starting string is replicated 
so that, we have two identica! copies for every initial string. The first 
copy is cut between the segments a and /3 and the other one is cut 
between Î and b. N ow, the last segment of the second string adheres 
to the first segment of the first string, and a new string is obtained. 
More generally, another string is also generated, by linking the first 
segment of the second string with the last segment of the first string. 
Iterating the procedure, we get a language. 

V-le want to point out, at this moment, some connections between 
our approach and the other large scale operations in genome. If the 
situation is asin the Figure 3.3, then we have the deletion of a certain 
substring of w which may be viewed as the deletion of a segment of 
a chrornosome. 

If the situation is as in Figure 3.1 of the previous section, then 
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we have the insertion of a substring of w in w; this appears rtS the 
duplication of a segment in a chromosome. 

A self crossover system is a triple: 

SCO = (V, A, R) 

where V is an alphabet, A is a finite subset of V*, and R is a fi­
nite commutative relation, R C (V* x v•)2. With respect to a self 
crossover system as above, for x E v+, we define: 

X l><I y iff ( i) X = X1 oJ3x2 = X3,0X4 

(ii) y = X10'tfa4 

(iii) (o:,(J)R(,,o). 

Note that x 1><1 x31(3x 2 follows from the definition of R. Moreover, 
the strings x 1o:ox4 and x31(3x 2 are somehow "conjugated" narnely, 
there ex.ists u E V* such that 

Denote by 1><1* the reflexive and the transitive closure of the relation 
IX!. 

The language generated by a self crossover systern as above is 

L(SCO) = {x E V*lw CXl* x, w E A} 

Example 3.4.1 Take V= {a,b}, A= {bab}, and 
R = {(a,b;b,a),(b,a;a,b)}. 

We have 
L(SCO) = {bb} u {ba 2nbln 2'. O}. 

lndeed, bab 1><1 ba2b and bab CXl bb. Assuming that bab CXl" ba2n b, by 
applying the rule (a,b;b,a) to this string, we get ba2"b txJ bo 2"+

1
b. By 

using the other splicing rule, we get ba2n b CXl bb. □ 
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Example 3.4.2 Consider V= {a1,a2, .. ,,an}, A= {a1a2 .. ,an}, 

R = {(E,E;E,E)}. 
We state that L(SCO) = V*. We are going to prove aur assertion 

by induction on n. Jt is obvious that the statement is true for n = 1. 
Let z Ev+ I 

with t 1 ,t2, .. -,tk 2: l,z1,Zk+1 E (V - {an})*z1,z2, ... ,Zk E (V -
{an})+. 

By the hypothesis of induction and following the crossover rule, 
we can perform the sequence of crossover below 

Going on, one obtains 

Therefore, every string in V* can be generated by the above system, 
which concludes the proof. 

Denote by I,(SCO) the family of languages generated by self 
crossover systems. The elements of I,(SCO) will be referred as self 
crossover languages. 

Theorem 3.4.1 Every self cross-over language L, over {a}, is either 
a finite set or· exist a finite set F E V* and k > O such that L = 
FU {anin 2: k}. 

Pmof. Let SCO = ({a},A,R) bea self cross-over system. Since 

L(SCO) = LJ L(SCOx), SCOx = ({a},x,R) 
xEA 

it suffices to show that any language L(SCOx) is either a singleton 
or of the form { an I n 2 k}, for some k > O. Clearly, every language 
L(SCO,:) is either a singleton or an infinite language. 
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Let L(SCOx) be an infinite language and 

k = min{la81: (a,,6)R(,,b)}. 

p = max({lal l(a,,6)R(,,b)} U {l/31 l(a,,6)R(,,b)}) 

Moreover, let ( a, ,6; 1 , 8) be the cross-over rule which fulfils the min­
imal value of k: Of course, L(SCOx) ~ {anin 2 k}. We show that 
any z = an, n 2 k is a string of L(SCOx)- Because L(SCOx) îs an 
infinite set, ex.ists m > n + p such that am E L(SCOx)-

Then, we have the two following decompositions 

am an-lal-l61a1<>1/am-n+l61 

am am-l61/al61_ 

where the cross-over sites are indicated by the symbol /, which resuit 
in generating of an. □ 

Lemma 3.4.1 The language L 
any seif cross-over system. 

a*b*a*b* cannot be generated by 

Proof. Assume that L can be generated by the system SCO = 
( { a, b }, A, R). Let z = anbmakbp be a string in L such that n, m, p, k 
are bigger than the length of the longest string over { a, b} which 
occurs in a rule of R. 

Please note that, at each cross-over between two identica] strings 
of the above form, only the number of occurences of only one symbol, 
injust one of its two segments is modified. According to this remark, 
in order to get z, we have to produce a cross-over on a string of the 
form anbmakbr, O < r < p, in the sites indicated below by the symbol 
/: 

anbmakbr1 / br2' r1 > O 

anbmakbr3 / br4 

But, we can choose also the foUowing sites for cross-over: 

https://biblioteca-digitala.ro / https://unibuc.ro



152 CHA.PTER 3. LA.NGUA.GE GENERA.TING DEVICES 

and get the string anbmakbr 1+m2 akbr, which leads to a contradiction. 
o 

The next result is a consequence of the results got so far. 

Theorem 3.4.2 The family I,(SCO) is incomparable with the fam­
ilies of regular and context-free languages, respectively. 

Theorem 3.4.3 The families I,(EG) and I,(SCO) are incompara­

ble. 

Proof. We prove that the seif cross-over language L = { bb} U { ba2
n bi 

n 2 1} cannot be generated by any evolutionary system. Assume 
the contrary and let EG = ({a,b},A,Del,Inv,Xpos,Dup) be an 
evolutionary grammar generating L. Since the set Dup has to be 
nonempty exists ak E Dup. 

All strings ba2" b, ba2"+
1 
b, ba2n+

2 
b are in L(EG); consequently, 

by applying duplication rules to all strings ba2n b, ba2"+
1 
b, ba2n+

2 
b 

we get strings in L( EG). Therefore, there are integers p < q < r 
such that 

2n + k 2P 

2n+l + k 2q 

2n+2 + k 2r 

which leads to 2q+l - 2P = 2r - 2q or equivalently 2P(2q+l-p - 1) = 
2q(2r-q - 1). lt follows that p = q that is contradictory. 

Conversely, we observe that the language L1 = a*b*a*b* can be 
generated starting from abab by iterating the duplication and deletion 
of both letters a and b, respectively. O 

Now we shall prove that the family [(SCO) has very poor proper­
ties concerning the closure under usual operations in formal language 
theory. 

Theorem 3.4.4 The family [(SCO) is an anti-AFL and it is not 
closed under left/right derivatives and complement, too. 
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Proof. 
Union: The languages L1 = {bb} U {ba 2"bln 2". O} and L2 = 

{baaab} are self cross-over languages but nat their union. We omit 
the simple proof of this fact. 

Catenation: The language L = { anbm ln, m 2". O} can be generated 
by the self cross-over system ( a detailed proof is left to the reader): 

SCO = ({a,b},{ab},{(a,E;E,a),(b,E;E,b),(E,a;a,E),(E,b;b,E)}). 

From Lemma 3.4.1 it follows that L2 is nat a self cross-over lan­
guage. 

Intersection with regular sets: Consider the intersection between 
the self cross-over language {a}* and the regular language {a2nln 2". 
l}, which is nat in [(SCO) due to Theorem 3.4.1. 

Morphisms: Take the morphisrn h : { a, b }* ----, {a}* defined by 
h( a) = h( b) = a, and the self cross-over language L = { bb} U 
{ba 2"bln 2". O}. However, h(L) = {aa} U {a2"+2 1n 2". O} is nat in 
[(SCO), as a consequence of Theorem 3.4.1. 

Inverse morphisms: Take the self cross-over language L = {an I n 2". 
3} and the morphism k: {a,b}•----, {a}* defined by h(a) = a, h(b) = 
E. Clearly, h-1(L) = {x E {a,b}•l lxla 2". 3}. We are going to prove 
that h- 1(L) fţ [(SCO. Assurne the contrary but notice that exists 
k > O such that at least a cross-over rule is applicable to the string 
x = bkabkabkabk. Thus, x may be split 

• between two a's, 

• between an a and a b, 

• between a b and an a. 

Therefore, we should consider nine cases, but the reader can easily 
find aut some appropiate sites such that each case leads to strings 
containing less than three a's, contra<liction. 

Kleene opemtion *: Consider the seif cross-over language L = 
{bb} U {ba 2"bln 2". O} and assume that L• can be generated by a seif 
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cross-over system. Following the same idea as for proving Lemma 
3.4.1, we want to obtain the string 

z = ba2"
1 bba2"

2 
... bba2

"k b 

with large enough n;, 1 :S: i :S: k, pairwise different. For increasing the 
number of a's occurences in the last segment, we must split one copy 
of z somewhere on its last segment of a's. But, by choosing another 
segment, we will obtain a string which has a substring of the form 
bar b, and r is not a power of 2, contradiction. 

Lefi derivatives: Take L the previous language. We shall prove 
that 8b(L) = {b} u {a 2"bln 2 O} is not in t,(SCO). 

Assumming the contrary, in order to get a string a 2
n b, with large 

enough n, we must apply a cross-over rule to a string, say a2"' b, n -:p 
m. By crossing-over, the string a2"'b may give the strings a2m+kb and 
a2m-kb, for some k > O. For both strings must be in 8b(L), it follows 
that exist i -:p j such that 2m+l = 2i + 2j, contradiction. 

The case of the right derivatives is symmetric. 

Complement: For the non-closnre under cotnplement, take the 
language generates by the seif cross-over system 

SCO = ( { a, b }, { aaabbabb }, R) 

where 

R = {(t:,t:;x,y),(x,y;E,t:)lx,y E {aa,ab,ba,bb}} 

In order to prove that L(SCO) = {a,b}* - {E,a,b} we establish the 
following two facts. 

Fact 1. Ali strings of length two over { a, b} are in L(SCO). 

This fact can be easily checked. For instance, the string ba can 
be obtained as follows: 

aaabbabb IXl babb IXl ba 

Fact 2. Both strings aaabbabba, aaabbabbb are in L(SCO). 
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The cross-over steps for generating the above strings are given 
below: 

aaabbabb D<l aaabbabbabb D<l aaabbabba 

and 
aaabbabb D<l aaabbabbbabb D<l aaabbabbb 

According to the first fact, we can assume, by induction, that all 
strings of length n 2'. 2 over { a, b} are în L(SCO). Let z be a string 
oflength n + 1 over { a, b} and z = ua. From the inductive hypothesis 
we have 

aaabbabba D<l• ua 

hence, by combining with the second fact, z E L(SCO). Analogously, 
if z = ub. 

Therefore, the com.plement of L(SCO) is the language {c,a,b} 
which, obviously, îs not in ,CSCO. O 

Theorem 3.4.5 The family ,C(SCO) is nat closed under duplica­
tions and deletions. 

Proof. If we try to duplicate the letter a în the strings from { bb} U 
{ba 2"bln 2'. O}, we get the language {ba 2"+ 1 bln 2'. O} which îs not 
a self cross-over language. Indeed, let us assume that the string 
ba2"+ 1 b produces two conjugated strings, say bazm+ 1 b and ba2 k+ 1 b. 
Observe that 2n+1 + 2 = 2rn + 2k + 2 holds that requires n = m = k. 
Consequently, our task leads to a finite set, contradiction. 

The same reasoning îs valid for deletions as well. O 
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Chapter 4 

Other Operations 

4.1 The PA-Matching Operation 

We consider the PA-matching operation, used in DNA computing, 
as a formal operation on strings and languages. We investigate the 
closure of various families of languages under this operation, rep­
resentations of recursively enumerable languages and decision prob­
lems. We also consider the dual operation of overlapping strings. All 
closure properties of families in the Chomksy hierarchy under both 
non-iterated and iterated PA-matching and overlapping operations 
are settled. 

ln the fastly emerging area of DNA computing, many new com­
putability models are considered, where many of the operations used 
are inspired by the DNA behavior in vivo or in vitro. Examples of 
such operations are: the splicing operation ( used in H systems), the 
annealing ( used in sticker systems), and the insertion-deletion oper­
ations. These and other operations are discussed in [104]. 

Here we investigate yet another operation suggested by operations 
on DNA molecules, the so-called PA-matching operation, used in 
[109]. lt is related to both the splicing and the annealing operations: 
starting from two single stranded molecules x, y, such that a suffix w 
of x is complementary to a prefix ·w of y, by annealing we can form 

the molecule with the double stranded part (:) and the remaining 

sticky ends specified by x and y. The matching part is then ignored 
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(removed), so that the resulting string consists of the prefix of x and 
the suffix of y which were nat matched. 

This operation is considered here as an abstract operation on 
formal languages. We relate it to other operations informal language 
theory and we settle the closure properties of families in the Chomsky 
hierarchy under it. A dual operation is that of overlapping, where 
we keep a matching part of two strings. Alsa in this case we settle 
all closure properties of Chomsky families. Once again, it turns aut 
that manipulation of DN A molecules leads to operations interesting 
from formal language theory point of view. 

The set of all the proper prefixes and suffixes of the strings in a 
language L s;;; V* are denoted by PPref(L),PSuf(L), respectively. 

For L1 , L2 s;;; V* we define the lefi quotient of L 1 with respect to L2 
by L2 \L1 = { w E V* I xw E L1 for some x E L2}. The right quotient 
is defined in the symmetric way. When L2 is a singleton, L2 = { x }, 
then we write 8~(L) instead of {.T}\L 1 and this operation is called 
the lefi derivative of L 1 with respect to x. The right derivative is 
denoted by o;(L1). 

A finite transducer is a gsm which is able to change its current 
configuration without reading effectively the current input symbol. 
The finite transduction defined by a finite transducer M is denoted 
by TM, similarly to the gsm mapping. If L is a regular language and 
Misa finite transducer, then T1w(L) is also regular. 

4.1.1 The Non-Iterated Case 

The PA-matching operation consists of cutting two strings in two 
segments such that the prefix of one of them matches the suffix of 
another, removing these two matching pieces, and pasting the re­
m ai ning parts. 

Formally, given an alphabet V, a subset X of v+, and two strings 
u, v E v+, one defines • 

PAmx(u,v) = {wz I u = wx,v = xz, for x EX, and w,z EV*}. 

The operation is naturally extended to languages over V by 

u PAmx(u,v). 
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When L1 = L2 = L we write PAmx(L) instead of PAmx(L1,L2). 
Since we shall only deal either with finite sets X or with X = v+, 
we use the notation f P Am for finite PA-matching and the notation 
PAm for arbitrary PA-matching PAmv+. 

The reader familiar with the splicing operation ([59], [60], [104]) 
may easily recognize a special variant of splicing in the finite PA­
matching case. 

A splicing rule over V is a quadruple r = ( u1, u2, u3, u4), with 
u; E V*, 1 :S i :S 4. 

Given a finite set R of splicing rules and the strings x, y E V* we 
write 

O'R(x,y) = {x1u1u4y2 Ix= x1u1u2x2, Y = Y1U3U4Y2, 

(u1,u2,u3,u4) E R, x1,x2,Y1,Y2 EV*}. 

For L1, L2, L ~ v•, we define 

u 
<7R(L) = <7R(L,L), 

O'~(L) = L, 

O'i1(L) = O'k(L) u O'R(O'k(L)), i::::: o, 
O'R(L) = u O'k(L). 

i>O 

Note that in the splicing case we cannot check the suffix-prefix 
matching; this is the main difference between the two operations. 
However, with the use of other operations, the two operations can 
simulate each other. 

Lemma 4.1.1 IJ a family F of languages is closed under concatena­
tion with symbols and non-iterated splicing, then F is closed under 
the operation JPAm. 

Proof. For L1 , L2 ~ V•, consider two symbols c1 , c2 not in V. 
For a finite set X ~ v+, consider the set of splicing rules R = 
{(r,xc2,c1x,r) Ix EX}. Then we obviously have 
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which implies the lemma. D 

Lemma 4.1.2 Jf a family F of languages is closed under finite trans­
ductions and the operation f PAm, then it is closed under non-iterated 

splicing. 

Proof. Let L1 , L 2 ~ V* be two languages and R be a finite set of 
splicing rules over V. For each rule r = (u1, u2, u3, u4) consider a 
new symbol ar and let X= {ar Ir E R} be the set of these symbols. 

We define two finite transducers, M 1 , M2, such that, for each x E 
v· 

' 
{x 1u 1ar Ix= x1u1u2x2, for r = (u1,u2,u3,u4) E R 

and x 1 ,x2 EV*}, 

{arU4X2 Ix= X1U3U4X2, for r = (u1,u2,u3,u4) E R 

and x 1 ,x2 EV*}. 

Clearly, the equali ty 

holds (the PA-matching just puts together the strings marked by the 
two tranducers) which proves the lemma. □ 

Of course, the concatenation with symbols can also be performed 
by finite transducers, therefore, by combining the above two lemmas 
we get: 

Theorem 4.1.1 Jf F is a family of languages closed under finite 
transductions, then F is closed under the operation f PAm if and only 
if it is closed under non-iterated splicing. 

Then by Theorem 7.1 from [104], we get the following corollary: 

Corollary 4.1.1 The families REC, CF, RE are closed under the 
f PA m operation, but LIN is nat closed. 

Also the family CS is closed under the operation f PAm (although 
it is nat closed under splicing), as a consequence of the following 
resuit. 
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Lemma 4.1.3 /fa family F of languages is closed under concatena­
tion, union, and right and lefi derivatives, then F is closed under the 
operation f PAm. 

Proof. The following equality is obvious: 

PAmx(L1,L2) = LJ a;(L1)8;,(L2)-
xEX 

The required closure properties of F irnply then the lernrna. □ 

Corollary 4.1.2 The family CS is closed under the f PAm operation. 

We move now to investigate the properties of arbitrary PA-rnatch 
operation. 

Lemma 4.1.4 /fa family F of languages is closed under the shuffle 
and finite transductions, then F is closed under PA m. 

Proof. Let L1 , L2 E F, L1 , L 2 ~ V*. Consider the alphabet V' = { a' I 
a E V} and the morphism h defined by h( a) = a', for a E V. Since 
each rnorphism can be realized by a finite transducer, h(L 1 ) E F. 

We construct now a finite transducer M which, inforrnally speak­
ing, works as follows on the strings frorn the language 5 huf (L 1 , h(L2) ): 

- M reads a prefix of the input string forrned exclusively by non­
primed letters and leaves it unchanged; 

- then, starting frorn a new state, Jvl checks for a while if the 
input contains only pairs of letters of the forrn aa', and writes 
nothing to the output; 

- then, starting from another state, J\-1 reads only pri med symbols 
and writes as output the non-prirned versions of them. 

It is easy to see that M defines a transduction that satisfies the 
equation 

TM(Shuf(L1, h(L2))) = PAm(L1, L2)­

Thus the lemma holds. □ 
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Lemma 4.1.5 lf a family F of languages such that REC ~ F is 
closed under concatenation with symbols, left derivatives, and PAm, 
then F' is closed under Pref. 

Proof. Let L ~ v• and let c1, c2 be two new symbols. Then obviously 

and so the lemma holds. □ 

Theorem 4.1.2 1. The families REG and RE are closed under 
PAm. 

2. The families LIN, CF, and CS are not closed under PAm. 

Proof. Let us consider the languages 

Li= {c1wd1mi(w)d2 I w E {a,b}+}, 

L2 = {d1wd2mi(w)c2 I w E {a,b}+}. 

Clearly, both of them are linear languages. It is easy to see that 

which is nota context-free language. Consequently, the families LIN 
and C F are not closed under P Am. 

The family C S is not closed under Pref; the families REC, RE 
are closed under shuffie and finite transductions. Thus, the theorem 
follows from the previous lemmas. □ 

A language L îs said to be a fixed point of the PA-match operation 
iff PArn(L) = L. 

If L is a regular language, then by Theorem 4.1.2 we have that 
P Arn(L) is regular. The equivalence problem for regular languages 
is decidable. Therefore, we can decide whether or not a given regular 
language is a fixed point of the PA-match operation. As expected, 
this is not true for the family of context-free languages. 

Theorem 4.1.3 The problem whether or not a given context-free 
language is a fixed point of the PA-match operation is undecidable. 
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Proof. Take two arbitrary n-tuples of nonempty strings over the 
alphabet {a,b}, x = (x1,X2, .. ,,xn),y = (Y1,Y2, .. ,,yn), n 2:'. 1, and 
consider the languages 

Lz {bat 1 bat2 ... batkcztk ... Zt 2 Zt 1 I k 2:'. 1, 1 ::; l; ::; n, 

1 ::; i ::; k}, for z E { x, y}, 

L. 
L(x, y) 

{w1cw2cmi(w2)cmi(w1)lw1,w2 E {a,b}*}, 

{a,b,c}* - (Lx{c}mi(Ly) n L.,). 

It is known, see, e.g., [117], that L(x, y) is a context-free language. 
If PCP(x,y) has no solution, then L(x,y) = {a,b,c}* an<l 

PAm(L(x,y)) = {a,b,c}*. ( 4.1) 

If PCP(x,y) has solutions, then L(x,y) # {a,b,c}* but equality 4.1 
still holds. (For each w E { a, b, c} *, the strings c4 and c1 w are in 
{a,b,c}* but not in L5 ; hence, these strings are in L(x,y). This 
means that w E PAm(c4 ,c4w), that is, {a,b,c}* ~ PAm(L(x,y)). 
The converse inclusion is trivial.) 

Consequently, PAm(L(x, y)) = L(x, y) if and only if PC P(x, y) 
has no solution. Since PCP is undecidable, the theorem holds. □ 

4.1.2 The Iterated Case 

We will investigate now the iterated version of the PA-match opera­
tion. 

It is defined as follows. For a language L ~ V* and a finite set 
X ~ v+, we define: 

PAmi(L) 
PAm}+1(L) 

PAmx(L) 

L, 

PAm}(L)uPAmx(PAm}(L)), k 2 O, 

LJ PAm}(L). 
k>O 

When X is finite, the iterated PA-mathching operation is denote<l 
by f P Am*; in the case X = V*, the corresponding operation is 
denoted by P Am*. 
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Lemma 4.1.6 If a family F of languages is closed under concate­
nation with symbols, iterated splicing, and lefi and right derivatives, 
then F is closed under itemted finite PA-matching. 

Proof. Let L ~ V* be a language in F and X be a finite subset of 
v+. Let c1 , c2 be two new symbols. We associate with X the set of 
splicing rules R = {(c:,xc2 ,c1x,E) Ix EX}. Clearly, 

PAmx(L) = Et(8~
2
(ajt({ci}L{c2}))). 

Hence the lemma holds. o 

Lemma 4.1.7 Let F be a family of languages closed under concate­
nation with symbols, union, lefi and right derivatives. 

l. Jf F is closed under f P Am*, then F is closed under fPAm. 
2. Jf F is closed under P Am*, then F is closed under PAm. 

Proof. For L 1 , L2 ~ V*, let c1, c2 be two new symbols. It is easy to 
see that the following equation holds: 

(The derivatives require that at least one PAm operation is per­
formed, while the markers c1 , c2 prevent performing more than one 
such operation.) Note that this relation holds also for PAm. □ 

Theorem 4.1.4 1. The families REC and RE are closed under both 
fPAm* andPAm*. 

2. The family LIN is not closed under f P Am* and P Am*. 
3. The family CF is closed under J P Am* but it is not closed under 

PAm*. 
4. The family CS is closed neither under f P Am* nor under P Am*. 

Proof. l. The closure under f P Am* follows from Lemma 4.1.6 and 
the fact that the family of regular languages is closed under iterated 
splicing (see [26, 60, 104]). 

A more involved argument is required for proving the closure un­
der P Am* (remember that the regularity is not preserved by an it­
erated splicing with respect to a regular set of splicing rules - see 
[102]). 
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Let_ R ~ V* be a regular language recognized by a finite automa­
ton M = ( Q, V, o, q0 , F), which satisfies the following conditions: 

{qj}, Qo # QJ, 

0, for all a E V, 

Qo i b(qo,x), for each x Ev+. 

Clearly, each regular language is accepted by a fini te automaton sat­
isfying the above conditions. 

We construct now iteratively a sequence of finite automata with 
E-moves, Mo, M1, ... , M;, ... with M; = (Q, V, Oi, qo, {qf}) as follows: 

• M;+I = (Q, V, b;+1q0 , {qJ}) is obtained from M,- as follows. 

- Oi+1(s,a) = b;(s,a), for all s E Q,a EVU {c}. 

- For all pairs of different states q, q' E Q - {q0 , QJ} such 
that: 

1. q i b;(q',E), 
2. L(Mq) n L(Mq') # 0, 

where 

Mq = (Q,V,b;,qo,{q}), and Mq' = (Q,V,b;,q',{q1}), 

we set 

Obviously, the above sequence is finite, because there exists k such 
that Mk+l = Mk (the set of states is not changed, only new transi­
tions are added); hence Mk+p = Mk, for all p 2: O. Note also that 
the construction is effective due to the decidability of the emptiness 
problem for the intersection of two regular languages. Furthermore, 

Acc(Mk+i) = ... ~ PAm*(R) 
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holds. On the other hand, one may easily prove by induction that 
PAmJ(R) s;; Acc(Mj), for all j 2 O; therefore PAm*(R) = Acc(Mk)-

~- Because the family LIN is closed neither under J PAm (Corol­
lary 4.1.1) nor under PAm (Theorem 4.1.2), by Lemma 4.1.7 it fol­
lows that it is not closed under the iterated versions of these opera­
tions. 

3. lt is known that the family C F is closed under iterated splicing 
[GO]; thus, the closure of C F under J PAm* follows from Lemma 4.1.6. 
By Lemma 4.1.7 and Theorem 4.1.2, we get the non-closure of CF 
under PAm". 

4. Consider now a language L E RE - C S, L s;; V*. There are 
a1 ,a2 tţ. Vanda context-sensitive language L' ~ L{ai}{a2}" such 
that for each w E L there is i 2 O with wa1 at E L'. We have then 

Indeed, the first P Am operation transforms strings wa1a2 E L' into 
wa1 a;- 1 c. The next step leads to wa1 a;- 2 and the process can 
be iterated. The right derivative with respect to a1 selects from 
PAm{a

2
,a

2
c}(L'{a2, a2c} U {a2c}) the strings of the form wa1. Since 

we nondeterministically concatenate L' with both a 2 and a~, in this 
way we can get wa 1 for all w E L. Thus, the equality follows. 

If the family C S was closed under the operation PA m *{ } , 
a2 ,a2c 

then LE CS, which is a contradiction. □ 

As a matter of fact, the non-closure of the families C F and C S 
under iterated arbitrary PA-matching may be obtained from a more 
general resuit. 

Theorem 4.1.5 Each recursively enumerable language L s;; V* can 
be written as L = 8~

1
(8~

2
(PAm*(L') n {ci}V*{c2})), where L' is a 

context-free language and c1 , c2 are two new symbols. 

Proof. Assume that L is generated by a type-0 grammar G = ( N, V, 
S, P) in the Geffert normal form, that is, with N = {S, A, B, C} and 
P having only context-free rules of the form S _, x, x E (NU V)+, 
an<l a siugle extra rule ABC -. €. Consider the context-free grammar 
G' = ({S}, V u {A,B,C,X},S,{S-. h(x) I S-. x E P}), where X 
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is a new symbol, and h is a morphism that replaces A by X A leaving 
all the other symbols unchanged. Consider the language 

L' {ci}L(G'){c2} u {X ABCwc2Ymi(w)Z I w E (V u {B, C} )"} 

U {YwZmi(w)c2 I w E (V U {B,C})*}, 

where Y, Z are two new symbols. Clearly, L' is a context-free lan­
guage. 

Let c1w1X ABCw2c2 be a string in {ci}L(G'){c2}, with w2 E 
(V U { B, C} )* ( that is, this is the rightmost occurrence of X ABC in 
aur string). The only possible PA-matching operation is 

PAm( c1 w1X ABCw2c2, X ABCw2c2Y mi( w2)Z) = c1 W1 Y mi( w2)Z. 

The obtained string can again "enter" only one operation: 

In this way, one occurrence of X ABC has been removed. By iterating 
the P Am operation, all such substrings can be removed - therefore 
{ci}L{c2} = PAm*(L') n {ci}V*{c2} holds. The left and the right 
derivatives lead now to L. □ 

As a direct consequence of the above resuit, we find that every 
family of languages that contains all context-free languages but not 
all recursively enumerable languages, and is closed under intersection 
with regular sets and right and left derivatives, is not closed under 
PAm*. This is the case for the most of the language families in the 
regulated rewriting area [114]. Moreover, the abovc resuit implies 
some undecidability results. 

Corollary 4.1.3 The following problems are undecidable: 
l. For an arbitrary LE CF, is PAm*(L) regular/context-free? 
3. For an arbitrary L ~ V*, L E C F, does w E v· belong to 

PAm*(L)? 

4.2 The Overlapping Operation 

In this section we consider another operation on languages that rnay 
be viewed as the dual of PA-matching. While the PA-matching oper-
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ation removes the matched part, the overlapping operation preserves 
the matched part and removes the rest. 

More precisely, for strings x, y we define 

Ov(x, y) = PSuf(x) n PPref(y). 

Then, 

u 
We write Ov(L) instead of Ov(L,L). The closure properties of the 
language families in the Chomsky hierarchy under the overlapping 
operation are the same as for the PA-matching operation. 

Theorem 4.2.1 1. The families REG and RE are closed under Ov. 
2. The families LIN, CF, and CS are not closed under Ov. 

Proof. The first assertion follows from the closure of both families 
under intersection, P Pref and P Suf. 

It is easy to see that the closure under overlapping, together with 
other "easy" closure properties ( concatenation with symbols, left 
and right derivatives), implies the closui'e under intersection (L 1 n 
L2 = 8~

1
(0;

2
(0v({ci}Li{c2},{c1}L2{cD))) and the prefix operation 

(Pref( L) = Di( { c2} v•, { c} L{ c}) ). These observations imply the sec­
ond claim. O 

From the previous proof it follows that the fixed point problem 
for Ov is decidable for regular languages. The problem remains unde­
cidable for context-free languages (with the same proof as for PAm). 

Now, let us consider the iterated version of the overlapping oper­
ation. The usual way of defining an iterated operation (see the case 
of the splicing and the case of PA-matcţl.ing) does nat work for the 
iterated overlapping, because Ov(Ov(L)) ~ Ov(L), which makes the 
usual definition (Ovk+ 1(L) = Ovk(L) U Ov(Ovk(L))) uninteresting. 
Therefore, we shall define Ovk+ 1 (L) = Ov(Ovk(L)), for al! k 2: 1. 
Moreover, Ov•(L) = L' iff the following two conditions are fulfilled: 

(i) L' ~ Ovk(L), for all k 2: 1, 

(ii) for each L" with L' C L" there exists k 2: 1 

such that L" i Ovk(L). 
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This means that, Ov*( L) is the largest language ( with respect to 
inclusion) which is included in all the sets Ov(L),Ov2(L), ... 

Theorem 4.2.2 1. For each k 2': 1 there is a language Lk such that 

Ov*(Lk) = Ovk(Lk)-
2. There are languages L such that Ovk+l(L) C Ovk(L), for all 

k 2': 1. 

Proof. Consider the language L k = {ai bi I 1 :S i, j '.S k}. It is easy to 
see that Ov(Lm) = Lm-I, 2 :S m :S k, and Ov(L1) = 0. Therefore, 
Ov*(Lk) = Ovk(Lk)-

Consider also the language 

L 00 = LJ {(banbr(canc)j 11 '.S i,j '.S n}. 
n>l 

For each n, we can overlap only strings containing blocks ba"b, cane. 
For given n, we can perforrn a bounded number of overlappings, be­
cause at each step we have to rernove either the prefix banb or the 
suffix cane. Therefore Ovk+ 1(L 00 )-::/- Ovk(L00 ) for k '.S n. Because n 
can be arbitrarily large, the operation can be iterated an arbitrarily 
large nurnber of steps. D 

Note that Ovk(L00 )-::/- 0, but Ov•(L00 ) = 0. 

Theorem 4.2.3 The families LIN and CF are not closed under Ov*. 

Proof. For L 1 ,L2 ~ V*, let us consider two new symbols, c1 ,c2. We 
obtain the equality: 

Ov*({ci}*Li{c2}*u{ci}•L2{c2}*)n{ci}V*{c2} = {ci}(L1 nL2){c2}. 

Indeed, {ci}*(L1 n L2){c2}' ~ Ov( {ci}* Li{c2t U {ci}* L2{c2}*). 
Starting from strings in {ci}*(L1 nL2){c2}*, we can iterate the over­
lapping operation an arbitrarily large number of times. 

By this equation, the closure under Ov* irnplies the closure under 
intersection. Sin ce the farnilies LIN and C F are not closed under 
intersection (but they are closed under concatenation with regular 
languages, intersection with regular languages, union, and left and 
right derivatives), the theorem holds. □ 
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Theorem 4.2.4 The family CS is not closed under Ov*. 

Proof. Let L ~ V* and let c1 , c2 be new symbols ( not in V). Consider 
the language 

This is a context-sensitive language. It is easy to see that 

(We have {ci}*Pref(L){c2}* ~ Ov(L'), hence we can iterate the 
operation Ov an arbitrarily large number of times.) 

Because the family C S is closed under right and left derivatives, 
but not under the operation Pref, we obtain the non-closure under 
Ov*. o 

Clearly, RE is closed under the iterated overlapping operation. 
The case ofthe family REG will be settled below (also in affirmative), 
after establishing two auxiliary results. 

Let A= (Q, V, 8, q0 , F) bea minimal complete deterministic finite 
automaton; because the automaton is complete, the mapping 8 is 
total and a dead state exists from which there is no path to a final 
state. Let A be the set of all finite automata of the form Ap,q = 
(Q, V,8,p,{q}), for p,q E Q. Clearly, this is a finite set. We denote 
by L(A) the family of all languages recognized by automata in A and 
by C L(A) the closure of the family L(A) under finite union and finite 
intersection operations. Because L(A) is a finite family, also C L(A) 
is a finite family of languages. 

Lemma 4. 2 .1 The family C L( A) is closed under complementation. 

Proof. Let L be a Ianguage in C L(A). It can be written in the form 
L = (L1,1n ... nL1,n 1 )u ... U(Lm,1 n .. . nLm,nm), where each language 
L;,j, 1 :S i :S m, 1 :S j :S n;, is an element of L(A). The complement 
of each language L;,j ( we denote the complement of a language J( by 
K) is also in L(A), since A was a complete deterministic automaton. 
Because L = (L1,1 U ... u L1,n1) n ... n (Lm,1 u ... u Lm,nm ), it follows 
that also the complement of L is in CL(A). □ 
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Lemma 4.2.2 The family CL(A) is closed under the non-iterated 

ovedapping operation. 

Proof. Let L be a language în CL(A). We write it in the form 
L = T1 U ... U Tn, where each T;, l S i S n is a finite intersection of 
languages in C L(A). For every integer i = 1, ... , n, denote: 

I{;= {x EV* I â~(T;) = {€}}, 

M; = {x EV* I â~(T;) = Ql}, 
P; = {x EV* I a;(T;) = {€}}, 

R; = {x E V* I a;(T;) = Ql}. 

Note that the following assertions holci for each string x E V": 

x EL - Ov(L)?? â~(L) = {E} or a;(L) = {E}?? 

(â~(T;) ~ {E} for all i and there îs some j such that â~(Tj) -::j:. Ql), 
or 

(a;(T;) ~ {t:} for all i and there is some j such that a;(Tj) -::j:. Ql). 

Consequently, we have 

L - Ov(L) = ( n (I{; u M;) - n M;) 
l'.Si'.Sn l'.Si'.Sn 

u ((,Qn (P; u R,) - ,Qn R,) • 

By Lemma 4.2.1, it suffices to prove that for every i = 1, ... , n the 
languages K;,M;,P;,R; are contained în CL(A). 

Consider any T; = L1 n ... n Lm, where Lj E L(A), 1 S j S m. 
For every j there is an au tom aton A j = ( Q, V, 8, Pi, {Jj}) in A such 
that Li= L(Aj)-

a. In the standard manner, construct the product automaton 

AK ~ (Qm,V,5,P,{f}) whîch accepts T;, where P= (Pi, .. •,Pm) 

an<l f = (!1, ... , J m ). If A1-; has a cycle w hich contaîns the final state 
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--+ 

f, then I(; = 0 and this is a language in C L(A). Otherwise, K; = T;, 
which is again in C L(A). 

b. For the previous au tom aton AK, Jet FM be the set of states 

which appear on a path from P to f. Consider the automaton AM = 
(Qm, V, 8, P, FM)- Then, 

M; = Acc(AM) = LJ Acc((Qm, V, 8, P, {q} )). 

qEFM 

For every state rÎ= (q1 , ... ,qm) E FM, the language accepted by 

the automaton· ( Qm, V, 8 ,P ,{q}) is an intersection of the languages 
Acc((Q,V,8,pj,{qj})), which are in L(A) for all j = l, ... ,m. Con­
sequently, M; E C L(A). 

c. The proof of the relation R; E C L(A) can be obtained in the 
same manner as in the case of M;. 

d. For each automaton Aj = (Q, V,O,Pj, {fi}) as above we con­
struct its reversal, Af = (Q,V,oR,Jj,{Pj}) and we make Af de­

terministic by the usual subset construction technique. Let Af.. = 
(2Q, V, of, Ui}, Fj) be the automaton obtained in this way. Then, 
by definition, Acc(A_;:) = mi(Lj) holds. 

We construct the product ((2Qr, V,o~, s,F) of automata Ar*' 
... , A~*' which accepts T;R = mi(L1) n ... n mi(Lm), where s = 
({fi}, ... , Um}). Let Fp be the set of a.11 states q in F such that q 
does not have a. path to any state of F. Let Ap = ( (2Qr, V, of, s 
, Fp ). Then, we ha.ve P;R = L(Ap ). Thus, 

Pi = Acc(A~) 

= Acc(((2Q)1",V,(o~)R,Fp,{s})) 
--+ 

= LJ Acc(((2Q)1", V, (o~)R, q, {s} )). 

q EFp 

lt suffices now to show that for every q E Fp, the language Z- = 
--+ q 

Acc(((2Qr,V,(o[l)R,q,{s})) is in CL(A). Let rÎ= (E1 , ... ,Em) E 
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Fp, where Ej ~ Q, 1 ~ j ~ m. Note that for any (X1, ... , Xm) and 
(Y1, ... , Ym) in (2Qr and for any a E V, the following assertions 

hold: 

(Y1,••·,Ym) E (o:;t((X1,••·,Xm),a) 

{::} o:; ((Y1 , . .. ,Ym),a) = (X1,••·,Xm) 

{::} o:;(Yj,a) = Xj, for all j = 1, ... ,m, 

{::} Xj = {q I q E oR(p,a), for some p E Yj}, for all l ~ j ~ m, 

{::} Xj = {q Ip= o(q,a), for some p E Yj}, for all l ~ j ~ m. 

Therefore, we have 

Z;= n (n Acc((Q,V,6,r,{/j}))- LJ Acc((Q,V,6,r,{fj}))) 
1 :Si Sm rEE1 rV:,E1 

hence this language is in C L(A) and this completes the proof of the 
lemma. O 

Theorem 4.2.5 The family REG is closed unde1· the operation Ov•. 

Proof. Starting from a minimal deterministic finite automaton A for a 
regular language L, we construct the farnily C L(A) as above. Because 
this family is closecl under non-iterated overlapping, all languages 
0vk(L ), k 2 1, are in C L(A). Because the family C L(A) is finite, it 
follows that only finitely many languages Ovk(L) are different to each 
other. The smallest of them is equal to Ov"'(L) and it is an element 
ofCL(A). It follows that Ov"(L) is a regular language. O 

4.3 Operations Suggested by 
Gene Assembly in Ciliates 

We define three operations on strings and languages suggested by the 
process of gene assembly in ciliates. The closure of the classes of reg­
ular and context-free languages uncler these operations is settled. We 
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also consider the macronuclear language of a given language. Finally, 
some open problems and further directions of research are discussed. 

A bit more precisely, these operations are suggested by the intri­
cate transformation process by which the macronucleus of a ciliate 
results from its micronucleus. The reader interestead in more biolog­
ical details is refereci to [76] and [106]. 

Following [42, 43] we define the following three operations which 
might be viewed as formal linguistica! definitions of the operations 
through the gene assembly process in cilitates is accornplished: 

• (loop, direct repeat)-excision ( ld, for short), 

• (hairpin, inverted repeat)-excision ( hi, for short ), 

• ( double loop, alternating direct repeat)-excision ( dlad, for short ). 

The computational power of this transformational process taking 
place in ciliates has been considered in [77] and [42]. 

A gac-scheme (gene gssembly in s;_iliates) is a pair a = (V, P), 
where Vis an alphabet and Pisa finite subset of v+, whose elements 
are called pointers, such that mi(P) = P. 

For a gac-scheme as above, we write V = {a I a E V} and P for 
the set consisting of all strings obtained from those of P by replacing 
ea.eh letter with its barred copy in V. 

4.3.1 The ld Operation 

The Non-Iterated Case 

Given a gac-scheme a = (V, P) and a string w E v+, we define 
formally the ld operation as follows. 

The ld operation proceeds informally as shown in Figure 4.1. As 
one can see, the linear molecule (string), in which two occurrences of 
a pointer a have been emphasized, is folded into a loop aligned by 
this pair of pointers. Then, the string is cut asin Figure 4.1, yielding 
two strings, a linear one and a circular one. We consider here that 
a circular molecule is no longer a micronuclear precursor for another 
assembly, so that we keep only the linear molecule. For this reason, 
the segment y must not contain any pointer. 
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~ _a __ ;)l'll----

r~_;_:_=) ) -
X a z 

Figure 4.1. 

Formally, the ld operation is defined by 

ld(J"(w) = {xaz I w = xayaz, x,z E v$,y Ev+, 

aEP, Sub(y)nP=©}. 

175 

A string w is called an ld"-macronuclear string if ld"(w) = 0. 
The above operation can be extended to languages in a natural 

way: 
ld"(L) UwEL ld"(w). 

A family of languages F is closed under the operation ld if for any 
language L E F and any gac-scheme a, ld"(L) E F holds. 

Proposition 4.3.1. Any full trio is closed under ld. 

Proof. Let a= (V,P) be agac-scheme with P = {x1 ,x2 , ... ,xn} for 
some n. The construction is rather simple: We define the homomor­
phisms 

defined by 

h(a) = h( a) = a, a E V, 

h( c;) = h(d) = x • 1 < i < n. 1 i, - -

and 
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defined by 

g(a) a, g(a) = l, a EV, 

g(ci) x;, g(d;) = l, 1 S i S n. 

Now we consider the regular language 

We claim that 
ldr;(L) = g(h- 1(L) n R), 

for any language L over V. Indeed, the regular language R 'assures 
that the following conditions are satisfied: 

- The strings in h-1 (L) n Rare produced from those strings in L 
having two occurrences of some pointer, say Xi, whose inverse homo­
morphical images are the symbols Ci and d; while the other pointer 
occurrences are not transformed into symbols in the set { c1 , c2 , ... , 

Cn, di, d2, ... , dn}. 
- The segment between these two occurrences in the original string 

contains no occurrence of any pointer and is transformed into its 
barred version by the inverse homomorphism h- 1 . 

- The prefix and suffix of the original string before and after these 
occurrences, respectively, are left unchanged by applying h- 1 . 

Now the homomorphism g erases any symbol di, 1 S i S n, 
together with all barred letters, restores any string Xi for Ci, 1 ::; 
i S n, and leaves unchanged the letters from V, which concludes the 
reasoning. O 

Since the families of regular and context-free languages are full 
trios, we get: 

Corollary 4.3.1. The families of regular and context-free languages 
are closed under the operation Id. 

The Iterated Case 

Let L be a language over an alphabet V and a = (V, P) be a gac­

scheme. The ldr;-macronuclear language of L, denoted by ldr;M(L), 
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consists of all lda-macronuclear strings obtained from the strings of 
L by applying iteratively the operation ld with respect to a. 

More formally, we define the languages 

Ro L, 

Lo {w E Ro j lda(w) = 0}, 

R;+1 lda(R; \ L;), and 

L;+1 {w E R;+1 j lda(w) = 0}, i 2: o. 
Then, 

ldaM(L) = U;?_oL;. 

We now address the following problem: given a regular/ context-free 
language L and a gac-scheme a, is lda M ( L) still regular/ context-free. 
1n the remaining part of this section we provide a complete answer 
for a large class of gac-schemata. 

Lemma 4.3.1. Let a = (V, P) be a gac-scheme such that any two 

strings x, y E P, with y -:/= mi( x), do nat overlap each other. Then, 
one can construct a deterministic finite transducer J'vf such that for 
any language L over V, gM(L) is exactly the set of all lda-macronuclear 
strings existing in L. 

Proof. We assume that P = {x(ll,x(2l, ... ,x(n)} for some n 2: 1 

and xU) = Xii)x~i) ... x[~li)i· Before defining the finite transducer, 

we brie:fly recall the well-known KMP algorithm for string matching 
proposed in [69]. For each 1 :S j :S n, one constructs the array next1 
of dimension jxUlj provided by the following algorithm: 

begin 

nextj(l) := -1; 

for i := 2 to jxUlj do 

end 

k := nextj(i - 1) + I; 
while x(j) -+ x(j) and k > O do t-1 r k 

k := nexti(k) + I; 
nexti ( i) := k; 
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Given a string y = Y1Y2···Ym, where Y1,Y2,···,Ym are symbols, 
the matching process of xU) in y proceeds as follows. The sym­
bols in the two strings are compared until a mismatch is found. At 
that point, say at x;j), the same symbol in y is compared against 

x~}xt
1 
(i)+I. If this is a mismatch too, then the same symbol in y is 

cornpared against x~}xti(nexti(i)+l)+l and so forth. A special case is 

when the mismatch is against x~j\ in this case we proceed to the next 
symbol in y. 

Based on this brief recall of the KMP algorithm, for each 1 S j S 
n, we define the function 

where 

Construct the finite transducer M = (Q, V, 6, {q0}, F, where 

Q {qe} U {[(i1, i2,,. •, in)(k1, k2,.,., kn)] I OS ij, kj S lx(j)I + 1, 

1 SS n}, 

qo [ ( 1, 1, ... , 1) (o, o, ... , o) J, 
F Q\{qe,qo} 

and the transition mapping 6 is defined as follows. 
For each a EV, 6([(i1,i2,••·,in)(k1,k2,.,.,kn)],a) is 

1. qc, if exists 1 S j S n such that ij = kj = lx(j)I + 1, 

2 [( ., ., ., )(k' k' k' )] • • ·t 1 ,i2 , ... ,i„ 1 , "2 , ... , n ,otherw1se,where 

• if there exists a j with l S j S n such that ij = lx(j)I + 1, 
then if there exists a t with 1 S t S n such that it = lx(tll 
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and x(t) = a then ,, ' 

i~ it + 1, 

i~ 1, 1 ::; r # t ::; n, 

k~ O, 1 S r S n, 

else 

•/ 
ij lj, 

i~ J( M P, (i,, a), 1 ::; r ::; n, r # j, 
ki J( M Pj(kj, a), 

k~ k,, 1 ::; r ::; n, r # j. 

• if ij -::j:. lx(j)I + 1 for all 1 ::; j ::; n, then if there ex.ists a t 

with 1 ::; t S n such that it = lx(t)I and x;'.) = a, then 

i~ it + l, 
i~ 1, 1 ::; r # t S n, 

k~ O, 1 ::; r S n, 

else i~ = KMP,(i,,a) and k~ = k, for all 1::; r::; n. 

Let us give some informal explanations on the working mode of this 
finite transducer. As one can easily see, the transducer writes always 
the read letter, so that the defined transduction is a subset of the 
input language. Except for the error state qe, each state is formecl by 
a pair of n-tuples of natural numbers. When the first occurrence of a 
pointer, say x;, has been meet in the input string, the corresponding 
number of the first component of the current state became lx;I + 1. By 
our supposition - the pointers do not overlap each other - as soon as 
such an occurrence has been found, the searching process for another 
occurrence is resumed in the first component of the current states, 
for all pointers other than x;, and starts a searching process of xi by 
means of the second component of the current states. 

When a proximate pointer occurrence has been identified, two 
situations may appear: 
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- This is an occurrence of x; and the transducer will enter the 
error state qc, and no move is possible anymore. This corresponds to 
the case when the input string has two consecutive occurrences of x; 

and no other pointer occurrence in between; consequently it is not an 
lda-macronuclear string în L. 

- This is an occurrence of a pointer other than Xi. 1n this case, 
the former pointer occurrence, that of Xi, is of no use for the rest 
of the computation, hence it can be dropped and the computation 
continues by considering the pointer occurrence just identified as the 
first pointer occurrence in the input string. 

Clearly, if the transducer entirely reads the input string in a state 
other than the error state qe, the input string is an lda-macronuclear 
string in L, and we are clone. □ 

Proposition 4.3.2. Let a = (V, P) be a gac-scheme such that any 
two strings x, y E P, with y -::j:. mi( x), do nat overlap each other. 
Then, for any semi-AFL :F, the language ldaM(L) is in :F provided 
that L is in :F. 

Pmof. We assume that P = { x1, x2, ... , xn} for some integer n 2::: 1. 
The language T s;; {1,2, ... ,n}+ such that for every z E T, z = 
i1 i2 ... ik the relation ij -::j:. ii+l, l ~ j ~ k - l, holds, is clearly a 
regular language. Let A= (Q,{1,2, ... ,n},8,{q0},F) bea deter­
ministic finite automaton recognizing T. 

We now consider the following regular languages over V 

B; = v+ \ ((uf=1 v+ {xi}(V+ \ V* PV*){x;}V+)u 

V*{x;}(V+ \ V* PV*)), l ~ i ~ n, 

recognized by the au tomata A;, respecti vely, 

E; = v+ \ ((Uf=1 v+ { xi}(V+ \ V* PV*){xi} v+)u 

(V+\ V*PV*){xi}V*),l ~ i ~ n, 

recognize<l by the automata Â;, respectively, and 
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recognized by the automata A;,1, respecti vely. 
Furthermore, we consider the regular language 

R = v+ \ (V* PV*), 

the automaton recognizing R being denoted by AR- Assume that all 
the automata mentioned above have pairwise disjoint sets of states. 

Claim 1. The language 

L' U;l i2 ... i.ETBi1 { Cjl} R( { d;J R)* { d;I} J;I ,i2 { Ci2} R( { d;2} R)* 
{ d;2 }J;2 ,;3 ••• l;,_1,;. { ci,} R( { di,} R)* { di,} E;, 

is regular. 

Proof of the claim. We shall informally explain the steps of a 
computation of the finite automaton which recognizes L'; following 
these explanations, the reader can easily write a formal construction. 

1. Let j = 1. 

2. By a [-move, the automaton nondeterministically chooses a 
number i1, between 1 and n, and starts to simulate the automa­
ton A;i till this simulation process cannot continue. During this 
process of simulation, the current stat.e is a pair consisting of 
the state q;i = o(q0 , i1) and the current state of the automaton 
A;j. 

When the process stops, the current state has to be formed by 
q;i and a final state in A;

1
, and the reading hea<l posi tione<l on 

Cjj. 

3. By reading c;
1

, the automaton starts simulating the antomaton 
AR. The current state now is a pair consisting of q;

1 
and the 

current state of AR. This process ends successfolly when d;
1 

1s 
read in a state (q;

1
,r), where r is a final state in ÂR-

4. The automaton reads d;
1 

and starts again to simulate ÂR in the 
same way as in the previous step. This step will be execnte<l 
till a symbol in V is reador the automaton is blocked. 

5. Let j = j + 1. 
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6. Now the automaton nondeterministically chooses a symbol ij -:ţ 

ij-l and may change its state into the pair (qii,s), where Qij = 
8( qi

1
_ 1 , ij) and s is the initial state of A;j-i ,ij, or the initial 

state of .Â;
1

. 

7. If the state ( Qi
1

, s) is chosen, then the automaton A;j-i ,ij is 
simulated as long as possible. This process must end in a state 
( qi

1
, t), with t being a final state in A;i-I ,ij and c;

1 
as the current 

input symbol. Now the computation continues with step 3. 

8. If the initial state of .Â;i is chosen, then the automaton simulates 

the work of Âi
1 

until the input string is completely read. The 
computation is successful (the input string is accepted) if and 
only if it ends in one of the final states of Âii• 

Thus we conclude the proof of the claim. 

We define the following homomorphisms: 

h : ( V U V U { C1, c2, ... , Cn, d1, d2, ... , dn} )* ---+ V*, 

defined by 

h(a) h(a) = a, a EV, 

h(ci) h(d;) = Xi, 1::; i::; n. 

and 

g: (V U V U {c1, C2, ... , Cn, di, d2, ... , dn} )*---+ V*, 

defined by 

g(a) a, g(a) = l, a E V, 

g(ci) Xi, g(d;) = l, 1::; i::; n. 

Claim 2. For any language L the following relation holds: 
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Proof of the claim. By Lemma 4.3.1, the first term of the 
above union is the set of all ldo--macronuclear strings existing in L 
and, by the definition of L' and a similar reasoning as in the proof 
of Proposition 4.3.1, it is easy to infer that the second term is the 
set of all ldo--macronuclear strings obtained as a consequence of the 
application of ldo- as many times as possible. 

Since the classes of regular and context-free languages are semi 
AFLs (they are closed under homomorphisms, inverse homornorphisms, 
intersection with regular sets and union, which implies also the do­
sure under finite transductions ), it follows that for any regular/ context­
free language L, ldo-M(L) is still regular/context-free. These obser­
vations complete the proof. O 

4.3.2 The hi Operation 

The hi operation works as shown in Figure 4.2. Now, an inverted 
repeat pair of pointers has been put in evidence. The string is folded 
into a hairpin aligned by the inverted pair of pointers yielding a new 
linear string frorn which a pointer has been dropped. 

x~ a ~mi(y)~ z ➔ 

+ 

Figure 4.2. 

Formally, given a gac-scheme a= (V, P), we define 

hio-(w) = {xami(y)z I w = xaymi(a)z, x,z Ev·. y Ev+, 

Sub(y) n P = 0, a E P}. 
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The above operation can be extended to languages in a natural 

way: 
hia(L) UwEL hia(w). 

A family of languages :F is closed under the operation hi if for any 
language LE :F and any gac-scheme a, hia(L) E :F holds. 

Proposition 4.3.3. 1. The family of regular languages is closed un­
der hi. 

2. The family of context-free languages fails to be closed under 
hi. 

Proof. The first part of the construction is quite similar with the 
construction in the proof of Proposition 4.3.1. Let a = (V, P) be a 
gac-scheme with P = {x1, x2, ... , Xn, mi(x1), mi(x2), ... , mi(xn)} 
for some n. 'vVe define the homomorphism 

defined by 

h(a) h(a) = a, a EV, 

h(c;) x;, h(d;) = mi(x;), 1 :S i :S n. 

For a regular language L, now consider the regular languages 

L1 1i-1(L) n u~1 V*{c;}(V+ \ V* PV*){d;}V*, 

L2 = h-1(L) n ui=l V*{d;}(V+ \ V* PV*){c;}V*. 

The language L1 can be written as a union of n pairwise disjoint 
languages 

L1 = uf=1L1,;{c;}L2,;{d;}L3,;, 

where al! the languages Lj,i, 1 :=:; j :S 3, 1 :S i ::; n, are regular. 
Let A= (Q, V U V U {c1, C2, ... , Cn, di, d2, ... , dn}, 6, {qo}, F) bea 
reduce<l ( without useless states) deterministic finite automaton which 
recognizes L 1 . We consider the following finite automata: 

• .4;,1 = (Q, V, 6 IQxV, {qo}, F;,1), where F; 1 = {q E Q I there 
exists s E Q such that b(q,c;) = s}. 

https://biblioteca-digitala.ro / https://unibuc.ro



4.3. GENE ASSEMBLY IN CILIATES 185 

• Âi,2 = (Q,V,b !Qxii,si,2,Fi,2),where si,2 = {b(q,ci) j q E Fi,i} 
and Fi

2 
= {q E Q I there exists s E Q such that b(q,di) = s}. 

• Ai,3 = (Q, V,b !Qxv,S\,3,F), where 5;,3 = {b(q,d;) j q E F;,2}-

Since A is minimal, it is easy to check that Lj,i is accepted by the 
automaton Aj,i for all 1 '.S j '.S 3 and 1 '.S i '.S n. 

Consequently, the language 

is still regular. Obviously, a similar construction leads to the language 
L; starting from the language L 2 . 

The reasoning from above for the language L1 can be schemati­
cally illustrated asin Figure 4.3. All edges in the subgraphs denoted 
by G0 and G f are labelled with letters from V while all edges in the 
subgraphs denoted by G1 , G2 , ... , Gn are labelled with letters from V. 
Now, we inverse all edges in the subgraphs denoted by G1 , G2, ... , Gn. 
Clearly, the new automaton, which is not necessarily deterministic, 
accepts the language 

by 

We now define the homomorphisms 

91 (a) 

91 ( ci) 

91(ii) = g2(a) = g2(ii) = a, a EV, 

92(d;) = Xi, g1(d;) ~ gz(c;) = l, 1 '.S i '.S n. 

The equality g1(L~) U g2(L;) = hia(L) is immediate. Consequently, 
the first assertion is proved. 
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Figure 4.3. 

2. It is sufficient to take the linear language 

L = {wcmi(w)c I w E {a,b}+} 

and the gac-scheme a= (V,{c}). Obviously, hi17 (L) = {wcw I w E 
{a,b}+}, which is not context-free. O 

It is worth mentioning here that two letter suffice for the previ­
ous counterexample. Indeed, we could define the homomorphism h 
from {a,b,c} into the two-letter alphabet {a,b} defined by h(a) = 
aba,h(b) = abaa, and h(c) = bb. Now, it suffices to take the homo­
morphical images of all objects defined in the previous counterexam­
ple. 

4.3.3 The dlad Operation 

As in the definition of the previous two operations, we explain infor­
mally how the dlad operation proceeds. This operation is applicable 
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to those strings which have a alternating direct repeat pair of point­
ers as illustrated in Figure 4.4. This string is folded into two loops 
each of them aligned by one pair of pointers. The operation removes 
one occurrence of each pointer and yields a new linear string. 

Formally, given a gac-scheme a = (V, P) we define 

dlada(w) = {xa.vf3yuz I w = xa.uf3ya.vf3z, u,v,y Ev+, x,z EV*, 

a.,(3EP, Sub(t)nP=©,tE{u,y,v}}. 

a. X a. 
~~ 

a. u a. 

[/ 
u -y f3 f3 

~ V V 

i ~ 
(}_ 

~ ~ ( (}_ 

+ 

Figure 4.4. 

The above operation can be exten<led to languages in a natural 
way: 

dlada(L) UwEL dlada(w). 

A family of languages F is closed under the operation dlad if for any 
language LE F and any gac-scherne a, dlada(L) E F holds. 
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Proposition 4.3.4. The class of regular languages is closed under 
dlad, whereas the class of context-free languages is not closed under 
this operation. 

Proof. Let a = (V, P) be a gac-scheme with P = {x1, x2, ... , xn} 
for some n. Consider the new alphabets V(i,j) = {a(i,j) I a E V}, 
1 ::S i,j ::S n, i f. j. By P(i,j) we denote the set of all strings 
from P in which each letter a is replaced with a( i, j). We define the 
homomorphism 

defined by 

h(a) h(a(i,j)) = a, a EV, 1 ::S i,j ::S n,i f. j, 

h(c;) h(di) = x;, 1 ::S i ::S n. 

For a regular language L, we now consider the regular language 

L' = h- 1(L) n ufj=l,i#jV*{ci}(V+(i,j) \ V*(i,j)P(i,j)V* 

(i,j)){cj}(V+(i,j) \ V*(i,j)P(i,j)V*(i,j)){d;}(V+(i,j) \ V* 

( i,j)P( i, j)V*( i,j)){ dj} V*, 

which can be written (see the proof of Proposition 4.3.3) as a union 
of n( n - 1) pairwise disjoint languages L;,j 

where all the languages L;,j,k, 1 ::S i,j ::S n, i f. j, l ::S k < 5, are 
regular. Clearly, the languages 

are regular, too. 
We define the homomorphism 
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by 

g(a) g(a(i,j)) = a, a EV, 1 S i,j S n, i 'I j, 

g(c;) x;, g(d;) = l, 1 S i S n. 

The equality 
g(Ufj=t,i;ejL:,j) = dlada(L) 

can be easily checked which concludes the first part of the proposition. 

We consider the context-free language 

and the gac-scheme a= ({a,b,c},{c}). Thus, we get 

which is not a context-free language. D 

Again, the number of letters needed for the last counterexample 
can be reduced to two by the same homomorphism defined at the end 
of the previous section. 

We now point out two open problems. For a given language L 
and a gac-scheme a, we can define its hia-macronuclear and dlada­
rnacronuclear language, respectively, in a similar way to that of defin­
ing the lda-macronuclear language. By the results from the previ­
ous sections, there exist context-free languages such that the corre­
sponding hia-macronuclear language and the corresponding dlada­
rnacronuclear language, respectively, is not context-free. We do not 
know what happens if the given language is regular. 

More generally, one may consider the gac-macronuclear language 
of a given language, say L, as the language consisting of all macronu­
clear strings obtained from the strings of L by applying iteratively 
the three operations no matter in which order. This problem seems 
to be fascinating because all three operations are involved in the 
transformational process of genes in ciliates. 

We now continue with a brief discussion about some further di­
rections of research. Let us restrict our discussion to one operation 
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only, say ld, but emphasizing that the problems we discuss here may 
be a.ddressed to each opeartion as well as to the three operations al­
together. For a given string w and a gac-scheme a, we define the 
lda-macronuclear distance of w as the minimal number of applica­
tions of the ld operation to w in order to get a lda-macronuclear 
string. For a language L, its lda-macronuclear distance is given by 
the maximal lda-macronuclear distance of its strings, if there is an 
upper bound or infinite, otherwise. Severa! problems appear tobe of 
interest with respect to this measure. ls this measure computable for 
regular languages? What is the complexity of computing this mea­
sure for finite languages? Or even for regular languages, if. it turns 
out tobe computable? 

4.4 Evolutionary Systems 

We introduce a language generating device based on string operations 
suggested by the evolution of cell populations, called evolutionary sys­
tem. The cells are represented by strings which describe their DNA 
sequences. The cell community evolves according to gene mutations 
and divison defined by operations on strings. The paper deals with 
the generative power of these mechanisms ( a characterization of the 
class of recursively enumerable languages is presented), and the dy­
namics of the string population. A connection between the growth 
function of DOL systems and the population growth relation of evo­
lutionary systems is also given. 

Description of the dynamics of evolving cell populations is anin­
triguing question which has been in the focus of interest in current 
computer science. At the levei of individual cells, evolution proceeds 
by local operations (point mutations) which substitute, insert and 
dele te nucleotides of the DN A sequence. Evolu tionary and functional 
relationships between cells can be captured by taking only local mu­
tations into consideration. 

Treating DNA sequences as strings has been often used for inves­
tigating the structural information contained in biologica! sequences. 
Severa! approaches have been proposed so far, most of the investiga­
tions along these lines deal with grammatical formalisms. The gram-
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matical form is preferable for promoting an abstracted and hierarchi­
cal view of the domain. For example, regular grammars have been 
used for describing very simple genes [11]. Despite one has argued 
[124] that the genetic language is not more than context-free, these 
arguments are based on observations restricted just to the amino 
acid code. Other authors have argued the inadequacy of context-free 
grammars for modelling the gene regulation [20] or some secondary 
structures of nucleic acids [121]. In [19] transformational grammars 
were considered for modelling the gene regulations, while [122] used 
definite clause grammars, which were constructed on the backbone 
of context-free grammars with appropriate specifications associated 
to nonterminals, for investigating gene structure and expression or 
different forms of mutation and rearrangement. More recently, gram­
matical formalisms based on string operations suggested by life-like 
interactions [24] or large scale rearrangements in genomes [33] and 
[34] have been introduced. 

In this paper we present a language generating mechanism, called 
evolutionary system, inspired by the evolution of cell populations, 
which might model some properties of evolving cell communities at 
the syntactical levei. We represent cells by strings which describe 
their DN A sequences. Informally, at any moment of time, the evo­
lutionary system is described by a collection of strings, where each 
string represents one cell. The cell belongs to species and their com­
munity evolves according to mutations and divison which are defined 
by operations on strings. Only those cells are accepted as survival 
(correct) ones which are represented by a string in a given set of 
strings, called the genotype space of the species. This feature paral­
lels with the natural process of evolution. 

The first problem discussed in the paper concems the languages 
(sets of strings) of the species of the evolutionary systems. We show 
that any recursively enumerable language is a language of a species 
of an evolutionary system with point rnutations of restricted forms. 
Then we present results 011 the dynamics of cell population in the 
system. We prove that there is no algorithm for deciding whether 
or not the population of an evolutionary system of regular genotype 
space is finite, but such an algorithm does exist for systems of finite 
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genotype space. We establish a r.onnection between Linclenmayer 
systems (langua.ge theoretical models of development al systems) and 
evolutionary systems by showing that the growth function of any 
cleterrninistic OL system can be obtained frorn the population growth 
relation of some ( deterministic) evolutionary system. 

Now we proceed to the rnain definition of the paper, namely that 
of the evolutionary system. In order to illustrate the parallelism be­
tween the formal model and the natural process of evolution, we 
provide each component of the defined system with some informal 
explanations. 

Let n, m be two positive integers. An evolutionary system of type 
(m, n) (an ES, for short) is a construct: 

where 

• V is the alphabet of the system; 

• S; = ( L;, M;, B;), 1 :S i :S m, are the species of the system, with 

L; being pairwise disjoin t su bsets of v+, called the geno­
type space of the species i, 

M; = (Ins;, Del;, Sub;), being the sets of point mutations 
( insertions, deletions and substitutions, respectively ), where 

Ins;,Del; c (Vu{c})xVx(Vu{c}), 

Sub; C ( V U { E}) X V x ( V U { c}) X V, 

B; being fini te su bsets of Li X Li, called the sets of division 
rules. 

• The strings x j over V, w here for each j, 1 :S j :S n, there exists 
k, 1 :S k :S m, with Xj E Lk, describe the cells of the system. 

If Deli,Ins; ~ {E} X V x {c} and Sub;~ {c} x V x {c} x V for 
all 1 ::; i :S m, then the evolu tionary system is called context-free. 

Evolutionary systems with L; E F for all 1 :S i :S m, where F 
is a class of languages, are called evolutionary systems of F-genotype 
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space. In the present paper we shall focus our attention on evolution­
ary systems of finite or regular genotype spaces. 

A configuration ( or a state) of an evolu tionary system r is an 
element in (v+y, for some. r 2: 1, representing the cells which are 
present in the system at some moment. 
The configuration ( x1 , x 2, ... , xn) is said to be the initial configura­
tion. 

An evolutionary system is functioning by. changing its configura­
tions, defined by the direct derivation relation =>r . 

By a direct derivation step a configuration is transformed into 
another one such that each cell either di vi des into two offsprings ( two 
new cells) according to a division rule or it evolves into a new c:ell 
by some point mutation provided that this new cell belongs to some 
genotype space. If a cell cannot divide or evolve, it dies disappearing 
from the new configuration. 

Formally, for two configurations y = (Y1, Y2, ... , Yk) and z = 
(z1, z2, ... , zt) we define the relation y =>r z by the procedure 
derivation. 

The reflexive and transitive closure of the relation =>r is denoted 
by => r · The language of the species k, l :S k :S m, in an ev olu tionary 
system r is 

{y E Lkl(x1,x2, ... ,xn) =>r (Y1,Y2,···,Y,···,Yt) 

for some t}. 

That is, the language of species k in the evolutionary system is the 
set of cells which arise from the initial configuration ancl belong to 
the genotype space of species k. 

Algorithm 4.4.1 Procedure derivation(y,z); 
begin 
t := O; 
for i := 1 to k do 

if y; E L,, for some s then choose nondeterministically 
arule p from B, U Del, U Ins, U Sub,; 

ifp = (u,v) E B, and Yi = uv then 
t := t + l; 
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Zt := U,' 

t:=t+l; 
Zt := V,' 

endif 

CIIAPTER 4. OTIIER OPERATIONS 

{ The cel/ y; divides into two offsprings according to a division rule 

frnmBs.} 

if (p = (a, c, b) E Del,) and (y; = uacbv) and (uabv E LJ:: 1 L;) 

then 

then 

then 

t := t + I; 
z 1 := uabv; 

endif 
if (p = (a, c, b) E Ins,) and (y; = uabv) and (uacbv E LJ:: 1 L;) 

t:=t+l; 
z1 := uacbv; 

endif 
if(p = (a,c,b,d) E Sub,) and (y; = uacbv) and (uadbv E LJ:: 1 L;) 

t:=t+I; 
z1 := uadbv; 

eudif 

·{ The cel/ y; evolves by mutations. Informally, y; is rewritten 
nondeterministically in one of the three if statements.} 

endif 
endfor 
end. 

The population of a configuration (y1 , Y2, ... , Yt) of an evolution-
ary system r = (V, 51, S2, .. . , Sm, X1, x2, .. . , Xn) is defined by 

where q; = card{YrlYr EL;, 1 :S r :St}, 1 :S i :S m. 

The population of r is defined by 
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4.4.1 Language of Species 

We .first show that context-freeness does not diminish the genera­
tive power of the evolutionary systems regarding the languages of 
species. Then we prove that each recursively enumerable langu,1ge is 
a language of a species of an evolutionary system of regular genotype 
space. 

Theorem 4.4.1 For each evolutionary system r = (V, 5\, 52 ., ... , 

Sm, x1, x2, ... , Xn) there exists a context-free evolutionary system 
r' = (U, s~, s~, .. . , s;,., Sm+l, X1, X2, ... , Xn) of the same genotype 
space as f such that Lk(f) = Lk(f') for all l ~ k ~ m. 

Proof. Take 

m 

U V U {[a,b,c,I]l(a,b,c) E LJ Insk} U 
k=l 

m 
{[a,b,c,D]l(a,b,c) E LJ Delk} u 

m 

U{[a,b,c,d]l(a,b,c,d) E LJ Subk} 
k=l 

and E = U~1 Lk. 
Then the context-free evolutionary system f' is defined by 

S' I 

M' 
I 

Ins; 

Sub; 

= 
= 

(L;, M[, B;), 

(Ins;, 0, Subi), 

{(c,[a,b,c,I],t:)l(a,b,c) E Insi}, 

{ ( c, b, €, [a, b, c, D]) I (a, b, c) E De li} U { ( E , b, € , [a, b, c, dl) I 

(a,b,c,d) E Subi} 

for all 1 ~ i ~ m and 

m 
Lm+I Pref(E){a[a, b, c,I]cl(a, b, c) E LJ Insk}Su.f(E) U 

k=l 
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Mm+I 

Delm+I 

Subm+l 

CJ-IAPTER 4. OTHER OPERATIONS 

m 

uPref(E){ a[a, b, c, D]ci(a, b, c) E LJ Delk}Suf(E) U 
k=I 

m 

uPref(E){a[a, b, c, d]ci(a,b, c, d) E LJ Subk}Suf(E), 
k=I 

(0, Delm+I, Subm+I ), 

= {(c,[a,b,c,D],c)l[a,b,c,D] EU}, 
{(c,[a,b,c,J],c,b)l[a,b,c,J] EU} U {(c,[a,b,c,d],c,d)I 

[a, b, c, d] E U}. 

It is easy to notice the double role of the last component of f'. It 
filters the strings obtained by applying the point mutations at wrong 
sites and restores the other ones. Note that Pref(E), Suf(E) are 
finite or regular sets provided that E is finite or regular, respectively. 

o 
Obviously, if every species has a finite genotype space, then the 

language of each species is finite as well. However, regular genotype 
spaces lead to very complex languages as the next theorem states. 

Theorem 4.4.2 For each recursively enumerable language L there 
exists an evolutionary system r of type (2, 1) and of regular genotype 
space such that L = L1 ( f). 

Proof. Let L <:;; v· bea recursively enumerable language generated by 
a grammar G = (N, V, S, P) "in the Geffert normal form [48], namely 
N = {S,A,B,C} and P contains only rules of the form 5---> a, 
where a E (NU V)+ and ABC--->€. (N denotes the set of nonter­
minals of G, V is its terminal alphabet, 5 is the startsymbol and P 
denotes its prud uction set.) 

Put k = max{lg(a)IS---> a E P} and let us define an alphabet 
U by 

U = Vu{$,#,#'}u{[a]iaEV+,1s;l9(a)Sk}U 

{[a]'ja E V",O S lg(a) < k}, 

where $. #,#'are new letters not in NU V. 
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Now, we consider the evolutionary system 

where 

S1 (V*,Mi,0), M1 = (0,0,{(c,a,€,a)la EV}), 

S2 (U* \ V'"; M2, 0), M2 = (Ins2, Del2, Snb2) 

with 

Ins2 { ( c, $, S), ( c, #, A)} u 

{($,a,[a,6])1a EV} U 

{(c,$,[,6]')11 '.S lg(,6) < k},,6 Ev· 

Del2 {(c, $,c), (c, #', c), (#, A, B), ( #, B, C), ( #', C', c), 

(c, [c]', c)}, 

Sub2 {(#,C,c,C'),(c,#,C',#')}u 

{($, S, €, [a])IS __. a E P} u 
{(a, [a,6],c, [,6]')10 '.S lg(,6) < k, a EV} U 

{( $, [,6]', c, [,6])11 '.S l g (,6) < k} , ,6 E V* . 

197 

We state that for each sentential form I in G, conta.ining at least one 
nonterminal, there is a derivation (S) ===}M

2 
(6), with o E (NU V U 

{$, #, #'} )* such that 1 = h( o), where h is a morphism which erases 
the symbols $, #, #' and leaves all the other symbols unchanged. We 
have preferred to use the notation ===} M2 instead of ===}r in order to 
indicate that all rules used are from M2 . 

We prove this assertion by induction on the number of derivation 
steps macle in the generation of 1 . The induction basis is obvious. 
Therefore, it is enough to show how a rule in P, used in the last 
step of a derivation in G, can be simulated with point mutations in 
M2. To begin with, we explain the simulation of the clerivation step 

,1S12 ==}a ,1X1X2 ... Xp12• 
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From the hypothesis of induction, there exists a derivation in r 
of the form (5) =;,t,-

2 
(b1Sb2) such that Îi= h(b;),i = 1,2. This 

derivation shoul<l be continued as follows: 

(81582) =?M2 (81$582) =?M2 (81$[X1X2 ... Xp]82) ==?-M2 

(o1$X1[X1X2 ... Xp]82) =?M2 (81$X1[X2 ... Xp]
1
82) =?M2 

(b1$X1$[X2 ... Xp]'b2) =?M2 (81$X1$[X2 ... Xp]b2) =?M2 

(b1$X1$X2[X2 ... Xp]82) =?M2 ••• (81$X1$X2$ ... 

$Xp[E]'82) =?M2 (81$X1$X2$ ... $Xp82)-

The dollar signs will be removed by using arule (E,$,E) in Deh. 
Now we consider the simulation of the rule ABC ___, E used in 

the derivation step Îl ABCÎ2 =?G ÎlÎ2 · The respective derivation 
in r runs in the following way: 

(81ABCb2) =?M2 (81#ABC82) =?M2 (81#BC02) =?M2 (81#C82) 

=?M2 (81#C'b2) =?M2 (81#
1
C

1
82) =?M2 (81#

1
82) =?M2 (0182)-

Finally, each string in L1 (f) is obtained from a string in L2(f), 
in which no nonterminal occurs, by removing all occurrences of the 
syrnbols $, #, #'. When the simulation of the derivation in G îs com­
plete, the obtained word, which is a terminal word, is in L1(f). Thus, 
L(G) ~ L 1(f) holds. 

Conversely, if w E L1 (f), then it is generated by means of rules 
from M 2 . The reverse inclusion, L1(f) ~ L(G), follows immediately 
from the fact that for any derivation (5) =;,M

2 
(8) there exists a 

sentential form Î in G containing at least one nonterminal occurrence 
such that Î = h(o), where h is defined above. The proof of this 
fact can be obtained by a similar reasoning to that previously used. 
Therefore, L = L 1 (r) holds which concludes the proof. O 

As a consequence, by Theorem 4.4.1 we obtain 

Theorem 4.4.3 For each recursively enumerable language L there 
exisL~ a context-free evolutionary system r of type (3, 1) and of regular 
yenotype space such that L = L 1 (f). 

https://biblioteca-digitala.ro / https://unibuc.ro



4.4. EVOLUTIONARY SYSTEMS 199 

lt is worth mentioning here that characterizations of recursively enu­
merable languages based on context-sensitive insertion and deletion 
operations have been reported in severa! papers, see, e.g., the chap­
ter devoted to this topic in [104] and the references thereof. Un­
like the aforementioned characterizations, Theorem 4.4.3 provides a 
characterization based on context-free operations but with a control 
language. 

4.4.2 Population of Evolutionary Systems 

Theorem 4.4.2 has a series of important consequences regarding the 
population of the evolutionary systems. 

Theorem 4.4.4 Let r be an evolutionary system of regular genotype 
space. The following problems are undecidable: 

1. The finiteness of <p(f) i.e. is <p(f) finite? 

2. Is <p(f) a semilinear set? 

3. The membership problem for cp(f). 

Proof. We first prove the undecidability of the finiteness of cp(f). To 
this end, let us consider an arbitrary grammar G = (N, V, S, P) in 
the Geffert normal form and the following evolutionary system 

where U and 52 are de:fined in the same way as in the proof of The­
orem 4.4.2, & is a new symbol not in U and 5\ consists of 

L1 {&,&&,ax,&x,x}, for an arbitrary string a.r 

with a E V, X E v+' 
M1 ({(c,&,&)},0,{(c,a,€,&)u {(c,b,c,b) I b EV}), 
B1 {(&, x), (&, &)}. 

i,From the above construction one can immediately inf er that ax E 
L(G) if and only if <p(f) is infinite, hence the undecidability status 
of the finiteness of cp(f) follows. 
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Ivloreover, note that cp(f) is a semilinear set if and only if it is 
finite. Indeed, if a:r E L(G), then we have the following derivation in 
r: 

(S) =:,+(ax)=> (&x) => (&,x) => (&&,x) => (&,&,x) => 

(&&,&&,x) => (&,&,&,&,x) =>+ (&,&, ... ,&,x) -...,_, 
2" times 

for some n 2'. 4. Consequently, cp(f) = {1} U {2n + 1 I n 2'. O} which 
is not a semilinear set. As ip(f) is finite provided ax ~ L( G), the 
secon<l point of the theorem is proved. 

A similar construction, left to the reader, can be used in proving 
the last assertion of the theorem. D 

A question that immediately arises is, what one can say about the 
same problerns for evolutionary systems of finite genotype space. We 
first present a result which will turn out tobe a useful tool in giving an 
answer to this question. The result establishes a connection between 
evolutionary systems and OL systems ( Lindenmayer systems without 
interactions), which are language theoretic models of developmental 
systems. 

An OL system is a triple G = (V, s, w ), where V is an alphabet, s 
is a finite substitution on V into the set of subsets of V*, and w is an 
element of V*. The language of G is defined by L(G) = LJ;>o si(w). 

Theorem 4.4.5 For each evolutionary system r = (V, S1, S2, ... , 
Sm, xi, Xz, ... , xn) of finite genotype space there exists an OL system 
G and a morphism h such that a 1 a2 ... aP E L( G) if and only if 
(x1,x2, ... ,x,,) =>r (h(ai),h(a2), ... ,h(ap)) holds. 

Proof. Let us consider the alphabet 

m 

U = {[x]lx E LJ Li} 
i=l 

and the sets 

m 

A[r] {[y]l(x) =>r (y) and y E LJ L,}, 
i=l 
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C[x) {[xi][x2]lx = x1x2, x E Lj and (x1, x2) E Bj, 

for some 1 :S j '.S m} 

for all [x] E U. Then the OL system satisfying the requirements of 
our theorem is defined by G = ( U, s, [xi][x2] ... [xn]), where the finite 
substitution s is determined as follows: 

s([x]) = { Â[x) U C'[x), ~ff Â[x) U C[x] =/= 0 
{ €}, otherw1se. 

It is easy to notice that all requirements of our assertion are fulfilled 
if we choose the morphism h in the following way: 

h: U* -----. V*, h([x]) = x, for all [x] E U. 

o 
Returning to the decision problems of evolutionary systems of 

finite genotype space we can state: 

Theorem 4.4.6 Let r be an evolutionary system of finite genotype 
space. Then the following problems are decidable: 

1. The finiteness of cp(f). 

2. The membership for cp(f). 

Proof. 1. In the previous proof <p(f) is finite if and only if L( G) is 
finite which is decidable for OL systems. 

2. Let (k1, k2, ... , km) be an arbitrarily given m-tuple consisting 
of nonnegative integers. It belongs to cp(r) if and only if at least one 
t-tuple (y1,y2, ... ,yt) can be generated from (x1,x2, .. -,xn), where 

m 

j=l 

(ii) k; cornponents in (y1 , Y2, ... , y1) are in L; for all 1 '.S i '.S m. 

The number of all t-tuples satisfying the aforementioned two condi­
tions is finite which, together with the decidability of the membership 
problem for OL systems, implies the decidability of the membership 
problem for cp(r). o 
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4.4.3 Some Growth Relation Considerations 

1n this section we discuss evolutionary systems with respect to the 
growth of their cel! populations. 

Let f = (V,S1,S2,,,,,Sm,X1,X2,,,.,xn) be an evolutionary sys­
tem. A derivation in r consisting of k steps is denoted by ~~. 

The growth relation associated to r is a function from positive 
integers into finite subsets of positive integers defined by 

If card(fr( k)) = 1 for all k ~ 1, then Jr is called deterministic growth 
relation or a growth function. 

The growth functions have been very profoundly investigated for 
DOL systems. By restricting the substitution of a OL system, we 
obtain a DOL ( deterministic OL) system. As in the DOL system 
G = (V, h, w) h is an endomorphism, the derivation process results 
in a sequence of strings Wo = w, W1 = h(wo), ... , Wn = h(wn-d, .. .. 
The growth function associated to G is defined by fc( n) = lg( wn)-

The next resuit establishes a connection between the growth func­
tions of DOL systems and the growth relations of evolutionary sys­
tems. 

Theorem 4.4. 7 For each DOL system G there exists an evolutionary 
system r with deterministic growth relation and a constant k such 
that 

/G(p) = fr(kp) 

holds for all p ~ O. 

Proof. Let G = (V, h, w) be a DOL system with V = { b1 , b2, ... , bm} 
and w = a1a2 .. ,an, Denote by c(G) = max{lg(h(a))la EV} and 
take k = 3( c( G) + l ). Consider 

U = V U { < b, s > lb E V, 1 :S s :S k - 5} U { ~ b, s ~ lb E V, 

O :S s :S k - 6} u u{[x, s]Jx E Suf(h(b)), b E V, O :S s :S c(G)} 

and construct 
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where the components of each S; = (L;, (Ins;, Del;, Sub;), B;) are 
defined in the following way: • 

L; = 

Ins; = 
Sub; = 

{ b;} u { < b;' s > 11 s s s k - 5} u { « b;' s » I 

OS s S k - 6}, 
Del; = 0, 

{ ( c, < b;, s >, €, « b;, s - 1 ») I 1 S s S k - 5} u 
U { ( c, « b;, s », €, « b;, s - 1 ») I 1 S s S k - 6} U 

u{(c, « b;, O», E, b;), (c, b;, €, [h(b;), c(G)])}, 

B; = 0 

for all 1 S i S m, 

Lm+i = {[x,s]lx E LJ Suf(h(b)),O S s S c(G)} u 

{< a,3s - 2 > [x,s - l]la E V,x E LJ Suf(h(b)), 
bEV 

1 S s S c(G)-1} U {< a,3s- 2 > [x,s]la = Prefi(x), 

x E LJ Suf(h(b)), 1 S s S c(G)}, 
bEV 

Insm+I = {(€,<a, 3s - 2 >, [x, s])la = Prefi(x ), 

x E LJ Suf(h(b)), 1 S s S c(G)}, 
bEV 

Delm+I = {(€, [c, s],c)IO S s S c(G)}, 

Subm+I = {(< a,3s- 2 >,[ay,s],E,[y,s- l])la EV, 

y E LJ Suf(h(b)), 1 S s S c(G)}, 

Bm=I = {(<a,3s-2>,[y,s-1])/aEV,yE LJSuf(h(b)), 
bEV 

1 S s S c(G)}. 

By induction, one can easily prove that 
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for all p 2: O. At the same time, for each positive integer p, there 
is a unique t-tuple (x 1 ,x2 , .. ,,xt) such that (a1,az, ... ,an) ==>ţ 
(x1 , x2 , ... , xt), ln conclusion, the growth relation associated to r 
is deterministic and Jc(p) = Jr(kp), for all p 2: O. D 

If there exists a polynomial P such that max(Jr(k) < P(k)) for 
every positive integer k, then Jr is polynomially bounded; otherwise 
Jr is of exponential type. 

Corollary 4.4.1 There are evolutiona.ry systems whose growth rela­
tions are polynomially bounded. 

There are evolutionary systems whose growth relations are of ex­
ponential type. 

Proof. Remember that every DOL growth function is either exponen­
tial or polynomially bounded [113]. □ 

As one might anticipate, it is undecidable whether or not the 
growth relation of a given evolutionary system of regular genotype 
space is deterministic. The reader interested in a proof may con­
sult Theorem 4.4.4. As far as the same problem for evolutionary 
systems of finite genotype space is concerned, we have no complete 
answer. However, some simple observations can be stated. Given an 
evolutionary system of finite genotype space r and the OL system G 
constructed in the same way asin the proof of Theorem 4.4.5, denote 
by 

6. {[x]JB[x] -/- 0}, 
0 {[x]JA[x]-/- 0}, • 
A {[x]Js([x]) = E}. 

Clearly, An 0 = An 6. = 0. A necessary but not sufficient condition 
for Jr to be deterministic is 6. n 0 = 0. Supposing that 6. n 0 = 0, 
we state that Jr is deterministic iff for every k 2: 1 and every x, y E 
sk(w), 2JxlA + Jxle = 2JYIA + IYle- The notations used above are w 
for the axiom of G and Jxlu for the number of all occurrences in x of 
the symbols in U. 
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