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A MATRICEAL ANALOGUE OF FEJER’S THEORY

SORINA BARZA, LARS-ERIK PERSSON, AND NICOLAE POPA'

ABSTRACT. J'. Arazy [A] pointed out that there is a similarity 
between functions defined on the torus T and the infinite matrices. 
In this paper we develop in the framework of matrices the theory 
Fejer developped for Fourier series.

0. Introduction
Let .4 = (a^j, i , j  = 0.1, 2,... an infinite complex matrix.
For k — 0, ±1, ±2..., let us define A k = (a'^), where

a = < a i j
^ 1 0

if j  — i = k 
otherwise.

A k is called the Fourier coefficient of k- order of the matrix A. (See 
[Sh].) We have now a similarity between the expansion in the Fourier 
series f  = 52A a ^ 1 of a periodical function f  on the torus T and the 
decomposition A = ^2k e Z  Ak .

There is a similarity between the functions defined on the torus T and 
the infinite matrices, similarity remarked for the first time by Arazy 
[A] 1978 and exploited further by A. Shields [Sh] in 1983. Our main 
tool is an important characterization of Schur multipliers given by G. 
Bennett [B] in 1977.

Moreover, there is a similarity between the convolution product f  *g 
of two periodical functions and the Schur product of two matrices .4 
and B, C — A * B, where the matrix C have the entries c^ = a^ • bi } . 
for A = (a-ij^ij and B = (b i^ j. (See also [Sh].)

The aim of this paper is to extend in the framework of matrices the 
theory of Fejer developped for Fourier series. (See [H].)

In particular we mention the following results by Fejer, which have 
been guiding for our investigations:

(A) A function f(8) = ^2ake lkB on T is continuous on T, that is f  € 
kez

n

, if and only if the Cesaro sums an (f} — 7 ^  &k 
k=—n 

converge uniformly on T to f .
5
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SORINA BARZA, LARS-ERIK PERSSON, AND NICOLAE POPA

(B) A function f(9) = y \n k e lke G L1 if and only if 
k£Z

iw n - z i iw ) — >o.

The paper is organized in the following way: In order not to disturb 
our discussions later on we present some preliminaries in Section 1.

In Section 2, we derive some properties of and relations between the 
basic spaces B ^ )  and £(£2) of independent interest.

The main results are presented in Section 3 and Section 4 is reserved 
for some concluding remarks and results.

Acknowledgements: The first named author thanks the Royal 
Swedish Academy of Sciences and the Romanian Academy of Sciences 
for financial support which made this collaboration possible. The last 
named author wants to thank the members of the Dept. of Eng. Sci­
ences. Physics and Mathematics for hospitality during his visit at the 
University of Karlstad, Sweden.

1. Preliminaries
In view of the Fejer’s result (A) it is natural to give the following 

definition:

Definition 1. Let A be a matrix corresponding to an operator from 
B(£2}> the space of all bounded operators on £2- Denote now by (Jn (A)

the Cesaro sum associated to Sn (A) = ^ ^ _ _ B 
Ai (1 -  —

Then we say that A is a continuous matrix if

lim ||crn (A) -  A ||f l (£2) =  0.

Ah, that is an (A) =

Let us denote by C ^ )  the vector space of all continuos matrices. 
On this space we introduce the following norm:

m iic ^ 2) =  maxfsup ||crn (A )||B(Z2), II^HB^)].

A matrix M = (m ^)^  is called a Schur multiplier iff M  ̂A E B(£2) 
for all A G B ^ } -

The space of all Schur multipliers will be denoted by M ^ )  and the 
Schur multiplier norm of M  will be, by definition:

1 1 ^ 1 ^ )  = sup \\M * A\\B {I2).
o
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A MATRICEAL ANALOGUE OF FEJER’S THEORY

Then it is known (see [B]) that M ț^ )  is a Banach space which is a 
commutative unital Banach algebra with respect to Schur product.

Moreover, if Af is a Toeplitz matrix M , i. e. a matrix whose entries 
mij = mj_i, for all i , j  E N*, then the following statement holds (see 
Thm. 8.1 - [B]). _

(1) The Toeplitz matrix M  is a multiplier if  and only if  there exists 
a bounded, complep, Borel measure p  € A t(T), on T with the Fourier 
coefficients

p(n) = m n  for n  =  0, ±1 ±  2 , . . .
Moreover, we then have

II^IIM (Z2) =  IIMIIM (T).

We mention also the following well-known fact (see for instance [KZ])
The Toeplitz matrix M  represents a linear and bounded operator on £2 

if  and only if there exists afunction f  E £°°(T) with Fourier coefficients 
f (n )  = m n  for all n E Z.

Moreover, we have

\ \M \\B (t2 ) =  l l / lk ~ (T ) -

2. Som e properties o f th e space C ^ ) .
Let Coo denote the space of all matrices defining compact operators.

P roposition  1. C ^ )  is a proper Banach subspace of B ^ )  which, in 
its turn contains C^, properly.

Proof. It is clear that m ils ț^ j < ||A ||c(/2) and, on the other hand, 
we have:

where M n  is the matrix

lk n (^ )llB (* 2 ) =  11 ^  ^ f 1 - Ĵ J HB(<2) <  l |^ n |I .M ( ^ ) i |- 4 | |B (^ ) ,

7
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SORINA BARZA, LARS-ERJK PERSSON, AND NICOLAE POPA

Hence, by Theorem 8.1 -[B], we have:

lkn(A)||B(41) <  || £  [ 1 -  • ||A ||B (/2)

k=—n

= li^WH^d)- IÎ II = IMIIB(«2), (i)
since K n , the Fejer kernel, has the A4(T)-norm equal to the L^TJ-norm 
and finally equal to 1.

Hence

ll îlc(6) = milB(6)
and C (^ )  îs a normed subspace of B ^ ) .

But it is easy to see that C (^ )  is a closed subspace of B ^ ) ,  that 
is C(^2 ) is a Banach subspace of B ^ ) -  Next we note tha t C (^ )  does 
not coincide with B ^ ) -

•The matrix A = ^ ^ A k ,  where A* =  0 V A: < 0 and A^ =  e*:+i,2k+i, 
kez

k > 0, eij being the matrix whose single non-zero entry is 1 on the i^ 1 
row and on the j ^  column, belongs to B ^ ) ,  since (AA*)1/2  =  I, the 
identity matrix. Moreover

1 n  k
ll<7n(A)-A||f l(Z2) = 1 1 ^4 + —- j - ^ ^ l l f î M  = r r7 ^ v l  =  1

k>n k=Q

for all n, thus A $£ C ^ Y
Now let A € Coo- Denoting by

P  = a i j  l , i  ~ n 
n  ’ | 0  otherwise,

we have
||F n (A) -  A ||f l (/2j —> 0.

But, by Bennett’s theorem, we have for k > n:

||? .(A ) -  ^ ( P . I A D U w  = |l £  ( P . ( A ) ) A | | J H  <

t=-n

s  II E  Z T Ț ^ I I ' - ' m  ■ I I W I I w i  “ ■ 

/C T  1 K—>OO
£ = —n

Hence Pn (A) e  C(^2 ) for all n € N, consequently C ^  C £(£2). 
8
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A MATRICEAL ANALOGUE OF FEJER'S THEORY

Now let A  be the Toeplitz matrix given by a(i, i + k) — —  for all 
i G N and k 0. Then 

_  „ik9 _  i
IM Iste) =  II £  • p - l l f f f î  <  5 2 ^ 2  < °°- .

tez\{0} k
But it is well-kpown tha t a Toeplitz matrix does not represent a 

compact operator.
On the other hand 
_  -i _  _  p ik9 1 _  p ik9

11 s  A "+ ^  S  W ^ lw .)  = I I E  7 + ^ Ț ț  E  ț f l l ™  £ 
|i|>n |t|<n |i|>n |A|<n

~ k 2 n + 1 ’ \k>n /
which means that the Toeplitz matrix A  in fact belongs to C(^2) and 
wahave also proved that Coo is contained in B ^ )  properly. B

P rop osition  2. C(^2 ) is a commutative Banach algebra whithout unit 
with respect to Schur multiplication.

Proof: It suffices to observe that for A ,B  e  C ^ ) ,  ^n(A  * B) = 
crn (A) * B  and then we have for A G C(^2 ), B  G B ^ }

W A+ B-anlA+ BjW g^ = | |[A - (7 n (A)]*B||f l(<2) <  ||A-CTn (A)||B(Z2)- ||B ||A4(f2) 

< II5 IIB(£2) • IM -  <7„(A)||f l(£2).
Here we used the simple remark that

l l^ l lw î)  =  IM * △IIA4(6) < IMHB(/2) • l|△||A4(Z2) =  IMI|B(<2)>
where Ay =  1 for all i . j  G N, and ||AI|,M(<2) =  k ,

Rem ark. By Fejer’s theorem (A) we have that a Toeplitz matrix
T  = (tk)kțz € C(£2 ) if and only if f r ^  ^  W ^ '™  G C(T), and in 

k&Z
this way we can consider that the notion of a continuous matrix is the 
extension of that of continuous function.

3. The main results
Now we would like to give another characterization of the space 

C (f2 ), using the continuous vector-valued functions.
Consider now the function / A : T —> B ^ )  given by fA^t) = ^ ^ ^ - k ^ 1^ 

. kez
then we ask ourselves: how should be the m atrix A  in order that the 
function f A be a continuous B (f2)-valued function.

The answer to this question is as follows:
9
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T heorem  1. Let A  be an infinite matrix.
Then f A  is a B țj^-va lued  continuous function if  and only i f  A  E 

C ^ ) ,  with equality of corresponding norms.

Proof. => Since f A (t) E B(£2 ) for all £ €  X  it follows that. A = 
/ A(0) 6 B(£2 f  The function f A  : T  ^  B ^ )  being continuous we can 
adapt the proof of Fejer’s theorem (A) (see [H]-p.35) and we get that 
V 5 > 0 sufficiently small,

I W / A) -  /4||c(T,B(W) < supsup | | / A(I  ~ t) ~ fA { ^ \ \B ^ 2} + 
I €T |t|<5

+ 2 ||/A ||C(T ,B(Z2)) • su p K n (t), 
|i|>«

where K n (t) is the Fejer’s kernel

K ^ t )  = - 
n

'sin Ș t i 2 
. s i n  L

t € T and a ^ f ^  = V  ( l - ^ ) ^  = 

Î ISn

i  r  M x ^ t x)dx.

It follows that

limsup W^nifA^t) ~ / A WB^ )  =  0- 
n  teT

For t =  0, we get that ||crn (A) — A ||B^2) —> 0, <Jn (A) as in Section 1.
Thus A  € C(£2 ). "

Conversely, let A E C fâ )  and f A : T - > B ( f i 2 ) a s  above. Then V 
t G T, we get

I K ( h ) ( t )  ~ / AW ||B(£2) < Ikn(A) -  A ||fl(£2) • ||W(t)||,vt(f2)

where M {t) is the Toeplitz matrix with entries (el k t)kez-
But IIW H IA^ , )  =  | £ ( ' ‘M ||* ,m  =  « i - , I U  =  1, V t e  T.

A:GZ
Thus sup||crn ( / j4)(t) -  Ă W IIB(£2) < ||crn (A) -  A ||B ( 2̂ ), which in turn 

teT
implies tha t an {fA ) —> f A  in the space B (T ;B (f2 )) of all bounded n
B t ^ )  -valued functions. Consequently, since ^ ( f ^  are B (f2 )-v alued 
continuous functions defined on T. the same holds for f A .

Moreover it is clear that ||A||c(<2) =  | | / A ||C(T ;B(£2)), ,
Now what can you say about subspaces of M .^ ]  in connection with 

multiplier property? in
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A MATRICEAL ANALOGUE OF FEJER’S THEORY

The following theorem is a justification for introducing C ^ )  and 
gives a parțial answer to the above question. It is the matriceal ana- 
logue of Theorem 11.10 - Chap. IV - [Z], which precizes Theorem 8.1 
-[B].

T heorem  2. The Toeplitz m atrii M  = (m k )kez *s  a  Schur multiplier 
from B { ^  into C ^ )  ^S

‘ ^ m k ei M  e L \ T } .
k€L

P roo flî A  is Toeplitz matrix A  =  ( a ^ e z ,  then for any t > 0  there 
is n 0 =  n 0 (e, A) such that for all n > n 0 and for all p 6 N‘ , we have '

(This inequality above means tha t M  * A  G C ^ Y )
But

‘ I r  /  w S ™ * t " ) - ' ’>‘ » E " , >t '‘ , )l!,) E “‘ ' " “ )| i , l 5

k k k
< \\\an {M} -  an + p (M)] * A\\B {(2) < e Vn > n 0 , Vp > 0.

Consequently, taking ' ^ \ i k elk t = XE (^  for any measurable set E  C 

iez
T, we have that

k
converges whenever n —> oo, hence, by Theorem 9.13 (i)- Chap. IV - 
[Z] it follows that the functions

/  a n(^2im k e l k 6 ^ u ^ u  a r e  aniforndy absolutely continuous. Thus 
k

||<Tn ( y m t e '* s ) -  <7n + p ( y 'm * e , w ) ||L i --------> 0.
k k

Hence, by Fejer’s theorem (B) it follows that m (t) = ^2km k e t k i  e 
L ^T ).

Conversely, if m(i) G L^T ) then

|M™(f)) -  ffn+pM^llL'm ------  ̂0>oo

hence
||an (m(f)) -  a n + p(77i(t))||^m  -------- > 0,n,p—>00

which in turn implies

I W ^ *  A) -c r n + p (M *  A )||f l ( y  < ||ffn(m) - a n +P {m)^ ( TJ • ||A||B(Z2),
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SORINA BARZA, LARS-ERJK PERSSON, AND NICOLAE POPA

for all .4 G B(^2)-
Consequently M  is a Schur multiplier from B(£2) into C(£2 ). B
Now we define the notion of a integrable matrix in a similar way as 

we defined the notion of a continuous matrix, guided by (B).

Definition 2. We say that an infinite matrix A is an integrable matrix 
if an (A) —> A in the norm ofAA(£2). The space of all such matrices. 

n
endowed with the norm induced by Ad(£2), will be denoted by L1^ ) .

Of course L1^ )  is a Banach space.
Remark. If A e L 1^ )  ^en  it follows that A * B e C{£2) for all 

B G B{l2f
Indeed, for B G B ^ ) ,  by

lkn(A * B) -  A * B\\B (t2) = |k n (A) *B  -  A* B\\B^  <
<  I k n ^ )  -  ^ | |j v t ( t2 )  • II5 I|B(6) —  ̂°>

71— >00

wq get A * B G C(I2 f K
Now it is clear that L 1^ )  is a commutative Banach algebra (without 

unit) with respect to Schur product.
Indeed, for A. B E L1^ )  we have

lkn(4 * B) -  A* B\\M ^ 2) = ||[crn (4) -  .4] * B\\M {eli2} <

<  I k n G 4 ) -  A ||M ({2) • l l B i i ^ ^ )  - >  o ,

which in turn implies that A* B e L l (£2).
View Theorem 2 and the remark above is natural to ask: If A is 

a Schur multiplier which maps B(£2) in C(£2) does it follow that A G 
W 2 )?

The answer to the above question is negative: 
Example Let A be the following matrix.

/ I  1 1
4 = 0  O O | .

Then it follows that A is a Schur multiplier which maps B(£2) in 
C(£2) but does not belong to lA(t2).

4  is a Schur multiplier with the property that A * B € C(£2) for all
B G B(£2) since the matrix A * B has the rank 1, therefore represents 
a compact operator and consequently it belongs to C(£2).

A does not belong to L l (£2) by the lemma 1.
Therefore the Banach space M(B(£2),C(£2y) of all infinite matrices 

is different from both M (£2) and L 1^ ) .
It seems to us that this space deserves to be studied in more detail.

12
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A MATRICEAL ANALOGUE OF FEJER'S THEORY

On the other hand the space M (C(£2 ), C ^ ) )  of all infinite matrices 
A  such tha t A *  B  e  C(£2 ) for all B € C(£2 ) can be described easily.

More precisely we have:

T heorem  3. M (C(£2 ) ,C  (£■})) is exactly the space A4(£2 ) of all Schur 
multipliers. -

Proof. Since cr^A * M ) = crn (A) * M  it follows easily th a t M  e 
M (C(£2 }, C ^ ) )  if M 6 M (£ 2 ) and A € C(£2 ).

Conversely, let M  € M (C(£2 ),C (£ 2 )). For A  6 C(£2 ) the map A  -> 
M  * A  from C{£2 ) into C(£2 ) has clearly a  closed graph. Now let 
M  * A n  —> B in B(£2 ). Then obviously B  = M *  A. Therefore by closed x 
graph theorem it follows tha t A —> M  * A  is a continuous map from 
C(£2 ) into C(£2 ), tha t is there is c >  0 such tha t ||M  * A|| < c- ||A ||B (f2) 
for all A  e  C{£2 ).

By the definition it follows easily that

su p ||P n A ||B (z2) =  ||A ||B(/2)

where
P A ( i n  =  f  ^ ( M ) 

n  [ 0  otherwise.
But Pn A  6 C{£2 ) and therefore

IIM * Pn Â | |^ 2) < c ||P n A ||B « 2) < c||A || VA € B(£2 ),V n .
Thus \\Pn {M  * A )||B(£2J < C||A ||B(£2) for all n. Consequently \\M * 

A ||B ^ 2) <  C 1I^IIB(<2) for a îl ^  ^  B(£2 ) tha t is M  is a Schur multiplier^

P rop osition  3. I f  M  e  L l (£2 ) and e > 0 there is Mi G C(^2 ) and 
M 2 € L 1 ^ )  such that M  = Mi + M 2 , where 11A/2 11rl (̂ 2) < e-

(The above Proposition is the matriceal analogue of Luzin’s theo­
rem.)

defProof By Definition 1 there is an n  such tha t M 2 = M  — un {M) 
verifies ||M 2 | |L i( y  < c.

But obviouslv Mi = an (M ) e  C{£2} (as a finite sum of diagonals

Now we get the following analogue of Riemann-Lebesgue Lemma:

Lem m a 1. Let M  e  L 1^ ) .  Then

lim ||M fc| |L i(f2) =  0.
|/c|—>00

Proof We use the decomposition given by the above proposition and 
we get, for e > 0, that, if |fc| >  n(e), then {M ^k  =  0, (M ^k  = M k and 
ll(M2)k||Ll(£2) < 11 A/2 | |£1 (£2) < e.

1 3  i
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Hence for all e > 0 there is an n(e) such tha t for \k\ > n(e) it follows 
tha t IIM iillp^) < e.g

We give now a characterization of integrable matrices in the spirit of 
Theorem 1:

We recall that by L ^ T , ^ ^ ) )  we mean the space of all Bochner 
integrable .M ^ -fu n c tio n s  with the norm | | / | |  =  / |\ f ( t ) 11M ^ d t .

T heorem  4. The matrix A  G L ^ ^ )  i f  and only if  the function / A ^} € 
L ^T .JM ^ )) .  Moreover the norms of both spaces are equivalent.

Proof. Let A  G L 1^ ) -  Then it follows that lim ||a n (A) -  A\\M ^ 2) = ' 
71 —► OO

0. We consider now the function / A and we have the relation: 

l k n ( / â ) ( t )  ~  / AW IIJW^Î ) <  I k n ( ^ )  ~  ^ I |A1(<2) ’ 1 1 ( ^ ‘ k e z l IM ^ )  = 

lk n ( - ^ )  ~  ^ | | A1(Z2)>

wljich in turn implies

l i m  ||<Tn ( /A )  -  / A | |L ‘(T ,A4(<2)) <  1 ™  ll f f n M )  ~  ^H AA(^) =  0 ’ 
n-^oo n—>oo

tha t is the Cesaro sums crn (fA) associated to the function f A converge 
in L ^ T , ^ ^ ) ) .

But this implies that f A  belongs to L l (T, .M ^ ) ) -
Conversely,

I I M W ^ I h t r ^ )  =  7 -  /1 1 ^ -  / l / A H ) - M t ) |x . f f l i « l l * < l« d t  < 
*7T J^  Z7T J Ț

< ^ -  f  f  \ \ fA ( t - 6 } - fA (t)\\M (t2)K n (e)dedt =  ( by Fubini’ s theorem ) 
JT ^^ JT

=  / ^ TI( ^ ) | |( / A)9 —/ A HLVT.M^Î) ) ^  <  SUp | | ( / Â ) e - / 4 | | L i(T i ^ ^ 2)) +
Z 7 r  J T  |S |< i

+ 2 | | / A | |L>(T,^(<2)) ’ SUp K n (t), 
l«l>«

d p f
where (A M *) =  fA^t -  0).

But, for S sufficiently small it follows that

[  W/A ^I — 0) — fA ^ W M ^ d t  < e

On the other side we have

lim sup K n (t) = 0, 
n ~*°° !<!>«

14
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A MATRICEAL ANALOGUE OF FEJER’S THEORY 

therefore it follows that

H m  ^crn ( f A ) -  / AIIL' IT,^ ^ ) )  =  0 . 
H —>OO

But we may find a subsequence crn k (fA) which converges a.e. on T 
to f A . Then, it is some t0 G T such tha t -

l l s W  -  ^ I l A l ț ^  <  I K C / A) ^ )  ~  / A(<O)I|M (Z2) • l l ( e  l f c l ° ) l : l l M ( T )  =

=  llf fnt (/A)(to) -  /A(to)llM(Z2) - ---- ► 0.
AC—> 00

L 1 being a closed subspace in M S tî), it follows tha t A  e  L l (£2 )-
The equivalence of the norms follows from the obvious inequality ' 

II/AIIL^ T .M ^)) < II^IIA4(£2) and by Banach’s isomorphisms theorem. B
Remark. Let A be a Toeplitz matrix. Then A € L 1^ )  if a n d o n ly 

if  f A  belongs to the subspace of L 1 ^ ,  A A ^ ) )  consisting of all Toeplitz 
matrices, therefore belongs to a space isomorphic to L ^T ).

4. Concluding remarks and results.
We recall the following well-known result (see Theorem in Chapter

2 of [H]):
(2) A function f  o n T  belongs to L°°(T) if  and only if 

SUp|kn ( /) ||L ~ (T) <  OO. 
n

We have the following matriceal analogue of (2):

Proposition 4. Let A be an infinite matrix. Then A belongs to B ^ )

sup||ffn (Â )||B(<2) < oo. 
n

Proof Let sup||crn (A )||f l^ 2) < oo. Then, by Alaoglu theorem, since, 

for all i , j  € N, we have crn (A )(i,j}  ------ > a ij, it follows tha t A € B ^ 2 \
The converse holds by the proof of Proposition 1.

Proposition 5. A € AAfJ^) if  and only if

S U p U ffn ^ )!^ ^ ) < OO. 
n

Proof. We use the well-known fact tha t the space AAlfLf) of all Schur 
multipliers is a Banach dual space , namely A A ^ }  is the dual space of 
^i ®a fi> where

a(v) =  i n f { | £  |f t |2 )1 /2 £  N 2 ) 1 /2 I I ( M I B(*2,Z2)}

15
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where the infimum runs over all representations of v of the form 
^  ajaijP ieiQ ej. (see [P]). Then by Alaoglu’s theorem we get th a t if

SUpUtTn^HjVf^) < OO

then A  € A d ^ )-
Conversely, let >1 € A f ^ ) .  Then <rn (A) = A *  an (M ), where M  = 

(^i)i€Z with m t =  1.
Thus

lk n ( ^ ) | |A t ( Z 2 ) <  1 1 ^ 1 1 ^ 2 )  ' I k n t ^ l l A l t t j )  <

< (by Theorem 8.1 -[B]) < H A ^ ^ ) ^
Another characterization of matrices from A d(^) is as follows: First 

we attach to each infinite matrix A  a linear bounded operator PA : 
L ^T ) —> M ț^ ) ,  given by pA^g) = A  * G, where g € L ^T ) and G is 
the Toeplitz matrix corresponding to g, matrix belonging to L 1 ^ ) -

More specifically we have the following result:

T heorem  5. Let A be an infinite matrix. Then A € .MfLf) if and only 
if  PA G L (£ 1 (T), ^<(£2))) the corresponding norms being equwalent.

Proof. Let A € Ad(£2)- We consider the linear operator p A : L ^ T , A d ^ ) ) , 
given by pA^g) = A *  G, where G is as above.
PA is a bounded operator. Indeed

IIMAW IIM M  =  I I A ^ I I ^ t ț f ; )  <  IIAIIA^ - I I G I I LI^ )  =  I IA I I /a ^ j j- l lp I lL ^ T ) ,

Vp e  L ^T ), which, in turn, implies th a t UMAIIML1^ ) ,^ ^ ) )  < ||A ||yM (f2).
Conversely, let PA € L(Z?(T), A d ^ ) ) ,  g G L ^T ). Then, using the 

above notations, we get:

lla n(-4 )||A 1«2) =  I H  * K,IILM(<2) =  llM A(kn)ILM (£2 ) <  I|M.4||L(L‘(T),A4(£2))

for all n 6 N, since the Fejer’s kernels kn  have the LCnorms equal to 
one, for all n G N. Then, by Proposition 5 it follows tha t A G Ad (£2) 
and ||.4 ||M (<2) < C ||g j4 ||L(i,i(T)1A4(£2))-B
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ON THE DERIVATION OF SETS FUNCTIONS

by Ileana Bucur

We consider a metric space ( J ,< / ) . As usually we denote: 

B (x ,r ) := { y e X |< /(> ,x )< r}  V x e X V r > 0 . 

6 (j):= su p { < /(x ,y ) |x ,y e ^ }  V J c / J * 0 .

J ? = j$ ( X )  -  the class of all Borel sets o f / i . e .  the o-algebra generated by the family of 

all open subsets of X.
Definition 1. A positive measure X : ^ ( X ) - *  R- is calleda Vitali-measure i f

a) 0 <  X (B (x ,r ) )< o  V x e X  V r > 0 .  '

b) there exist a positive number 0 such that
X (B (x ,2 r))< eĂ (B (x ,r)) V x <=X, Xf r> 0 .

For any nonempty set A e B we denote

M^M)a(? l):= sup A c  B (x ,r) ■

and a sequence { A ^  o f  Borel subsets o f  X  will be termed regular i f 

in f{ a (4 ,) | « G N } > 0 .

From now on we suppose that X is fixed Vitali measure on ( X ,d ) .

Definition 2. A sequence (F„) o f  closed subsets o f  X  is called convergent to x0 & X  if 

x0 e  Fn fo r  any n e N and lim6(F„) = 0 .

Let E be a Banach space. A map p : J& —> E is called: additive i f  p (^ ,U A )  = 

= ți(A i)+y.(A 2 ) fo r  all paire (A ^A j)  ofBorel, disjoint sets o f  X.

Definition 3. An additive map p : . ^  —>E is termed regular at a point A E .S? i f  for any 
positive number e, E * 0, a closed subset F  and an open subset G o f  X  such that F  c  A c  G and 
for any finite Jd-partition (B^^^ o f  G \ F  (i.e. B: E .y? V i < k, B f\B ,=  3  i f  i *  j, G \ F  = 

[JB, J we have 
i&k

The additive map p :  J ? ^ £  will be called regular on a subset ^  o f  :>3 i f  p is regular 
at any point A e ^ .

We recall also that p has bounded variation on a Borel set A o f  X  i f  there exist a 
positive number M  such that

XMÂ M

for allfinite J&partition (A t) o f  A.
It is almost obvious the following assertion.
Proposition \ . I f  ți: & - +  E  is additive then we have:
a) the map : |p j: J ?  —» R + -term ed the variation o f  p

18
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WP)=șupEh(4)l’
where (4 ) .^  runs the family o f  allfinite jB-partition o f A, is additive.

b) ji has bounded variation on A e ^  iff \p \(A )< ^ .

c) p is  regular at a point A e JB iff  \p\ is regular at this point.

d) if  A e J B  the restriction o f  p to A i.e. the map p A :J B -* E , p A (M ) = p(AC\M ) 

V M e .JB is also additive; moreover p A has bounded variation on X  iff p has 
bounded variation on A and ți is regular at a point A' eJ ? , A' a. A iff pA is regular 
at A 1. '

e ) i f  A e ^  and B = X \A th e n  p = p A + p B, \p\ = \pA \ + \pB \.

Definition 4. The additive map p :J B -> E  is called derivable at a point x0 e X  iffor all 

regular sequence ( f j  ofclosed subsets o f  X, convergingto x0 , the sequence

converges in E.
We remember two assertions which generalize in some sens the well known Lebesque 

theorem on derivation.
Theorem 2. I f  p: .^  -> R t  is a positive measure then p is derivable on X  outside a X-

negligible set (or equivalently A. a. e. on X).
For the details on the proof one can see [M.N], 25.30.
Theorem 3. I f  p: .JB -> R is a bounded additive and regular map on .JB then p is 

derivable k a. e. on X
For more details one can see [I.B-D].
The aim of this paper is to extend Țheorem 2 to the case where n is and additive vector 

valued map namely:
Theorem 4. Let E be a Bannach space, p :  JB -> E  be an additive map which is regular 

and hasfinite variation on any bounded subset A  o f  JB.
Ifthere exist an increasing sequence (X„ )n in JB such that

= 0,

A e B , A c zX „ ,0 < y (A ) is compact V n e N’

then p is derivable X a.e. on X.
Proof. First we show the following assertions:
a) If Q : JB -> E is „carred" by a closed subset F  of X, i.e. 0(4) = 0 for all A e JB,

4 f l F  = 0  then 0 is derivable at any pointx e X \F .
b) If Q : JB -> E  has bounded variation, is carred by a set A Q e JB (9(4 ’J = 0 if 

4 'P I4o  = 0 )  and 0 is regular a t4 j  then 0 is derivable A. a.e. o n X \4 « .

Indeed, the assertion a) follows ffom the fact that for any point XQ £ F there exist r > 0 
such that B (ro , r ) n F  = 0 .  In this case, if we consider a regular sequence (F ,^  of closed

subsets converging to x0 we may choose no e N such that
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n ^ n , , ^  F„ a B ( x 0,r ) , = o.

Hence 9 is derivable at xo and the derivative 0'(xo ) of 0 at XQ is equal 0.
b) We show that outside a X-negligible subset we have 0'(x) = 0 on %\ X- For this it will 

be sufficient to show that for any p > 0 and any e > 0 we have X’ (Afp ) < e where Mp is the set 

of all point x e X \4 )  for which there exist a regular sequence (F / j  of closed subsets 

converging to x such that '
. r le K ^ )

hm —T r  > P ■

So we fix e > 0 and we consider a closed subset Ft of AQ such that

Then we decompose 0 underthe form 0 = 0) + 0, where 0,,0, are defined by 
0 ,(^ ) = 0 ( F ,n ^ ) ,  02 (/l) = 0 ( ^ ( 4 ^ ) )

From the preceding point a) we have |0, | (x) = 0 at any point x e X \ FE since |0, | is 
carred by Pz .

Hence |0, | (x) = 0 at any point x G X  \ A^.

If x G M f  there exist a regular sequence ^ ' j  of closed subsets of X  converging to x, 

F ‘ c  X \F C such that

p < hm —7— r  = hm — 7—7 .
—  ^ ; )  -  X (F; )

Using Vitali covering lemma we may choose a countable family (F„) ° f pairwise closed 
subset, F „ a.X \F z such that

! ® > p  V M G N, v f w \ l l F l  = 0.

We have 

neN neN
^ H l U ^ e / P -

Let now (%„)n be an increasing sequence of ^  such that Ă X lU X  1 = 0 such that 

the set

is relatively compact. We replace any X  by the set X  defined by

■ ^ ^ ^ r i ^ X D ,» )  V M G N* 

where XQ is a fixed point in X  Obviously the sets
20
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are relatively compact. For any n we consider the additive maps n ,,9 „ y , defined on J?  as
follows

p „ ( ^ ) = ^ n ^ ) ,  eBW = ^ n ( x \ x ; ) n 5 ( * o,'0)> 
y „(4 = R (^ n (x \x ;)n (x \B (x 0,n ))).

Since y„ is carred by the closed set A \B (x „ n ) and X'n c B ( x 0 ,n)~, using assertion a) 
we deduce that y„ is derivație at any point x e  I '  and y'(x) = 0. Since 0„ is carred by the 
bounded set fi(r0 , n ) A ( J f \ ^ )  we deduce that 0„ is with bounded variation and regular. 
Hence, using assertion b) we deduce that 0„ is derivable at any point of X'n outside a 
Â-negligjble subset 4 , c  ^  ■ '

Since the set E'n is relatively compact, i.e. the closure K„ of E'n is compact subset of E 
then the topology of K„ coincides with the a(£„,£')-topology. Hence we may consider a 
sequence ( / „ ^  in E' which separates the points of Kn and therefore a sequence ( x ^  of Kn is 

convergent iff for any m e N the real sequence ( /„  (xp )j is convergent.

Now for any m e N the map a>m on ̂  with values in R defined by

is regular, with bounded variation and additive. From Theorem 3 we deduce that com is derivable 

on X  outside a X-negligible set B  ̂e X?.
Hence outside the X-negligible set J  Bm all the maps com are derivable on X  and 

«eN

therefore the map pn is derivable on I ' \ | J ^  . Using all preceding considerations we deduce 

that jx is derivable on X'„ outside the Z-negligible subset 4 U |j B ^ .  Hence outside the 

Â-negligible subset of X  given by

A x ** z \ n /

the map p. is derivable.
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ABSOLUTE CONTINUITY AND RADON-NIKODYM REPRESENTATIONS INTO FUNCȚIONAL 

FRAMEWORK

Ion Chițescu '

I. General setting

We shall consider a Loomis system (X, B ,I) . Namely. X  is a non empty set. B is a vector 

lattice of functions f  : X  IR  (pointwise order and operations) and I : B —* IR is a linear 

and positive funcțional. Write B+  := {u € B\u > 0}. We shall also assume that B is an 

algebra with unit (i.e. for all u, v in B one has uv € B and the constant function 1 e  B). 

In the particular case when I  (u„) — 0 for every decreasing sequence un 1 0 (pointwise). the 

funcțional I  is called a Danieli integral. We shall also consider another linear and positive 

funcțional J  : B —> IR.

Definition. We say that J  is absolutely continuous with respect to I  (and we shall write 

J  <g. I) if  for all e > 0 and for all h & B+ . there exists 5 > 0 such that for all B+ 3 u < li 

with I  (u) < S one has J  (u) < e.

II. Approxim ate funcțional Radon N ikodym  theorem

Theorem. Assume J  ^  I. Then, there exists a sequence (un )n  in. B such that for aii f 

in B one has

J ( f )  = \ u n l ( f v n ).

Com m ents and supplementary results

Let us introduce some new notations:

AC (I) := {T  : B IR\T  linear and positive. T  <̂_ 1}

R (I)  := {T  : B —>■ IR\T  linear and positive, T  is Z—representable} .
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(T  îs Z-representable means: there exists a sequence (vn )n  in B such that for all f  € B one 

has T  ( f)  =\im I  ( fv n )).

S R (I)  := {T  : B IR\T  linear and positive. T  strongly Z—representable} .

(T  strongly Z-representable means : there exists v in B  such that for all /  €  B one has 

T { f ) = I { f v ) ) .

Of course S R  (Z) C R(J)- and the inclusion is generally strict. "

The theorem from above says that AC  (Z) C R ( I ) .

An "exact Radon-Nikodym theorem" would say that AC (I) = S R  (I), but this iș not true 

in general. Praptically. our result is the best possible. Namely. the inclusion AC (I) C S R  (Z) 

is generally false (see the example which follows).

Exam ple. Take X =  [0,1]. 0  =  { /  : [0.1] —> IR \f  is continuous}. The funcțional

I : B IR  is defined as follows: write Q A [0,1] =  { in |n G IN, T Q =  0. m ^  n => x m  7= z n } .

Let (o„)n  be a sequence with o,, > O,ao =  1 and £  On convergent. Define I : B  IR  via

I  ( f)  := £  a ^ f  (xn ) =  /  (0) +  f a , . /  ( rn ) . 
n=0 n=0

The funcțional J  : B IR is defined via

■Uf) - = f W -

Then J  6 A C ( J ) \S R ( I ) .

Proposition . One has S R (I)  C AC (I) in each of the following situations:

(i) The lattice B consists of bounded functions.

(ii) The funcțional I  is a Danieli integral.

O pen question. Is it always true that S R  (I) C AC (I) ?
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in . Exact funcțional Radon-Nikodym theorem

One must impose supplementary conditions.

We shall work with Danieli integrale I  and J.

Standard procedure gives the spaces:

L (I) := /-integrable functions;L (J) := J —integrable functions.

L b (T) ~  { / £  L (Z) | / i s  bounded} ;L(, (J) := { / 6  L (J) | / i s  bounded} .

Proposition. J  <£ I  => Lb (I) C Lb (J ) .

The standard extension of I  (resp. J). to L  (I) (resp.L (J)) is denoted by I  (resp. J).

Let us introduce the following numerica! sets (for u E L b (I) ,u > 0  and £ > 0):

A ( Î , J } ( U) := f â | 0 < i ’ < u .  V E L ( I ) ,  î ^  > o l

A s ( / . J )  (u) := ( i  € ZR| | i  — a| < e for al! a € Â (î, T ^ v ^ .

In order to state our theorem (the :’exact funcțional Radon-Nikodym theorem"). we shall 

make three supplementary assumptions. The first assumption is more "complicated". being 

sequential and inductive. It consists of a sequence of steps.

Assumption 1. The following sequence of conditions (steps) build up this assumption: 

s ( l ) :  There exists a sequence (hn;i)n e /N  or a finite family (hn :i)1<n <pi : 0 < h,t;1 € 

L (Z), Z (hn : t ) > 0 such that

(h) E A n ^ 1 -

s(2): For every n. E IN or 1 < n < p^. there exists a sequence (^(n.t)^) e2N  o r  a  finite 

family (fyn,i);2)1 < ; > 0 < fyn,i):2 G L ( I ) ,  I  {h(n . ^  > 0 such that
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( î 2 ) E  fyn ,i);2  =  ^n ;l>  *11 p O S S ib le  n.

Assuming the step s {n — 1) for n  >  2 has been written (this for the family (ha -,n-C)a - 

whereo 6 IN n ~l ). weshallwrite (conventionally) (a ,in ) G IN n  for every a  =  (ji,i2 l " ,
l in-i) € 

IN n ~l and in  6 IN. Now we can write the next step : '

s(n): For every a  6 IN n ~ l in the set of all possible a  given by the previous steps. there 

exists a sequence (\a.i);n ) .£ m  o r  a  finite set ( / i ^ ) ^ ^ ^  of positive functions in L (I) 

with î  (hg^) for all possible 3  such that

(in ) E  h {a^ .n  = ha .n _i all possible a

(this implies £  ^Bn =  1) - So. hB;n e  L ^ I ) - - - .

A ssum ption  2. For every natural number n and for every a  6 IN n  in the set of all 

possible a. one has

A2 - ,  ( i j ^ h ^ ^ g , .

A ssum ption  3. There exists a number M  > 0 such that for all n in IN  and for all a  in 

the set of all possible a  G IN n , one has

A2-  ( î , J ) ( h a .n ) G [~M ,M ].

T heorem . Assume that I , J  are Danieli integrale such that J  ^  I  and the Assumptions

1.2.3 are fulfilled. Then there exists a positive bounded function f  in L (I) such that

J (u ) = I ( f u )

for all u in L ( I ) .
25
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The function f  (called the Radon-Nikodym derivative o f J  with respect to I) is J-almost 

unique, which means that i f  g G L (I)  is such that J  (u) = I  (gu) for all u in L (I). then

W-$l) = o.

Final comments

A. The theorem in II ( “approximate” Radon-Nikodym theorem) appeared in "Rendiconti 

del Circolo Matematico di Palermo” , serie II. vol.48(1999). p.443-450.

The theorem in III ("exact" Radon-Nikodym theorem) will appear in "Studia Mathe- 

matica” .

B. These results were obtained jointly with the Spanish mathematicians.

Prof.dr. Enrique de Amo Artero (University of Almeria).

Prof.dr. Manuel Diaz Carrillo (University of Granada).
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ON THE EXTENSION OF SOME POSITIVE FUNCTIONALS AND ON 

EXTENSIBLE REGULAR OPERATORS

Romulus Cristescu

In this paper we give some theorems concerning the extension of continuous positive 

linear functionals and the extension of positive normal operators. Some spaces of extensible 

regular operators and of monogenic regular operators are also considered.

§ 1. Extensible continuous positive linear functionals

The first theorem is concerned with positive linear functionals which are continuous with 

respect to the topology given on an ordered vector space.

Theorem 1.1. Let Z be a directed vector space endowed with a locally convex-solid 

topology and X be a topological vector subspace of Z. If /  : X —> IR  is a continuous positive 

linear funcțional, then /  extends to a continuous positive linear funcțional g : Z  —> IR.

Proof. Let p be a continuous solid seminorm on Z  such that

l/WI < P M ,  (VZ G X ).

Putting

Q = {z — a\p(z) < 1; 0 < a G Z}

the set Q is balanced and convex. If q is the Minkowski funcțional associated to Q. then q 

is a sublinear funcțional and

f ( x )  < q (x ) ,  (V iG X ).

By the Hahn-Banach theorem. there exists a linear funcțional g on Z  such that g\X  = f 

and

9 ^ ) < q  ( z ) , (Vz G Z ) .
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From this inequality it results that

(1) g ( z ) < l , Y z ț Q

therefore g (—nz) < l N z  e  Z ^ n  € IN , since - X +  C Q. Consequently g > 0.

On the other hand. Q is an'open set and by (1) it results that the linear funcțional g is 

continuous.

The theorem is proved. '

Let now Z be a directed vector space and X  a majorizing vector subspace endowed vvith 

a locally convex-solid topology' r . Let P  be the set of all (r)-continuous solid seminorms on 

X  and consideț (as in [2]) the topology r  on Z  defined by the set

V  = {P \P  € P}

bî the Seminorms given by the formula

(2) p(z) = inf {p(z) | ±  z < x  6 X }  , {z G Z ) .

The topology r  will be called the natural extension of r  on Z.

Remarks (i). Every seminormp given by the formula (2) is a solid seminorm and r \X  = r.

(ii) If T7 is a locally convex-solid topology on Z  such that r '\X  = r  then r 1 < r .

Indeed. if p7 is a (-r')-continuous solid seminorm on Z, then there exists a (r)-continuous 

solid seminorm p on X  such that ^  (x) < p ( x ) , Wx & X . Ii z & Z  then there exists. r  € X 

sucii that ± z  < x. We have pi (z) < ț /  (x) < p (x) therefore pl (z) < p  ( z ) , Vz e  Z.

T heorem  1.2. Let Z be a directed vector space and X  be a majorizing vector subspace 

endowed with a locally convex-solid topology T . Let T  be the natural extension of r  on Z. If 

f  ’ X  -* IR  is a. (r)-cbntinubus positive linear funcțional, then any positive linear funcțional 

g : Z  IR  which extends f ,  is (r)-continuous.
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Proof. Let p be a (r)-continuous solid seminorm on X  such that

l /W I  < ? W :  (VZ G X ) .

Let g : Z  —> IR be a positive linear funcțional such that j |X  = f .  Let v Be an arbitrary 

positive element of Z. For every number e >  0 there exists x e  X  such that v < x  and 

p(x) < p (v) + E. It results g(v) < p (v). For an arbitrary element z of Z. let n e  Z sucii 

that ± z  < v . We have

±9 (^) < 9 ^ ) < P  (v)

therefore \g (r)| < p(v). It results

|?M I < p (^ ) ,  (Vz € Z)

and the theorem is proved.

§ 2. Extensible positive normal operators

If X  is a vector lattice and Y  an (o)-complete ordered vector space. we denote by TI (X, Y) 

the complete vector lattice of all regular operators from X  into Y.

We shall use the definition of normal operators given in [12] (and in more general condi- 

tions. given in [7]).

Theorem 2.1. Let X  be a vector lattice . G a majorizing vector subspace of X  and Y 

an (o)-complete ordered vector space. Let L Q : G —► Y be a positive normal operator. If G 

is order dense and U : X  —> Y is a positive linear operator such that U\G = UQ, then 17 is a 

normal operator.

Proof. Let 0 < Y G 7?.(X, Y) and let E  be a totally normal subspace of X  such that 

V (E) =  {0}. Putting F  = E  C\ G, the set F  is a totally normal subspace of G and putting 

KQ =  V\G  then Vo (F) =  {0}. From t/o A Vo =  0 it results 17 A V =  0 (since G is a majorizing

29

https://biblioteca-digitala.ro / https://unibuc.ro



subspace of X). If V is any abnorma! operator then we take into account that |V| is also an 

abnorma! operator.

Corollary. If X  is a vector lattice, G an order dense majorizing vector subspace of X  and 

Y  an (o)-complete ordered vector space. then every positive normal operator Uo : G —̂ Y 

extends to a positive normal operator U : X  ^ Y .

Remark. If in the theorem 2.1 we consider an Archimedean vector lattice G. the Dedekind 

extension X  of G and a complete vector lattice Y , then we obtain a theorem of Veksler [11].

§ 3. Some spaces of regular operators

We shall use the definition of ideal introduced in a previous paper [5] in the framework 

of directed vector spaces (see also [7]).

By space of type (R) we mean (as in [8]) a directed vector space which has the Riesz 

decomposition property.

If X  is a space of type (R ) , Y  an (o)-complete ordered vector space. G a vector subspace 

of X  and Z  a vector subspace of R  (X, Y )  we shall denote

Z e (G, Y ) = { U e R  (G, Y ) \ 3 V e  Z , V\G = U} .

The following theorem generalizes a theorem given in [7] and the proof is similar.

Theorem 3.1. Let X be a spaces of type (R) and Y  an (o)-complete ordered vector 

space. If G is an ideal of X  and Z  an ideal of IZ (X, Y) then Z e (G, Y) is an ideal of R  (G, Y ) .

Examples (i). If X  is a space of type (R) and Y  an (o)-complete ordered vector space. 

then the set Z  of al! (w)-continuous regular operators from X into Y. is an ideal (even a 

bând) of the space R  (X , Y ), (see [8]);

(ii). If X  is a Banach lattice and Y  a space of type (KB). then the set Z  of all summable 

operators (from X  into Y) is an ideal of R  (X, Y). (see [3]).
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We shall now use the following definition given in [10] but considered in the sequel in

more general conditions.

Let X  be a space of type (H) and Y  a complete vector lattice. Let G be a vector subspace 

of X  and Z  be a vector sublattice of R ( X ,Y ) .  A positive operator U £ Z  is said to be 

monogenic (with respect to Z  and G) if from 0 < V  € Z  and V|G = U\G it results V = U.

We shall denote by / 4  (Z, G) the set of all operators U & Z  such that |L7| be monogenic 

(with respect to Z  and G).

Remark. If G is a full vector subspace of X. if U 6 / 4  (Z, G) and G|G > 0 then U > 0.

Indeed iî U & A4 (Z, G) then U+ E Z  and if 0 < a 6 G then U+  (a) = U (a).

In the following lemma. by directed vector subspace of a directed vector space .Y. we 

meăn (as in [9]) a vector subspace G with the property: if a 6 G and a < x £ X + then there 

exists b e  G+ such that a < b < x.

Lemma. Let X  be a space of type {R}, G a majorizing directed vector subspace of X 

and Y  an (o)-complete ordered vector space. If Z  is a full vector sublattice of R  (X, Y ) and 

O < U € Z , then the following two conditions are equivalent

(i) . U e M ( Z ,G ) :

(ii) . 0 < V e Z ,  U\G < V \G ^ » U < V .

Proof. (i) =>(ii). Let U € JA (Z, G) and 0 < V g  Z  such that U\G < V\G. Putting

P  (x) =  inf {V (?) |0, x < z e  X }  : (x e  -Y)

we obtain a sublinear operator P : X  Y

We also have

(3) P (a )= in f{ V (6 ) |0 ,a < 6 € G } ,(V a G G ) .

Indeed. denoting by A  the set in the right side of the formula (3). we have obviously
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P (a) < inf A. On the other hand, if a G G and 0, a < z € X , then there exists b £ G such 

that 0,a < b < z  and we have V (b) < V  ( z ) . Consequently inf A < P (a).

Using the equality (3), it is easily seen that

U {a) < P  (a ), (Va € G ).

Therefore there exists a linear operator W  : X  —> Y  such that W\G = U\G and

W ( x } < P  (x ) , (Vi G X ) .

From this inequality it results 0 <  VF <  V. therefore W  € 2 .  From 0 < W  € 2  and 

W\G = U\G it results W  = U since U € .M. {2, G). Consequently U <V.

(ii) =>(i). If 0 < V G Z  and V|G =  U\G. then from U\G < V\G and (ii) it results 

U < V. On the other hand. from 0 < U < V  and U\G =  U|G it results V < U since if 

x G X + and i  <  a G G+  then U (a — x) < V  (a — x) therefore V (x) < U (x). Consequently 

U = V  that is G G .M (2 , G ) .

The lemma is proved.

The following theorem generalizes a theorem in [10] (and [4]).

T heorem  3.2 . Let „Y be a space of type (R ) , G a majorizing directed vector subspace 

of X  and Y  an (o)-complete ordered vector space. If Z  is a bând in the space R  (X, Y) then 

XI {2, G) is a bând in the space 2 .

Proof. Using the previous lemma. we establish (as in [4]) that if 0 < U1.U2 G M  ( 2 .G) 

and 0 < a, (3 & IR  then aUi + PU2 6 M. {2, G ) . if 0 <  Ui < U2 G M  (2 , G) and Ut G 2 

then Ui G M  (2 , G) and if Us  î  .U in 2  and 0 <  Us G M  (2 . G) then U e M  {2. G). 
«sen

After that. we take into account țhe definition of M. (2 , G ) .

Remark. If the conditions of the above theorem are satisfied. then the set M. {2, G) is a 

component [1] of the space R  {X, Y ) .
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Some Remarks on Lattice-Subspaces

Nicolae Dăneț

1 Prelim inaries on lattice-subspaces
A vector subspace X of an ordered vector space E  is said to be a lattice- 
subspace if X  under the induced ordering is a vector lattice. For each x ,y  £ X 
we shall denote by z V y the supremum and by z  △ y the infimum of {x. y} 
in X. If z V y and x /\y ,  the supremum and the infimum of {z, y} in E, exist, 
then we'have x V y < x ^  y and z  △ y < z  A y. If E  is a vector lattice and 
x  V y = x  v  y for all z, y € X, then X  is a vector sublattice of E. Obviously, 
every vector sublattice is a lattice-subspace, but, in general, the converse is 
not true. The difficulty for study of lattice-subspaces is that z V  y i*1 X 
depends on the subspace X. In lattice-subspace we have the induce ordering 
but the lattice structure is not the induced one.

Let E  an ordered Banach space. A sequence {e„} is called a positive basis 
of £ i f  {e„} isa  (Șchauder) basis of E  and the positive cone E + is equal with 
{z € E  | z =  ^ “  j An en , An > 0 for all n}. A positive basis in E  is unique in 
the sense that if {bn } is another positive basis of E, then each element of {&„} 
is a positive multiple of an element of {en }. If {en } is a positive unconditional 
basis of E, then the lattice operations in E  are given by

oc »
x V y  = y j An v Mn )en  and z  A y =  ^ ( A „  A pn )en 

n=l n=l

for each z =  ^ " i  M n , y =  E X i  ^ n  in E.
For the study of finite-dimensional lattice-subspaces the following theo- 

rem is very important (see [1] and [7]).

Theorem 1 A finite-dimensional ordered vector space E  is a vector lattice 
if and only if  E  has a positive basis.

Lattice-subspaces have apphcations in economics (see [2], [3] and [9]).
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2 The lattice-subșpâce X(x) = [a;+ , i  ]
Let E  be a vector lattice. Every element x & E  has the decomposition 
z  =  z T  -  z " . If i  has another decomposition x = u — v, with u.u >  0, then 
x + < u and x~ < v. This means that the decomposition z =  z~ — z" is a 
minimal decomposition among all the positive decompositions of z. In the 
particular case when u = x +  and n =  z - , in plus, we have uAv =  z + Az~ =  0. 
Conversely, if z =  u -  w, with u A n =  0, then u = x + and v =  z~([5], p.73).

Let z be an element in E  such that z  =  z +  — z _ , with z +  /  0 and x~ /  0. 
Then z +  and x~ are linearly independent vectors in E. (Indeed, if Ai, A2 € R ' 
are such that Ajz+  +  A j i ' =  0, then, using the fact that A1i +  1  A ji", we 
have

0 =  |A]r+  +  A2i"| =  |Aijr+  +  |A2 |z _  > |A i|i+ , |A2 |I ’  > 0.

Therefoțe |A i |r  =  0, |A2 | r “ =  0, from where it results that A[ =  A2 =  0.) 
Denote by X(z) =  [z+ , z _ ], or simply by X , the (closed) linear subspace 

generated by z +  and x~ endowed with the induced ordering from E. Then the 
set {z+ , z - } is a positive basis for X . To prove this assertion, let Ab A2 € R 
be such that Axz-  +  A2z~ >  0. We must show that Ai,A2 > 0. Using again 
the orthogonality A[Z+  ±  A2z _ , we obtain

Aiz+  + A2z~ =  |AiZ+  4- A2z — | =  [A J r  + |A2 |z - .

The uniqueness of the representation of a vector in the basis {z+ . z - } implies 
the equalities Ai =  IAJ, A2 =  |A2 |, from where it results Ai > 0 , A2 > 0.

Since X  =  [z+ , z~] has the positive basis { z^ ,z - }, X is alattice-subspace 
in E, and the lattice operations are given by the following formulas: 
if z =  A]Z+  +  A2Z ~ and w = p.xx + + p^x~, then

z ^ w  =  m a x lA j,^ } ^ + m a x { A 2 ,/i2 }r" 
z A w  =  min{Ai, Mi}z+  +  min{A2 , g2} i ’ 

N x  =  |AI |Z +  +  |A2 |Z ’

In fact, X =  [z ^ .z 'j  is a sublattice of E. This results from the observation 
that, for every z =  Aiz+  +  A2z~ G X, we have

|z| =  |Ajz+  +  A2z~| =  |Aj|z+  +  |A2 |z“ = |z|x .

Let E  be a directed vector space and x  an element in E. Let z =  Zi — z 2 
be a positive decomposition of x  such that Z},z2 are Linearly independent. 
We can consider X(z) =  [z1 ;z 2] and construct a positive basis {bi,b2}
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in X(x). (In 2-dimensional case such a basis always exists, see [7].) If 
z =  A1 61 +A2b2 is an element in X (i) , then we can define |z|x =  |AI |6I +  |A2 |62. 
This construction can be useful in some situations, but. in general, we can 
not use |z|x like a substitute for the modulus of z because the construction 
depends of the inițial positive decomposition of x.

3 A n algorithm to determine the 
lattice-subspaces in Rm

For applications in economics it is important to determine whether or not a 
given set of n linearly independent positive vectors of Rm  (n < m) generates 
a lattice-subspace. Such an algorithm is describe in [1].

In this section we obtain a simple form of this algorithm which permit to 
observe that we can use the classical Gauss-Jordan algorithm to decide if a 
given collection of positive vectors generates a lattice-subspace.

Let x j, x 2 , . . .  , x n be n linearly independent positive vectors of Rm , where 
1 < n < m, and denote by X  - [x i,x 2 1 . .. ,x„] the n-dimensional vector 
subspace they generate. We shall write these vectors in column form

* 2 j
j  = 1 . . . .  ,n.

*m j

Let A be the matrix of type m xn  whose columns axe the vectors Xj, x 2 , . . .  , x n . 
Hence

4  =

*11

*21

*12

*22

* ln

^2n
G M n ,n (R).

^ m l ^m2

Since x i, x 2 , . . .  , Xn are linearly independent vectors, the rank of the matrix 
A is equal to n. Consider now the transpose matrix of A,

*11 *21

*12 *22
e H . m (®)-

•^In *^2n ^mn
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The columns of the matrix A T  are vectors of Rn  which will be denoted by 
y i : y2, ■ • • : ym- Therefore

•^il

Z i2

•̂ in

2 =  1 ,.. .  ,m .

Since the matrix A T  has the rank n, and 1 <  n <  m, it follows that there 
exist n linearly independent vectors among the vectors yi, y2 , .. .  , ym  which 
are denoted by y ^ y ^ , . . .  , y t„- Then the rest of the vectors y„ where 
i G { 1 .2 ,... .m} \  {Î I , 12- ■ • ■ 5 in}, can be written like a linear combination of 
the vectors y ^ , y,2 , . . .  , y»n , i.e.,

yi =  J ^ U y i v 
k=l

If the vectors y„ i G {1 ,2 ,... .m} \  {ii, i2 . . . .  , în }, belong to the cone gen- 
erated by the vectors yii : yi2 , . . .  .y ,,, which means that all the coefficients 
{j t  are nonnegative, then the set {Î I , Î 2 . • • ■ ,în } is called a fundamental set 
of indices for the collection of vectors.Xi, x 2 , . . .  ,x„ G R™

In [1] it is proved the following theorem.

Theorem 2 The vector subspace X  is a lattice-subspace ofR™ if and only if 
the vectors Xi,x.2, ■. ■ , x n admit a fundamental set of indices { ii,î2 . . . .  , în }.

In the sequel we shall show how we can construct, in a easy manner for 
using a computer, a positive basis for X , if {Î I , Î2. . . .  , in } is a fundamental 
set of indices for the vectors x i ,x 2 , . . .  , x„.

Let B  be the submatrix of the transpose matrix A T  which has the vectors 
y .j , y i2 , . . .  , y ^  as columns. Since these vectors are linearly independent, the 
matrix B  has a nonzero determinant and therefore it is invertible. Define 
now the vectors ei, e2,. . .  , en  of R ". symbolically, by the formula

More precisely, if we denote C? = B  \  and C  =  [c^] G -Mn ,n (R), then we 
have the following vectorial relations

n

Sj = £ CkjXk, j  = 1 ... .  ,n , (1)
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or, on components,

eij = ^ c k jx i k , j  = l , . . . , n ,  i  = l , . . . , m .  (2)
* = i

We shall prove that the vectors e^ ea ,. . .  , e„ form a positive basis for X . 
Firstly we observe that the relations (1) show that the vectors e i ,ea,. . .  , en 
belong to X  and, since det C /  0. they form a basis for this subspace.

In the sequel we shall prove that e i , ea,. . .  , en îs a positive basis of X . For 
simplicity of notation we assume that the vectors yi, y a ,. . .  ,y B are linearly 
independent, and yn + i, • • • ,y m  have the following expansions

y ^ + l  f n + l , i y  1 ~h ^ n + l ^ 2 "t ' 1 '4 "  f n + l .n y ^

< ................................................................................................ ..
, V  m  S»m,iyi T  €m ,2y2  4“ ' * * 4“ C m ,nyn

or
1 TI

yp  =  £ ( p sy s , p =  n + l , . . . , m ,  (3)

where £pJt > 
®1 J ®2Î ■ • • i en

0. Using these notations 
have the following form

we shall prove that the vectors

’ 1 ‘ 
0

’ 0 ‘ 
1

’ 0 ' 
0

ei = 0 > e2 = 0 i en — 1 ■ (4)
fn+1,1 Cn+1,2 ^n-rl,n

. €m ,2 . _ ^m.n .

With other words, using the relations (2), we have to prove that

e^ = ^ J c kjXik  = bi j t  j  = 1 ,.. .  ,n , i = l , . . . , n .  (5)
k=l 

n
ePj = ' ^ c ^ x pk =^pj j  =  l , . . . , n ,  p = n + l , . . .  ,m . (6)

For proving these relations observe firstly that C7  =  B - 1  implies 
C 7  B  = I n , and then, between the components, we have

n

^ c 7
k bk i = bi:i, i , j  = l , . . . , n . 

*=i
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Since bi  ̂ =  i ^ ,  we obtain 
n 

5 2 c kyZik = 6ij, i , j  = 1 , . . .  ,n. 
k=i

The relations (5) are thus proved.
The vectorial relations (3), written on components, give 

n

Xpk = ^E,p,Xsk, p = n + l , . . .  ,m , k = l , . . . , n . 
S=1

Then we have 
n n  /  n  \  n /  n

e P3 =  5 2  C fc>3'pfc =  ^ ^  I 5 2  ̂ P5 1 4 * ) =  5 2  ̂ Ps I 5 2  C k j x sk 

k=l fc=l \s=l / s=l \k=l

S=1

and the relations (4) are completely proved. They show that e i,e 2 , . . .  , en 
are positive vectors and form a positive basis for X.

To decide if we have a fundamental set of indices for the vectors 
Xi,X2,... ,x„ e  R? we can transform the matrix A T  to reduce row 
echelon form using the well-known Gauss-Jordan algorithm ([4]. p.364). 
With the aid of this algorithm it is easy to decide when a collection of positive 
operators Ti.Tj, . . .  ,TP e  L(Rn ,R m ) determine a lattice-subspace.
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A Hahn-Banach Type Theorem for 
Riesz Homomorphisms

Rodica Mihaela Dăneț

Abstract
In this paper, we give an extension theorem for Riesz homomor- 

phisms, along the line of Hahn-Banach result. As a consequence, we 
can obtain the classic theorem of W. A. J. Luxemburg and A. R. Schep 
(1979). This theorem, actually a Kantorovich type theorem, was re- 
preved in 1985 by Z. Lipecki. The idea of our result is due to Lipecki’s 
proof.

1 Preliminaries
When we say a Riesz homomorpsh.ism between two vector lattices X  and Y, 
we understand a linear operator T  : X  —̂ Y  such that, for all 11,12 in X,

T (ii  V 12) =  ^ x j  V r ț^ z ito r  equivalently,T(x1 A r 2 ) = 7(xi) A T(z2 )).

Hence, the Riesz homomorphisms are the morphisms in the vector lattices 
setting. (For a monographic study of these operators and an intesesting view 
on the problems of this theory, see [D4].)

We also recall that a majorizing subspace of an ordered vector space X 
is a vector subspace G of X, such that for any 1 in X there exists v in G 
satisfying x < v.

If G is a majorizing subspace of X, K is a complete vector lattice and 
T : G -> y  is a positive linear operator, then we can consider the function 
T  t X  Y, associated to T  by the following formula:

T(x) =  sup{T(v) । v G G, v < x}, for each x in X.

This function, introduced in a particular case, in 1923 by F. Riesz, has the 
following properties:

1) T is sublinear; 2) T  is increasing and positive; 3) T  = T on G; 
4) S(x) < T(x), for all x in X  and for any S : X -+ V a positive linear 
extension of T.
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2 The Main Results
The problem of the extension of the Riesz homomorphisms was solved for 
the first time in 1962. by A. Hayes, in the lattice groups setting. The Riesz 
homomorphisms are positive operators, but the classic proofs for the exten­
sion of positive linear operators didn’t assure that the extension of a Riesz 
homomorphism is also a'Riesz homomorphism.

In 1979. W. A. J. Luxemburg and A. R. Schep proved that this is true if 
the domain of the operator which must be extended is a majorizing sublattice 
G of a given vector lattice X  and the range space F  is a complete vector 
lattice. Later, in 1985, Z. Lipecki gave another proof for Luxemburg and 
Schep’s result.

In [D3] we investigated some conditions in which more general results of 
extension should be valid. The obtained results completed some theorems of 
[LI], [CI], [Dl] and [D2],

For axample, the following result is a first step in the extension of Riesz 
homomorphisms.

Proposition 1  ([D3] and [D4]) Let X  and Y  be two vector lattices, G a 
vector sublattice of X , M  a wedge of X  closed under finite suprema and 
containing G, H  =  Sp(M) and P  : M  —> Y  a function, such that it is 
additive and positively homogenous on M . Let also T  : G  —* Y  be a Riesz 
homomorphism such that T  =  P  on G. Then:

a) H  is a vector sublattice of X;
b) there exists a Riesz homomorphism S  : H  Y  which extends T  and 

such that S  =  P  on M  iff P(z\ V z2 ) =  P (zi)  V P (z 2 ), for all z\,z2 in M.

Note that the operator S  is defined by S(zi — z2 ) =  P^z^ — P{z2 ), for 
each z l t z2 6 M.

The following theorem is the main result of this paper:

Theorem  2 Let X  and Y  be vector lattices, G a vector sublattice of X, 
T  : G Y  a Riesz homomorphism and P  : X  —* Y  a positively homogenous 
operator such that P  =  T  on G, P(x\ V i 2 ) =  f ^ i )  V P (x 2 ), for all x i ,x 2 
in X  and P(v + x) = T{v) + P(x}, for all v in G and i  in X. Then there 
exists a Riesz homomoTphism S  : X  Y, which extends T.

Proof. First we will extend T  to the vector sublattice generated by G 
and an element io in X  \ G.

Let M  = ^ V ^  + ^ o ) ! ^  6 G, ^  £ R + , i  =  l ,n ,n  € N

Obviously, Af is a wedge in X, closed under finite suprema and containing 
G. Moreover, P  is additive on M.
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If 77 is the vector sublattice generated by G and XQ, then H = M  — M.
With Proposition 1. there exists a Riesz homomorphism Ti : H Y 

which extends T, such that Î ^ ZQ) =  F(io)- We recall that 
Ti(zi — z2) = P(zi) — P (z2 ), for all Zi,Z2 in M. (Also, we remark that Ti is 
uniquely determined.)

Now, by a standard application of Zorn’s lemma, we obtain a Riesz ho­
momorphism which extends T  to the whole X . ■

Applying Theorem 2. for Y  a complete vector lattice, G a majorizing sub­
lattice of X  and P = T,-we obtain the following result of W. A. J. Luxemburg 
and A. R. Schep concerning the extension of the Riesz homomorphisms (see / 
also the proof of this result, due to Z. Lipecki).
Theorem  3 ([L3] and [L2]) I f  X  and Y  are two vector lattices, G is a ma­
jorizing sublattice of X  and T  : G —>Y is a Riesz homomorphism. then there 
exists a Riesz homomorphism S  : X  —*Y, which extends T.

Unlike Luxemburg and Schep’s proof for Theorem 3, which is very long 
and technical, our proof is very simple.
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OPERATEURS (o) -  CONVEXES, DERIVABLES

M. Gavrilă

On connait bien qu’une fonction reelle de variable reelle,/, qui est derivable 

est une fonction convexe si et seulement si sa derivee/ est croissante.

Cette propriete ne reste plus valable si la fonction f  a comme domaine de 

definition un espace reticule Banach X, ayant la dimension, dimX>2. Plus 

exactement il ya des fonctions /  : X -> 91 de classe C*(X) qui sont (o) -  convexes 

et leur derivee n’est pas croissante, mais il y a aussi des exemples de fonctions 

f  : X  91 de classe C! (X) pour lesquelles la derivee est croissante, sans qu’elles 

soient(o) -  convexes

Dans cette note on donne une caracterisation de (o) -  convexite en termes de 

monotonie de la derivee.

DEFINITION 1: Soient X, Y deux espaces Banach, X  un espace lineaire dirige, 

x u eE. On dit que un operateur f : X —> Y a une differentielle Gâteaux dans x<>, si 

(V )seX  (3)y(x»,s) eY, donne par

On note f '(x 0 ): X ^  Y 1’operateur lineaire donne par la formule

f ’(x0 )(s) = y (xo, s) :=< f'(x 0 )>s  >
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f(xg) s’appelle la differentielle Gâteaux de/dans Xg.

Onnote f ' : X - > L  (X,Y)

*0  - > H x 0 )

/ ’ s’appelle l’operateur gradient de f (l’operateur de la derivee de f).

Un operateur g : E c X - > L  (X,Y) s’appelle gradient si (3) f : E - > Y

differentielle sur le domaine E  telle que g= f.

DEFIN1TION 2: Soient X, Y deux espaces Banacli qui sont aussi Ies espaces 

lineaires ordonnees, E <z X un sous-ensemble convexe et f : E —> Y

On dit que/ est (o)-convexe si

f(( l  -  X)x + Zy) < (1 -  X)f(x) + Xf(y)

(V) x ,yeE  des elementes comparables e t( t^  AefO,]/

DEF1NITION 3: Soit X  un espace lineaire reticule et Y un espace lineaire 

ordonne. L’operateur f : X - > Y  s’appelle monotone-symetrique ((s)-monotone 

croissant) si pour tous elementsxjpj’eE  qui verifient l’inegalite [y|<ly’|, on a 

f(x+y)+f(x-y)<f(x+y ’)+f(x-y').

DEFINITION 4: Soit X  un espace lineaire reticule et Y un espace lineaire. Un 

operateur f : X -> Y s’appelle ortogonal-additif si pour x,y eX  x_Ly (| x | A  | y |= 0) 

on a la relation

f(x+y)=f(x)+f(y).

Pour aeE on considere l’operateur fa  : X —> Y defînie par la relation 

f a(x)=f(a+x)-f(a) , ( ^ x e X
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Un operateur f : X —> Y s’appelte monotone-croissante si f(x)>f(y) pour

tous x,y GX, x  >y.

THEOREME 1:

Soient X, Y deux espaces Banach telle que X  est aussi un espace lineaire 

reticule, Y un espace lineaire ordonne, E c  X un sous-espace lineaire reticule, 

f : E - > Y  une differentielle Gâteaux, g  le gradient de/  S i/e s t un operateur (s)- 

monotone croissant. alors:

1) pour tout a GE, ga est ortogonal-additif;

2) # est monotone-croissante;

3) si y_Lz alors <g(y), Z>-<g(0), z>, et plus generalement

^(x+ y), z>=<g(x), Z> ,(V )X G E.

Demonstra tion:

1) Soint a GE  et f a(x)=f(a+x)-f(a), ( t y x  eE

On montre que f a est un operator ortogonal -  additif et donc 

fa(yi+yj=fa(yi)+fa(y2)

pour tout yBy2 GE, y ^ y ^ .

En utilisant la definition d e /u, il resulte que

fta + y i+ y i^ ffa + y j+ ft^

Analoque, pour tout h GE et t G (0,OO) nous avons que f^th  est ortogonal-additif, et 

donc

/ a+(* (ji + J 2 ) = / fl+(* ( j i ) + / f l+ r t(j'2 ^ Xfyx , y 2 GE, y xl y 2 .

II resulte

f(a+tli+y1+y2)=f(a+tli+yI)+f(a+th+y2)-f(a+tlt) 

et donc:

f(a+th+yi+y2)-f(a+yrt2)=U(a+th+yi)-f(a+yi)W
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-[f(a^th)-f(a)l.

Par consequence

/ ( a  + J i  + J 2 + ^ « ) - / ( a  + J i  + J 2 ) .. A a  + y t + t h l - f l a  + y i) nm ----------------------------------------------- = lim------------------------------------ 1-
r—>0 t t ^  t

lim -̂---
a
--

 
-
+
- -̂--2- -

+
-- -"-̂-- -~-- f--(-a-- -+-- -y--2-)- -1- lim-/-(--a-- -+- -t-h-)-- --- -f-(-a--)-

r—>o t t^o t

d’ou il resulte -

g(a+yi+y2)=g(a+yi)+g(a+y2)-g(a) 

et donc

ga(yi+y2)=ga(yi)+ga(y2)

2) Si x , y e  E  telle q u e x ^ , alorsx+ < t e tx>z

II resulte que

x ++ ty^ ++ty, Vy eE+, V t e(0, oo),

et donc

^  + țF -Z  + |<iZ+ + țF - x  + i

Parce que /  est (s) -  monotone croissante, il resulte:

f ( x + + t y ) - f ( x + ) < f ( z + + t y ) - f ( z  + ). 
et donc

< î ( x + ) j> < < g ( z + ) j > ,  V j e E + .

De maniere analoque -x<-z' 

et donc

-x~+ty<-z+ty, VyeE+, ^ te(0 ,oo).

II resulte que

|( - x ')  + țy - ( - z ') |  < j(—z ' )  + ry -  ( -x "  )|

et parceque /  est (s)-monotone croisante, ou obtien:

f ( - x ~  + t y ) - f ( - x ~ ) < f ( - z ~  + t y ) - f ( - z ~ )
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Donc

< g (~ x ~ ),y> < < g (-z  ) ,y > ,^ y e E + .

Parceque roperateurgj est ortogonal -  additif il resulte

gofx)=go(x*)4g(-x)o g (x)~  g(0) = g(x + )~  g(0) + g (-x  ) -  g(0)

De la meme maniere on demontre

g(z)-g(0)=g(z)-g(0)+g(-z)-g(0)

et donc '

<g{x),y>< <  g (z ),y > , V y e E + .

3) Soient y , z e E  telle que y ± z . Puisque fo est ortogonal-additif et 

y llz ,  Vf G (0,oo),

il resulte que>

fo ty+ tz^ M + U tz) &f(y+tz)-f(y)=f(tz)-f(O) o

lim ^ - ^ ----- -— -f\y}  _ ]jm  f^  ). -— -)  Q 
t->o t------------- r->o t

Analoque en utilisant fx  est ortogonal-additif, il resulte que
< g(x+y),z>=<g(x),z> VxeE.

THEOREME 2

Soit X  un espace Banach qui est aussi un espace lineaire reticule, E c  X un 

sous-espace lineaire reticule, g : E —> L (X,93) un operateur gradient, conținu qui 

verifie:

1) pour tout a eE, ga est ortogonal-additif;

2) g  est monotone-croissante;

3) si y_Lz alors <g(y), z> = < g(0), z>, et plus generalement

<g(x+y), z>=<g(x), z > , M  XGE.
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Si f (x )=  j< g (tx ),x > d t alors 
0

1) a eE, f a est ortogonai-additif;

2) / e s t  (s)-monotone croisante.

Demonstration: Soient y , z e  E , y l z  ct a  E  E .

Puisquefa(y+z)=f(a+y-hz)-f(a)=

i i i
J  < g(t(a  + y  + z)),a  + y  + z > d t - f <  g (ta ),a  > d t = \ <  g (t(a  + y  + z ) ) -  g (ta ),a 
0 0 0 '

1 1
J  < g(t(a + y  + z)), y > d t  + \ <  g (t(a  + y  + z)), z > d t 
o o

et g est ortogonai-additif, il resulte que

g la(ty+tz)=g'ta(ty)-^la(tz), V tcIO fl o  g(ta+ty+tz)~g(ta) = g(ta+ty)+g(ta+tz)-2g(ta).

Donc

i i
J < g(t(a  + y  + z ))~  g (ta ),a  > d t = \<  g (t(a  + y )) + g (t(a  + z)) -  2g(ta),a  > dt 
o o

et de l’hypothese 3) il resulte que

i i
|  < g(t(a  + y  + z)), y > d t  = ț <  g (t(a  + j ) ) ,  y > d t 
o o

et

i i
J  < g(t(a  + y  + z)), z > d t  = ț <  g(t(a  + z)), z > d t 
o o

En conclusion

i
f a (y  + z) = \(<  g(t(a  + y)), a + y >  + < g (t(a  + z)),a  + z > - 2 <  g(ta), a >)dt 

o

= f(a + y )+ f(a + z)-2 f(a ^ ^ ^

ce qui montre le fait q u e /,e s t ortogonai-additif.

Pour l’operateurf  nous avons
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f(y)+f(y) ^f(z)+f(z), (W y .ze E , o <y <z.

Puisque g  est monotone -  croissante, il resulte que

0=2(0) ^g(ty) ^g(tz) ^ te(0 ,a> ), y , z e E ,  O < .y < z . 

Donc

^ ( t y ) ^  * <g(tz),Z>, W  e  (O, oo) => f ( y )  < f ( z )

De la meme maniere, puisque O > -y  >-z, il resulte que 

O = £(0) ^  g( ty) ^ g ( - tz ) , ^ t  6 (O, oo) 

et donc

< g ( - ty ) ~ y  >^< g ( ~ tz \ z  > => f ( - y )  < f ( - z ) .

En conclusion pour g(0)=0 nous avons 

f(y)+f(-y) <f(z)+f(-z)

Si g(0) * 0  on considere 

go(x)=g(x)-g(O), VxeE.

et 

i
F :E  ^ R ,  F (x ) = ț<  g 0 ( tx ) ,x  > dt, x e  E 

o

Puisque go(O)=O, on a

Efy^Ff-y) <F(z)+F(-z), Vy,zeE, O <y<Z-

On verifie

F(x)=f(x)-<f(0),x>, VxeE 

et donc

f(y)+f(-y) ^f(z)+f(-z), Vy,z eE, O < y < v 

Soient aeE , y ,y ’eE  telle que | j |  < | j ' | .

Puisque

f a (x ) = g(a  + x), V x ^ E  et / a (0) = O 

il resulte que
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1
fa  (x ) = j<  g(a  + **)♦ x> d t, V x e E

o
=> fa  (|j|) + fa  (~|j|) ^ fa  (|j'|) +  fa  (-^'1), ^\y\ < | / |  =>

/e s t  (.v) -  monotone -  croissante.

Dans cet theoreme on donne une caracterisation de (o) -  convexite en termes de 

monotonie de gradient. ■

THEOREME 3

Soit X  un espace Banach qui est aussi un espace lineaire cr-reticule et 

E <z X un sous-espace lineaire reticule. Si g:E->L(X,!R) est gradient conținu pour 

f : E —> IR, alors Ies affirmations suivantes sont equivalentes:

a) /e s t  (o)-convexe et si a eE ,fa est ortogonale-additife;

b) l’operateur g satisfait Ies conditions:

i) pour a GE, ga est ortogonal-additif;

ii) g  est monotone-croissante;

iii) si y,z GE  et y l z , alors <g(x+y), z>=<g(x), z> (V) x  GE.

Bibliografîe

1. R. Cristescu, Spatii liniare topologice, Ed. Academiei, 1974

2. R. Cristescu, Structuri de ordine in spatii liniare normale, Ed. Științifica si

Enciclopedica, 1983

3. G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University 

Press, London, 1934

52

https://biblioteca-digitala.ro / https://unibuc.ro



4. M. Gavrila, Funcții monoton simetrice pe spatti liniare a-reticulate, Seminar 

științific: “Spatii Liniare Ordonate Topologice”, 11(1990), 82-84

5. M. Gavrila, Operatori convecsi pe spatii liniare a-reticulate, Stud. Cerc. 

Mat. tom. 45, nr.5,p 415-421, București, 1993

6. H.H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, 

N.Y., Heidelberg, Berlin, 1974 -

K. Sundaresan, Convex Functions on Banach Lattices, 54, Contemporary 

Mathematics, 1986

Marinica Gavrila

Departement de Mathematiques

Universite Technique

’ de Genie Civil

124 Lacul Tei

Sect. 2 Bucharest

72302

Roumanie

53

https://biblioteca-digitala.ro / https://unibuc.ro



THE HERMITE-HADAMARD INEQUALITY FOR CONVEX 
FUNCTIONS OF A VECTOR VARIABLE

CONSTANTIN P. NICULESCU

University of Craiova, Department of Mathematics, Craiova 1100

ABSTRACT. The Hermite-Hadamard inequality ia diacuased in the light of Cho- 
quet’a theory.

It is well known that every convex function f  : [a, 6] —»R can be modified at the 
endpoints to become convex and continuous. An immediate consequence of this 
rcmark is the integrability of f .  The mean vaiue of f ,

'  b - a  J a  ’
can then be estimated by the Hermite-Hadamard Inequality, 

(HH) f  ^ )  < M {f )  <  M ± M  ,

which follows easily from the midpoint and trapezoidal approximation to the middle 
ter-m. Moreover, under the presence of continuity, equality occurs (in either side) 
only for linear funcționa. An updated account on (H H ) are to be found in [2].

What about the case of functions of several variables? A recent paper by S. S. 
Dragomir [3] (see also [2]) describes the case of balls in R3 , by proving that

f (a )  < ------1 ------ f (x )  dV  <   ----- / {  f (x )  dS
Voi Bit(a) AreaSjt(a) J J S n (a )

for every continuous convex function /  : B uia) —> R. However, as we shall show in 
the sequel, more general results are already available in the existing literaturo. In 
fact, the right approach of the entire subject of Hermite-Hadamard type inequalities 
comes from Choquet’s theory, a theory whose highlights were presented by R. R. 
Phelps in his booklet [5]. For a more advanced material, see the monograph of E. 
M. Alfsen [1].

The basic observation is that the middle point (a+ b)/2  represents the barycenter 
of the given interval [a, d] (with respect to a uniform distribution of mass), while 
the right hand side of (HH) represents the mean vaiue of f  over the set of extreme 
points of the given interval.

Then the two sides of (HH) follow different routes, with different dcgrees of 
generality.

To enter the details, let K  be a compact convex subset A" of a locally convex 
Hausdorff space E  and suppose there is given a Radon probability measure fi on K

1991 Mathematics Subject Classification. Primary 26D07, 26D15, 46A55. Secondary 52A07. 
Key words and phrases. Convex function, barycenter, extreme point.
Partially aupported by CNCSIS Grant A143/2001.
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CONSTANTIN P. NICULESCU

(which can be thought of as a masa distribution on K). The /*— barycenter of K 
is defined as the unique point x^ of K  such that

(B) I '(I /1) =  x'(x)dn(x)
JK

for every continuous linear funcțional x' on E; see [5], Proposition 1.1. When- E  is 
the Euclidean n—dimensional space, the normed and the weak convergence are the 
same, so that

1 ^=  x  dpjx)
JK

i .e., the barycenter coincidea with the moment of first order of g.
An immediate consequence of (B) is the validity of the inequality

f ( x J  < f  f (x )  dpjx)
J K

for every continuous convex function f  : K  —> R, a fact which extends the left part 
of the classical Hermite-Hadamard inequality. For detaila, see the remark before 
Lemma 4.1 in [5], Another remark is the following monotonicity property (noticed 
by S;  S. Dragomir [3] in a particular case):

1. Proposition. Under the above hypothesis, the function

M(t) — I  f ( t x  +  (1 — t)x n) d P(x )
JK

is convex and nondecreasing on [0,1].
When £  =  Kn  and g is the Lebesgue measure, the value of M at t equals 

the mean of f \K t , where K t denotes the image of K  through the mapping x —> 
t i  +  (1 — t)!^ , i.e.,

f  f ( x ) d ^ ( x )-
J K t

Proposition 1 tells us that shrinking K  to xM, via the sets K t , the mean of f \K t 
decreases to f^x^). The proof will need the following approximation argument, 
which was shown to us by Prof. Gheorghe Bucur:
2. Lemma. Every Radon probability measure p. on K  is the pointwise limit of a net 
of discrete Radon probability measures p.a  on K , which have the same barycenter 
as fj,.
Proof We have to prove that for every e > 0 and every finite family / i , ..., f n  of 
continuous real functions on K there exists a discrete Radon probability measure u 
such that

x v = x^ and sup |p (/ t ) -  M(/*,)| <  e.
l< t < n

As K  is compact and convex and the f k ’s are continuous, there exists a finite 
covering (Da )a  of K  by open ppnvex sets such that the oscillation of each of the 
functions fk  on each set Da  is <  £. Let ( f a )a  be a partition of the unity, subordi- 
nated to the covering (Da )a  apd put
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where i (a )  is the barycenter of the measure f  —* p{va  f)/p(<Pa )- AS Da  is convex 
and the support of ipa  is included in Da , we have i(a )  g Da . On the other hand,

MW =  ^  ^ ( M  =  E  =  ' ^ a )  =  ^ )

for every continuous affine function fc : K  -» R. Consequenly, /z and v  have the 
same barycenter. Finally, for each k,

m-XA)l =
^ a  P& a ) f k ^ a ) )  -

< £  - y  M O C. )  =  £ - ■

Proof of Proposition 1. A straightforward computation shows that M(t) is convex 
and M(t) < Af (1). Then, assuming the inequality Af (0) < M (t), from the convexity 
of M(t) we infer

M(t) -  M{s) >  M(s) -  M(0) > 
t — s ~  s

for 0 <  s <  t <  1 i.e., M(t) is nondecreasing. To end the proof, it remains to show 
that M (t) > Af(0) =  f(x^). For, choose a net (pa )a  of discrete Radon probability 
measures on K, as in Lemma 2 above. Clearly,

/(a:M) < j  f( tx  + ( l — t jx ^ d p ^ x )  for all a
JK

and thus the desired conclusion follows by passing to the limit over a. ■
The extension of the right hand inequality in (HH) is a bit more subtle and 

makes the object of Choquet’s theory, briefly summarized in the sequel. Given two 
Radon probability measures p and A on K, we say that p is majorized by A (i.e., 
p  -< A) if

/  dp(x) < /  f(x )  dX(x)
JK JK

for every continuous convex function /  : A" —> R. As noticed in [5], -< is a parțial 
ordering on the set of all Radon probability measures on K.
3. The Choquet Theorem ([5], ch. 3). Let p be a Radon probability measure on 
a metrizable compact convex subset K  of a locally convex Hausdorff space E. Then 
there exists a maximal Radon probability measure X >- p such that the following two 
condiționa are verified:

i) The barycenter of K  with respect to A and p is the same;
ii) The set £ x tK  of all extremal points of K  is a G^—subset of K  and A is 

concentrated on £ x tK  (i.e., X(K \  £xt K ) — 0).
Under the hypotheses of the above result we get

(Ch) f ^ x j  < /  f(x )  dp(x) < (  f(x) dX(x)
JK  JextK

for every continuous convex function /  : K  —* R, a fact which represents a full 
extension of (HH) in the case of metrizable compact convex sets. Notice that the 
right part of (Ch) reflects the maximum vrinciple for convex functions.

In general, A is not unique, except for the C U Î  of simplices; see [5], ch. 9.
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Another useful remark is that every Radon probability measure A, concentrated 
on E x tK , for which (Ch) holds, is maximal. Cf. [5], Corollary 9.8.

According to the above discussion, if X  =  [a,b], then necessarily A is a convex 
combination of the Dirac measures e a  and e k , say A =  (1 — a)e a  +  ae^. This re­
mark yields Fink’s Hermite-Hadamard type inequality [4] in the case of probability 
measures:

(F) f  f(x )  d ^ x )  <  • f {a )  +  - f(b )  ,
Ja b -  a b —a

for every continuous convex functions f  : [a, &] —» R and every Radon probability 
measure p  on [a, 6]; as usually, x^ denotes the barycenter of p , i.e, x^ =  f  xd p (x ). 
In fact, checking ’

/  f(^ )d p (x ) < ( l - a ) - f ( a ) + a - f ( b )

for f{x )  =  (x — a)/(b  — a) and f {x )  =  (b — x )/(b  — a) we obtain

a  ~r— -  and respectively 1 — a  >  ——
b — a b — a

i.e., a  =  (x^ — a)/{b — a).
The argument above can be extended easily for all continuous convex functions 

defincd on n - dimensional simpliccs K  =  [ / lo ,4 i , . . . ,A n ] in Rn . Then the corre- 
sponding analogue of (F) for Radon probability measures p  on K  will read as

f W <  [  f ( x ) d p < V V o l n ([A0 ,A 1 , . . , .Â k , . . . ,A n ] f ( A k )-, 
J k  fc=O

here X^ denotes the barycenter of p , and [Ao, A i , .., ,A k , ..., An ] denotes the sub- 
simplex obtained by replacing A k  by Xp-, this is the sub-simplex opposite to A k , 
when adding X^ as a new vertex. Voln  represents the Lebesgue measure in Rn .

In the case of closed balls K  =  B n (a)  in R3 , £ x t K  coincidea with the sphere 
^ ( a ) ;  the paper by Dragomir [3] illustrates the aforementioned theorem of Choquet 
in the case where p  is the normalized Lebesgue measure on B R (O,). Ilis argument, 
based on Calculus, avoids Choquet’s theory, but it cannot be extended to arbitrary 
compact convex sets and arbitrary Radon probability measures on them.

The Choquet theory is today a well established subject in Mathematics, with 
many extensions and ramifications, and Theorem 3 above is just the beginning of 
the story. The reader will find much fun formulating many other results in the 
Choquet theory as Hermite-Hadamard type inequalities.
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Induced representations of hypergroups

Liliana Pavel

First we shortly present the main directions o f the study of induced 

representations o f hypergroups so fer, and we describe in which way the results 

in this topic have been naturaly inspired by the analogous results on locally 

compact groups. We illustrate these ideas relating positive definite measures on 

hypergroups to induced representations o f hypergroups.

Although great progress has been made since the beginning of systematic 

studies o f representations of hypergroups, the concept of induced 

representations has not been developed in the general case of an arbitrary 

closed subhypergroup H of £  up to Hermann [7], The most general result prior 

to this paper was the one o f Hauenschild, Kaniuth, Kumar [6]: the authors laid 

the foundations to induce a representation from a closed subgroup (that means 

a subgroup of the maximal group (G(K) ={ x ^ K  | 8Z * 8 ^  = 8z „* 8 z = ^ , }) 

o f K. They translated the classical induction procedure basically invented by G. 

Mackey to the case of hypergroups, when H  is a closed subgroup of K. The 

main tool that allows this translation and supports the whole computation is: 

VxeK, teG(K), there exists an unique y  (denoted by xt) such that 8 ^ 8 ,  =
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this way is a Hermitian A -module, which is called the Hermitian X-module 

obtained by inducing V up to A via P.

Actually, if 7f is a closed subgroup o f a locally compact group G, then the C* - 

algebra, C* (H) of H  is not o subalgebra o f C ' (G), but rather acts as an algebra 

o f right centralizers oh C* (G). Also the natural candidate for a condițional 

expectation from C (G) to C' (H) is not continuous, or everywhere defined. 

For these reasons, Rieffel generalized the definition o f a condițional expectation 

and surpassed some technical obstacles, including the Mackey's construction as 

a special case o f his construction for C* -algebras. The obstacles are the same 

when / f  is a closed subhypergroup o f the hypergroup K.

In his.work, [7], Hermann has translated the way in which Rieffel surpassed the 

above difficulties, directly, when 77 is a closed subhypergroup o f the 

hypergroup K, describing the RieffeTs inducing process for the C* -algebras, 

C'(H), C'(K).

Roughly speaking, hypergroups are locally compact spaces, whose regular 

complex valued Borel measures form an algebra which has properties similar to 

the convolution algebra (M(G),*) o f a locally compact group. For basic 

notations and references, one can consult the paper o f Jewett, [8], Let be a 

hypergroup. We shall denote by Cc(K) the space o f all complex valued 

continuous fimctions with compact support on K  and by M(K) the bounded 

regular Borel measures on K. Furthermore, all hyperhroups occuring in this 

paper are supposed to admit a (left) Haar measure, m^. Its modular function is 

denoted by A .̂ We mention that it is still unknown if an arbitrary hypergroup 

admits a left Haar measure, but all the known examples such as commutative 

and central hypergroups [6] do; in addition, in [15] it is proved that each 

subhypergroup of a hypergroup having a left Haar measure, also admits a left 

Haar measure. With this assumption, one can define the convolution algebra, 

L‘(K). Further, as the left regular representation o f  ̂ T is faithful, we can embed 

L‘(K), as well as C /K ) in its enveloping C*-algebra, C*(K). By analogy to the 
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=ây . Consequently, any technique based on this kind o f computation (Mackey) 

fails when H  is only a subhypergroup.

Studying the paper of Rieffel [12], who invented an abstract inducing process 

from which the Mackey construction can be obtained as a particular case, 

working in the groupâl algebras o f a locally compact group, Hermann has 

translated the way of obtaining the Mackey construction from the abstract 

Rieffel inducing process, working in a proper, carefull way in the hypergroupal 

algebras. We notice that there are a lot of analogies between the natural 

algebras associated to a locally compact group and to a hypergroup possesing a 

Haar measure.

Rieffel's inducing process for C* -algebras is rougly as follows. Let A be a C* - 

algebra, let 5  be a subalgebra o f A, and let K be a Hermitian ^-module, that is 

the Hilbert space of a nondegenerate *-representation of B. It is considered the 

algebraic tensor product A ®BV  and it is tried to answer the question how to 

equip this /l-module with an inner product in such a way such that to obtain a 

nondegenerate *-representation o f A. An analysis of this question shows that in 

general there are many different ways o f doing this, in contrast to Mackey's 

theory for locally compact groups where there seems to be essentially only one 

natural choice of inner-product. This difference is explained by the fact that in 

the case of locally compact group G and a closed subgroup H, an additional 

piece of structure is present, namely the restriction map from functions on G to 

H. Rieffel noticed that, roughly speaking, this map is a condițional expectation, 

where for a C' -algebra A and a subalgebra B, a condițional expectation is a 

positive projection, P, of A onto B, having the property P(ab)=P(a)b, for all 

aeA , beB. Once a condițional expectation has been chosen, there is a 

canonical choice of a preinner-product on A®BV, whose value on elementary 

tensors is given by; (ai® vh  a2® vi) = (P (aa i)v\, v)^ . This definition, is very 

closed to that used in the Gelfand-Naimark-Segal construction of a 

representation from a positive linear funcțional. The Hilbert space obtained in 
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case o f a locally compact group, the irreducible representations o f K  are in one 

to one correspondence with the non-degenerate (irreducible) representations of 

L'(K), and hence C'(K). Corresponding representations of the objects K, L‘(K), 

C*(K) will be denoted by the same letter. '

Let ^  be a closed subhypergroup of K. Hermann [7], considered "." the action 

of C fH )  in C fK )  given by

( / > 9 > ) ^ f P  = f *
2

<p, C AK )*C C(H )-+C C(K \

Consequently,

(7  • <PX*) = L  f ( *  ' t ^ ^ K  ) (0 )  2 <P(Wmn  (t).

As observed in [7, Lemmal]

(f*<p)<P = f * ( g p ) y f , g e C S K ) , p ^ ^

He also considered the map P: C fH ) -> C fK ), P=

With Lemma 2 and 3 [7], the map P  is a *-linear, generalized condițional 

expectation, P (f)* = P (^ )  and P ( / )  * <P) = P ( /  • 0 ,  V / e C c (K), <peCc (H).

Contrary to the group case, it is not possible to induce each representation of 

an arbitraiy closed subhypergroup H  to K, because the Rieffel process requires 

the positivity o f the preinner product and the norm-conrinuity o f the 

representation that are automatically fulfilled working with the groupal 

algebras. So, the central notion of the Hermann's paper is the inducibility o f a 

representation o f H. Bearing in mind the abstract Rieffel inducing process he 

defined the inducibility as follows:

Definition (Hermann). Let p  be a  representation o f  H, p  is said to be 

inducible (ffom H) t o K i f  the following two conditions hold:

(i)p is P-positive, i.e.

{ p ( P ( ( f ^ f ) ) v , v } ^ 0 ,  VfeCJK) , v e  HP ;
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(ii)p is P-bounded, i.e.

{p (p O J ★g ) '* ( f *  g))v , v ) ̂ I q r )  (p ( p ((g * * # )> ,v ) - ^f>g^Cc(K), VG  H?

If (i) and (ii) in the definition above are satisfied one can deține a preinner 

product on the space V=A ®Hp (algebraic tensor product) by setting on VxV, 

( j ® v ,g ® w ) ^  (p(P(g'*f)v), w)H f .

It is a part o f the Rieffel theory that this preinner product is well defined. If  we

set N = {X G V\ (x ,x )^  =0}, ( v ) ^  becomes an inner product on V/N. Finally, if

Hmdp is the completion o f V/N with respect to this inner product, we get the so- 

called induced Hilbert space on which the induced representation indetA p 

(where A=Ce(K), B=CfH)) is defined by

m d r tA P l f fa  ® v) = ( f * g ) ® v .

It is clear that every represntation o f the subgroup of K  is inducible to K, so the 

definition includes the most general case known so far, [6].

In his elegant note appeared in 1963 [2], Blattner shows that an alternate 

definition of Mackey's induced representations (for groups) can be given in 

terms of lifting positive definite measures from subgroups. He stated the next 

result.

Theorem (Blattner). Let G be a locally compact group, H  a closed subgroup 

o f  G. I f  p  is a positive dfinite measure on H, we let p  be the measure on G

obtained by inflating P , P ( f )  = f e C c(G) Thenp

ispositive definite and T ^  is equivalent to i n d ^ T ^

(The meanning of T ^  is the standard one, Tg^ (\f])=\g*f\, V fg G  Cc(G )f 

Looking at all these prior works, some classical, concerning the induction 

process on locally compact groups ([9], [2], [12]) and some connected to 

induced representations o f hypergroups ([7], [6]), we were also tempted to
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adapt Blattner's idea to induce representations o f subhypergroups to 

hypergroups. In addition, a nice, ambitious and promising program could be 

initiated: using this idea one might hope to answer questions on imprimitivity 

for representations of hypergroups, so to get an answer to the difficult 

question: which, representations of K  are induced from representations of a 

given subhypergroup fi?  (Mackey [9], Theorem 6.6). The next results might be 

considered the first steps to get close to this objective.

First stage in developping Blattner’s idea on hypergroups is to study positive 

definite measures on hypergroups, surpassing the relative poverty of prior 

works on this subject. There is no hope for a positive definite measure on K  (in 

the usual sense £ / * ♦  fd p > 0 , V  f e  Cc(K)) to give rise to a proper 

representation of the hypergroup, so certainly one has to restrict the class in a 

proper way. Which should be the measure's properties (except the positivity) in 

order to ensure that T ^  is a representation o f the hypergroup?

The (B)-boundedness condition seems at the first giance unnatural, and not 

very confortable to handle with. a positive definite measure is called (B)- 

positive definite i f

\K f ' * g ' * g *  f d p  ^  IH f £  /*  * f d p , V fig e  Cc(K).

Fortunately, a carefull analysis shows that this condition is automatically 

fiilfilled for several nice cases such as positive definite measures generated by 

bounded positive definite functions ad postive defiiite measures (bounded) on a 

commutative hypergroup. Moreover, one can link this condition with former 

work on subjects connected to positive definite measures on hypergroups such 

as [3], [5],

As it follows from Hermann's work [7], not every representation of a closed 

subhypergroup f i  can in general be induced to K. Accordingly, in order to 

obtain an analogue to Blattner’s description o f the induced representations in 

terms of positive definite measures, we need for the measure p a property 
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which is a substitute for Hermann's inducibility. the natural condition is the one 

from the definition of inducible measure.

Definition. A (B)-positive measure f io n  H  is said to be inducible from H to K 

i f  f i  is B-positive definte on K.

For p  inducible from H to K , f i  is denoted by i n d ^  f i

With this definition we naturally translate the Blattner's procedure to 

hypergroups.The problem that must be solved further is if this construction 

concords to the prior work o f Hermann [7], We gave a complete, definitively 

positive answer to this question with the next theorem, our main result: 

Theorem. Assume H  is a closed subhypergroup o f  the hypergroup K, and let fi 

be a (B)- positive definite measure on H. Then, fi is inducible from H  to K  i f 

and only i f  the representation fr^  is inducible from  H  to K  (in the sense o f 

[7]). In this case, js  equivalent to in d a -^ f^ .

We can add that this procedure includes the Blattner's description of induced 

representations in terms of positive definite functions, obtained in [6] for the 

particular case of H  a closed subgroup.

We also obtained the Theorem on Induction in stages, whose proof in this 

approach is very attractive and natural.

Finally, we notice that this induction procedure on hypergroups, combined with 

Hermann's results [7], can be used to show in certain cases that a (BJ-positive 

definite measures on a subhypergroup H  o f K  can be "extended" to a positive 

definite measure on K. For example, if H  is a compact subhypergroup of K  or 

B  is a subgroup of K, then by [7], each representation H  can be induced to K. 

In view of our theorem, each fB^-positive definite measure on H  is inducible 

from H  to K.
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SOM E APPRO XIM ATIO N RESULTS IN LOCALLY 
GO NVEX LATTICES

GAVRIIL PALTINEANU AND DAN TUDOR VUZA

Let X  be a compact Hausdorff space and let F  be a vector subspace 
of C(X). In the approximation theory one can define two classes of 
subsets of X, with respect to the vector subspace F, namely: antisym- 
metric sets and frontal sets. In this paper we firstly remind the main 
properties of these classes then we show how these concepts and their 
properties can be generalized to the closed order ideals in locally convex 
lattices.Typical examples of such lattices are the weightcd spaccs.

1. A N TISY M M ETR IC  SETS
Let X  be a compact Hausdorff space and let C(X) be the space of all 

continuous complex valued functions on X, equipped with the topology 
of uniform convergence.

We denote by A° the polar set of any subset A of C(X). Also, for 
every subset K  of X, we denote by XK  the characteristic function of 
K a n d b y ^  =  { /e C ( X ) ;  / |X = 0 } .

Definition 1.1. Let F  be a vector subspace of C(X). A subset S  of 
X  is said to be antisymmetric with respect to F  (F - antisymmetric) 
if  every f  € F  with the properties:

a) f \ S  is real valued
b) fg \S  6 F  IS for any g E F. is constant on S.
Remark 1.1. Let A  be a subalgebra of C (X ). A subset S  of X  is 

said to be antisymmetric with respect to A  if  every f  £ A , real-valued 
on S, is constant on S. Thus, we reobtain the concept of antisymmetric 
set introduced by E.Bishop in 1961.

Theorem  1.1. (G .Paltineanu 1978) Let F be a closed vector 
subspace of C (X ). Then:

i) The family S  of all maximal F  - antisymmetric subsets of X 
forms a pairwise disjoint partition of X .

ii) A function f  € C {X) belongs to F  iff f  \S E F \S , for any 
S e S .

1991 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 
05A15, 15A18.

Key words and phrases. antisymmetric set (ideal), frontal set (ideal), interpolat- 
ing set (ideal).
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iii) F  \S is closed in C (S ) fo r  any S  E S .
This result generalizes the well known Bishop’s approzimation theo- 

rem.
2. F R O N T A L  S E T S

The concept of frontal set w ith respect to  a vector subspace o fC (X ) 
was introduced by Alain Bernard in 1967 as a generalization of the 
concept of intersection of peak sets with respect to  a  subalgebra of 
C (X ).

D e fln itio n  2 .1 . A closed subset K  of X  is a frontal set with respect 
to the vector subspace F  of C (X ) , i f  for any f  €  F , any neighborhood 
V  of K , any c > 0 and any g > 0. there is a f  E F  such that:

1\K = !\K . ||7L< I/IIK + I , |7||W <=-.
R em a rk  2 .1 . Let A  be a closed subalgebra of C (X )  containing the 

constants and K  be a closed subset o f X . Then, K  is a frontal set 
with respect to A , iff K  is an intersection o f the peak sets with respect 
to A .

The following theorem is a characterization theorem for the frontal 
sets.

T h e o rem  2 .1 . Let X  be a compact Hausdorff space, F  a vector 
subspace of C (X ) and K  a closed subset o f X  such that F/FC\IK is 
complete. Then, the following assertions are equivalent:

(i) K  is a frontal set with respect to F.
(ii) X K F° C F*.
(iii) For every f  €  F , and every g continuous nonnegative function 

on X  such that | / ( i ) |  <  g(x) fo r  x  E K , and every £ >  0 there exists 
f  E F  with the properties:

f \ K = f \ K  and \ f ( x ) \ < g ( x )  + £ fo r  x  E X .

T h e o r e m  2 .2 . The fam ily of all F  - frontal subsets of X  is closed 
with respect to the finite reunions and with respect to any intersection.

T h e o r e m  2 .3 . Every maximal F  - antisymmetric sets is a F  - 
frontal set.

3. F R O N T A L  ID E A L S

Our generalization of the concept of a frontal ideal is motivated by 
Theorem 2.1.

Let F  be a real, metrizable, locally convex, locally solid vector lattice 
and let VQ be a basis of open, convex, solid neighborhoods of the origin.

D e fin it io n  3 .1 . .4 closed ideal I  of E  is said to be a Vo - frontal 
ideal with respect to the vector subspace F  of E  i f  fo r  any x  E F  and
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any y  €  E + with the property ( | i |  — y )+ € I  and fo r  any V  E Vo there 
exists a x  €  F  such that x  — x  E I  and ( | î |  — y ) + E V.

R em ark 3.1. I f  E  = C (X ) , then a closed subset X  of X  is a 
frontal set with respect to the vector subspace F  of C (X ) i ff  the closed 
ideal I K  is a frontal ideal in the sense of the Definition S.l.

Indeed, it is sufficient to  remark th a t ( | / |  — g)+  6  I K  iff 
| / ( r ) |  <  g(x), X E„K and th a t ||( |7 | - g ) + || <  e iff | / ( i ) |  < g(x) + s 
for x  E X .

T h eorem  3.1. (G .P a ltin ean u , D .T .V u za  1996) Let E  be a real 
metrizable, locally convex, locally solid lattice, I  a closed ideal of E , F 
a vector subspace of E  and Vo a basis of the origin, consisting of open, / 
convex, solid neighborhoods. I f  F /F  n  I  is complete, then I  is a Vo 
- frontal ideal with respect to F  i f f  P /(F °) C F°, where by P{ it was 
denoted the associated projection E 1 —> 1°.

Further, we shall denote by P F ^E) the family of all closed ideals of 
E, Vo - frontal with respect to F .

T h eorem  3.2. The family F F (E ) has the properties:
(i) I f  (Ia )  C F F (E ) then ^  6 F F W
(ii) I f  I , J C  F F {E) then 1 Q J  E F F {E)

(iii) I f  (1^  C F F (E) and the bând generatcd by [_)Ia° is a (E ',E )  - 

closed, then Q /a  €  P F ^E)

(iv) Let I  and J  be two closed ideal of E  such that I  C J . I f 
I  E F F {E) and F /F  Pi I  is complete, then J  € F F (E) i ff  J / I  is 
frontal ideal of E / I  with respect to F / I .

The following result is a generalization of a theorem of a Bernard 
concerning the frontal set with respect to a closed subspace F  of C (X ). 
Given a continuous seminorm p  on E, we associate to it the quotient 
seminorm:

P j(x) = inf {p(x + u );u  E 1} , x  E E.

T h eorem  3.3. (C .N icu lescu , G .P a ltin ean u , D .T .V uza , 2000) 
Let F  be a complete vector subspace of E , Vo a basis of convex and 
solid neighborhoods of the origin, I  a Vo-frontal ideal with respect to 
F , x  E F , y E E + such that ( j i | — y}+ E I , V  EVo and p a continuous 
o f (AM )-type seminorm on E  such that p i(x ) > 0. Then. there exists 
a x E F  with the properties:

x  -  x  E I , ( | î |  — y ) + E V  and p(x) = Pi(x)

T h eorem  3.4. Let F  be a vector subspace of E . let I  be a Vo- 
frontal ideal with respect to F, x  E F, J  a closed ideal of E  such that
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x E I  + J , p a continuous and solid seminorm on E and e > 0. Then 
there exists a x E F  with the properties:

x — x  E I, p(x) ^  Pi(x) + E and pj(x) ^  E

I f F  is complete, p is a (AM)-type seminorm and pj(x) > 0 then 
p(x)= pr(x).

4. ANTISYM M ETRIC IDEALS
Let now £  be a real, locally convex, locally solid vector lattice of 

(AM)-type. The center Z(E) of E  is the algebra of order bounded' 
endomorphisms U 6 L(E, E), i.e those U for which there exists A > 0 
such that |[l(i)| < A |i |  for all x E E. We define the real part of the 
center by ReZ(E) = Z (E )+ — Z (E )+ .

Deflnition 4.1. A closed ideal I  of E is said to be antisymmetric 
with respect to the vector subspace F of E  if for any U 6 R eZ (E /I) 
wOJi the property U[TTJ(F)\ C ^ I (F) it follows that there exists a E R 
such that U = a l E /i, where l E /i is the identity operator on E / I .

We shall denote by A F (E) the set of all closed ideals of E, antisym­
metric with respect to F.

Ramark 4.1. If E = C (X), then a closed subset K  of X  is an 
antisymmetric set with respect to F  iff the closed ideal IE  is antisym­
metric with respect to F  in the sense of Definition ^.l.

It is sufficient to observe that Z(C(X)) = C (X) and that ^ iK {f} = 
f  |A'for every f  € C(X).

Theorem 4.1. (G.Paltineanu, D.T.Vuza ). The family A F (E) 
has the properties:

(i) I f  (Ia) C A F (E) and J - ^ I a  ^  E then I  = Qla E A F (E).

(ii) Every I  E A F (E) contains a unique minimal ideal Io E A F (E).
(iii) If the family of all continuous lattice homomorphisms 

h : E  —> R  separates the points of E, then the intersection 
n  p ;  I  6 A F (E)^ = {0}, where A F (E) denoted the family of all min­
imal antisymmetric F- ideals of E.

(iv) Let T = {/1 , / 2 , . . . , /m } C A F (E) and J  = {Ji, Jz, Jn } C 
A F (E) such that I F Q J l = {0} for every l. Then E  = Q IE  + O Ji.

(v) I f  F  is complete, then A F (E) C T E (E).
The following Lemma generalized de Branges’ Lemma.
Lemma 4.1. Let 'F  be a vector subspace of E and V a con­

vex, solid neighbourhood of the origin, which is also sublattice. If 
f  E E xt {V0 O F0 } and I  = {x E E; | / |  ( |i |)  = 0}, then I  E A F (E).
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The main result concerning to antisymmetric ideals is the following 
Bishop’s type approximation theorem.

Theorem 4.2. Let E  be a real metrizable l.c. of (AM)-type and let 
F C E be a vector subspace. Then for any x  G E we have:

x G F ]S iri(x) € TTI(F) for every I  G A F {E) '

Remark 4.1. Theorem 4-2 generalizes Theorem 1.1.
Corollary 4.2. If F  is complete and I  G A F^E), then ^[(F) is 

complete.
Theorem 4.3. Suppose that F  is complete. Let TI ,T2 be two finite 

and disjoint subsets of A F (E) (i.e. IQ  J  = {0} for any I  GT I and any 
J  G Tf), and let li = H {I; I  G Ti} and I2 = Q {I; I  G T2}. Then, for 
every x  G F, every continuous seminorm p on E and every £ > 0, there 
is a x G F  such that:

x — x  G Ii, p(x) < p^ (x) +  £ and pi2 (x) < £

If in addition p is an (AM)-type seminorm and p^ (x) > 0, then p(x) = 
Ph W-
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LOCALLY BOUNDED SEMIGROUPS

Mihai Voicu

After a short introduction we have introduced the notion of locally bounded 
semigroups. At first, we consider locally bounded semigroups on projective limits of 
normed spaces and a characterization in this context is given.

Secondly we investigate locally bounded semigroups on locally convex spaces and a 
characterization in terms of projective families of semigroups acting on Banach spaces is 
given.

1. INTRODUCTION
Definition 1.1. Let {l, <) be an ordered set and ( ^ a ) a e / a family o f topologica! 

vector spaces. Suppose that for any a , p € /, a  < P there exists a continuous linear 
mapping / a p : ^  ^> ^  verijying that 
/. / /  a <  p ^8 then f ^  = / ap f ^ .
2. For any a  e I, f a a  = Ia . ( I a  is the identica! operator on J fa ). We say that ( ^ a , f a^) 

is a projective family o f topological vector spaces. Let us denote by

lim = y  e [ ]  ,^ ’a  : a , P e A a  < p, f ^  prp (y) = pra  (y) 
l ae/ J

the projective limit o f (J^ ,  /^ j .
Example 1.2. Let ( j f ,ă ° )  be a locally convex space whose topology is given oy the 

family of seminorms ^ ’ = {po : a € /} .  Consider on I the following order relation: if 

a , p e /, we say that a  < P iff p a  < p^. For each a  e /, we denote by Ja = p ’*(0) and 
. / a  = . J |J a  the quotient space. If xa  = x + Ja  we denote by ||xa || = pa {x) . Thus . 4 
becomes a normed space. Let a, p e /, a  < p and / a (1 : J p - > X  defined by / a p (x + J 9 )= 
= x + J a . Then (jTa , / a P ) is a projective family of normed spaces, which is called the 

projective family associated to ( .^ ,^ z>).
Remark 1.3. Let Y ^ fS ^Y  ^° =  {pa -Otel} be a Hausdorjf locally convex space, 

^ ^ f ^ }  the projective family associated to Y ^ ' ^ )  and f : J - » l i m X  defined by 

f ( x )  = (I  +  A )K / ■ Then it is clear that f  realizes an embedding o f ^ in to  lim.Zu . I f  in 

addition Y ^ , 3 ^  is complete, f  will be an isomorphism ([3], p.70) and consequently ./,' 
and lim X  can be identijîed.

Definition 1.4. Let Y ^ a , f ap) be a projective family o f topological vector spaces 

and ^  : Da —> .Xa, a e I  a family o f linear operators. We say that Yfa^a^i is a projective 
family o f operators ifthe following diagram is commutative
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In this case the linear operator

v - ->limJ8"a

defined by 
^ W  = (f;(praW ))ae/ '

is called theprojective Urnit o f  (^a )a e / and it is denotedby K=lim f a  .

Definition 1.5. Let (jTa , f ^ ) be a projective family o f  topologica! vector spaces and 

fo r each a  e I, Ta  a semigroup o f  linear operators on JFa . We say that (Ta  )a e / is a 

projective fqmily o f  semigroups i f  fo r each t > 0, (Fo (/))a e /  is a projective family o f 

operators. In this case the mapping T : [0, oo )-> £ ^ lim Jfa j  defined by T(t) = limTa (t) is 

a semigroup and is called the projective Urnit o f  (Ta  )a e / . (For short T = lim Ta ).

2. LOCALLY BOUNDED SEMIGROUPS
Definition 2.1. Let ^  be a locally convex space and T : [0. oc) -> L ( ./ ')  a 

semigroup. We say that T is locally bounded i f  there exists a family o f  seminorms Q which 
gives the topology o f  J f  verijying that: for any p  e Q, there exist M (p) > 0 and a>(p) > 0 
such that p(T(t)(x)) < M(p)e'°^p )‘p (x) fo r  all x  e ^  and t >0. In this context we say 
that T is Q-locally bounded.

Proposition 2.2. Let &  be a locally convex space, ^  the family o f  all continuous 
seminorms on JT  and S : [0, o )  -> Z, (.^2) a semigroup. Then the following statements are 
equivalent:
1. S  is locally bounded.
2. For any p e .? !  there exist q e I f  and o  > 0 such that p(S(t)(x)}< ea> q(x) fo r  all x e . f 

and t> 0 .
Proof. If S  is locally bounded, from Definition 6 it obviously follows that the second 

condition is fulfiled. Let us suppose that S  fulfils the second condition. Let p  e . f  ay> 0 
and q e f  given by the second statement. We can define the following funcțional

up : R, by « (x) =sup e-™ p(S(t)(x)\
tiO

It is clear that up > p  and up  < q, which implies that the family O ={up  . p e  f \  is 

equivalent to f .  Let now t ,s  e  [0, oo) and x e  JF. Then we have:
e - a ^ p {s(f +  s \ x ))< u p (x)

and
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e-“‘ -e-™ p(S(t)S(S)(x))<up (x)

Multiply the last inequality by e ^  and obtain 
e ^ ‘p (S (t)S (s)(x ))< e^u p (x). .

By passing to supremum as r > 0 and by taking into account the definition of up , we 
have -

up (S(s)(x))< ea i up (x).

Therefore S  is locally bounded. □
Corollary. Let (X , |> |)  be a normed space and S  : [0, co) ->Z,(JT) a semigroup. 

Then the following assertions are equivalent:
1. S  is locally bounded.
2. There exist M > 0  and cu > 0 such that \\S(t)\\ < M e^for all t > 0.

The proo f is a simple consequence o f  Definition 2.1 and Proposition 2.2.
Since any Hausdorff locally convex space can be embedded into a projective limit of 

normed spaces we consider at first, locally bounded semigroups on projective limits of 
normed spaces.

Theorem 2.3. Let (/,<) be a ordered set, ( ^ a , f a ^) a projective family o f  normed

spaces, the product space where ^  = {pa : a e l }  and a subspace

Z  <z l im J ^  verijying that pra ( z ) = J f a  fo r  all a  e Z. Let also S  : [0, M ) ->L(Z) be a

mapping. Then the following statements are equivalent:
1. S  is a ^  -locally bounded semigroup.
2. There exists a unique projective family o f  locally bounded semigroups (Sa  )a e / acting on

j f a  such that S(t) = [lim ^ W ) ^  f o r  a ^ 1 -  ^

Proof. 2 => 1. Let a  e Z and A/(a) and o (a )  given by the above Corollary such 
that ||Sa (/) ||< W (a)e“<a)' ,  for all r > 0. If z e  Zthen 5 (0 (z )= ( \W (p ra ( z )))a i /  and

P a C W * )) = ||5a (t)(pra (z )) |a  < A / W ^ ’qipraWL = M ^ e ^ ' p a (z) 

which means that S is a ̂ -locally  bounded semigroup.
1 => 2. Let a  e  Z, / > 0, xa  e X  and y , z e Z  such that pra  (z) = pro (y) = xa . Since 

S is ^-locally  bounded it follows that p a (S(t)(y) -  S(t)(z)) = 0 , and hence pra (S(/)(y)) = 
= pra (5 '( ')(» )- In this context we can define S a (t): c^a -> j ^  by Sa (f)(xo )=  pra (S(Z)(y)) 

where pra (y) = xa . Moreover, ||SO (Z)(xa ))[ = p a (S(/)(y)).

For a  e Z given there exist AZ(a) > 0 and <o(a) > 0 verifying that 
^ ( ^ X y ^ A f t a j e * " ^ ^ )

In conclusion
||So (r)(xa )|la < A / ( a ) e ^ ^ ^
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Let now t ,s  e [0, oo), a  e /, xa  e  .J^i and? e Zso that pra (?) = xa  . Then we have 

M '+ 'O t a ^  PM5  ̂+ ^ O O ^ p r J s w s ^ y j /
On the other hand, 

S J O S a t o f o M ^ O f o S C ^  '

Therefore ,
Sa(' + *XxaMaWW(xa).

In addition we have
Sa ( ° ) k  ) = Pra (S (0)W ) = pra  W  = x a • z

Thus, we can assert that Sa  is a locally bounded semigroup on X  for all a  £ /.
Let a , P £ L a  < p, t > 0, xp e . ^ ,  y e Z such that prp O ) = xp . Under these 

conditions we can write
/ a pSp ( t ) ^ ) = f ^  prp5(/)(y) = pra S(O? •

On the other side we have
" Sa  (0  /a|J h  ) = Sa  (0/aP ( P̂ p O ) ) = Sa  (0  pto  (?) = pra S(0(?) •

Hence it results that
/aP Sp w h  ) = Sa W /ap (x p )

and finaliy we can say that (Sa )a e /  is a projective family of locally bounded semigroups. 

Let us denote by 7” = limSa . It is easy to see that 7 is a .^-locally bounded semigroup on

liniuTa  . Lety e Z and t>Q. Then

n / ) ( ? )  = (So (n(pra (j)))a 6 /  = (pro ( S ( / ) W ) L  = W ) .

This means that
S(r) = (lim S a (r))

Uniqueness: Suppose that there exists another projective family of locally bounded 
semigroups (T ^ ^ , suchthat S(r) = (limT^ff)) forall /> 0 .

Let a. s  I, t >0, xa  e  . f ^  and y  e Z  such that pra  (?) = xa  . Then we have
(lim Sa  (/))(? ) = (limTa  (r) J (?).

Then it follows that S a  (r)(xa ) = Ta  (t)(xa ). Hence Sa (t) = Ta  (t) and finaliy So  = Ta  for all 

a  e /  and the proof is complete. □
Corollary. I f  we replace in the statement ofTheorem 2.3t Z by lim ^fa  and suppose 

that pra  (lim  J ^  )  = . ^  fo r all a  e /, then the following assertions are equivalent: 

1. S is a ̂ -loca lly  bounded semigroup.
2. There exists a unique projective family o f  locally bounded semigroups ($a )a e I  actingon 

j f a  such that
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S(f) = \im Sa (t) , fo r all t> 0 .

Now we apply the previous result to locally bounded semigroups and a characterization o f 
them is given.

Theorem 2.4. Let ( ^ ' , ^ >) be a Hausdorjf locally convex space, ^  ={^a : a g / [ 
( j f a , f a ^ ) the projective family associated to ( j f ,  ̂ s ) and S  : [0, oo) -> L(jZ") a mapping. 

Then the following assertions are equivalent:
1. S  is a ̂ -loca lly  bounded semigroup.
2. There exists a unique projective family o f  locally bounded semigroups (Sa  )a e l  acting on 

^ a  such that

f  S(t) = lim Sa  { t ) y , for all t> 0 .

Proof Let us remark from the beginning that f : JT —> lim J f a  defined by

> f M  = (x + J a )a e I

fulfils the condition pra ( /(JT ))=  J ^  for all a  e /. Let now the product space

n̂ a-2 ’W*1616 Q = {<la. : t t e 4  “ d
lac/ J

(1) îaC /'W ) = |k  +  A | a = P a W > x £ ^ a 6 / -

For each t > 0 we can define the operator T(t): f ^ . ^ ) - ^  f f â )  by the formula
(2) T (t) f(x )  = fS ( t) (x ) , x e . ^

From (1) and (2) it follows that T (t)e  L l f f â ) ) ,  r > 0. In addition one can deduce 
that: 5  is a ^-loca lly  bounded semigroup on J - if and only if T is a Q-locally bounded 
semigroup on / ( jT ) .  NOW it is possible to apply Theorem 2.3 to (jTa , / a 0 ), Z = f ^ ' ^ 

and T. Then there exists a unique projective family of locally bounded semigroups (Sa ) y 

on such that
r ( t )  = flim S a (/)}|

or equivalently
H O / ^ l i m S J r ) ) / .

From (2) we obtain finally the formula f S ( t )  = (lim S a ( r ) ) / , f > 0 and the proof is 

finished. □
Corollary. I f  in addition in Theorem 2 .4 ,(& ,:? f  is supposed complete, then the 

following assertions are equivalent:
1. S  is a Co and ̂ -locally  bounded semigroup.
2. There exists a unique projective family o f  Co-semigroups (Sa ) j on ^ a such that 

S(r) = limS^O), r> 0 .
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Proof. Since . ^  is completthen the following conditions are fulfiled ([3], p. 70).

a) lim = l im ^ a  . ( ^ i  is the completion o f X ) .

b) / :  J ' - >  lim J i i s  an isomorphism. '

In this case T  construpted in Theorem 2.4 is a semigroup acting on l im .^ ,  and 

T(f) = limSa (t), / > 0. From (2) it follows that: S is Co-semigroup if and only if T is a Co- 

semigroup. Ontheotherhand it iseasy toprove that: TisaCo-sem igroupifand only if 5a 

is a Co-semigroup for all a  e /. Consider now the extension S a t / ) : ^ ,  —>^"a  f° r  ^1 

a  e 7 and / > 0. It is easy to prove that (So  )a e /  is a projective family of Co-semigroups 

and limSa  = l im îo  . Therefore T(t) = limSa (0  and by (2) it follows that

/S (z) = w =  l i m S a t t / ,

thatis S(() = limSa (Oforall r > 0. □
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NORMAL CONTRACTIONS PRESERVTNG POTENTIALS

by Gh. Bucur

1. Let (//,< .>) be a Hilbert space endowed with an order relation < such that H becomes 
a vector lattice. If for any two element x ,y  o f H  we use the notation x A  y (resp. x v y) to mark 
the greatest lower (resp. least upper) bound of the set {x, y} then we say that H is a Dirichiet 
space if for any order disjoint positive elements x, y (i.e. x A  y = 0) we have < x.y > < 0.

It is known (see [1], [3]) that if Pf is a Dirichiet space then the set P of all potentials i.e.
P ^ { p e H \< p ,h > > 0 ,  A h e  H jj

is an Pf-cone. Particularly (see [1 ]) the elements from P are positive and ' 
P„P2 e P = > p ^ p 2 e P .  ,

Also, even if the vector lattice H is not complete, for any subset A ofP ,A ^2> . there exist 
the greatest lower bound AA  and we have

AA  e  P, p + A A = A^p + q \q e A \ 'P p e P
As for least upper bound it is known (see [3]) that any increasing and dominated family .4 

from P there exist vA and we have .
vA e P, p + vA  = v [ p + q \q e P }  V p e  P .

We remember also that P is a closed convex cone which satisfies the Riesz 
decomposition property with respect to the order relation <, i.e.

( P ^ M l^ P ^  P ^ ^ ^ ^ l ) ^ ^  P ^ P ls P ’ P ^ l o  P = P\+ P tY
This property is equivalent (see [5]) with the following one

p ,q e  P=> p - R ( p - q ) e P
where we have denoted:

« ( p - ? ) = A { t€ P |( > p - g }
Retuming to the families of potentials which are directed we remember the following 

convergence properties:
If (Pi)l t l is a lower directed family of potentials then it converges in the Hilbert 

spaceH to Ap,.

If (P- )>«/ ’s  a n  u PPe r  directed family of potentials such that there exist M  g R with 

||p. || < M for all t e l  then ( p t )M  converges in the Hilbert space H  to v p : .

2. A Dirichiet space (# ,< ,> ,< ) is tenned a funcțional Dirichiet space if there exist 
a set A' and a family .K  of subsets of Jf (tenned negligible) which is hereditary (i.e. .4 e A 
B c A  => B e J P' ) and cr-closed (i.e. 4, e  ^ '  => | J  '^  6  ^ '  ) ^  t 'l a t :

. ntN

a) the elements of H are equivalent classes of numerical functions which are finite 
outside of an element o f . f  where the equivalent relation is given by f - g & B A e . .  r  st. 
f W  = g(x) P x e X \ A .

b) the order relation < in H coincides with the pointwise order relation in X  outside an 
element ot\4< •

c) for any sequence (ii,)^ in H which converges in the Hilbert space to u, there exist a 

subsequence I u„ ) and an element A e .A-' such that we have
'  f  '  ptN
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pl-i+ma> a,* (x) = w0(x) ^  x e X \ A . 

Definition 1. A map T : R —> R rs termed a real contraction if

1)Î(0) = 0
2 ) V x j e R : \T (x)-T (y)\< \x-y \.

One o f the most important real contraction is the contraction denoted by f  which is 
defined by

Ẑ x = x+ A  1, V x e  R .
We say that a contraction T acts on the funcțional Dirichlet space (H,< >,<) if  we 

have
f ^ H ^ T f ^ H  and ||T / ||< ||/ ||.

It is known (see [1], [3], [4]) that if the contraction 7] acts in Zfthen aii eontractions 
act in H.

Now we consider the following question: what are the eontractions which preserve the 
potentials?

The answer to this question is the following :
Theorem 1. A contraction T on R such that T  is concave and increasing on Rt , and 

7x = 0 for all x < 0, preserves the potentials (i.e. Tp e P V p e P )  in any funcțional 
Dirichlet space in which the eontractions act.

Theorem 2. If T is a contraction on R such that T  preserves the potentials in any 

funcțional Dirichlet space in which the eontractions act then T  is an increasing concave 
function on R* and 7x = 0 fora llx< 0 .

References

[1] Ancona, A. Contraction dans ies spaces de Dirichlet, C.R.A.S., t. 282, 1976.
Sur Ies espaces de Dirichlet: principes, Junctions de Green. J. Maths. pures et 
appl. 54, 1975.
Continuite des eontractions dans Ies espaces de Dirichlet. Seminaire de Theorie 
du Potentiel Paris, Nr.2. Lecture Notes in Mathematics 563, 1976. Springer 
Verlag.

[2] Beurling, A. and Deny, J. Dirichlet spaces. Proc.Nat.Acad. o f Sci. 45(1959).
[3] Boboc, N., Bucur, Gh., 

Comea, A.
[4] Deny, J.

Order and convexity in Potențial Theory; H-cones. Lecture Notes in Mathematics.
853, 1981. Springer Verlag.
Methodes hilbertiennes en theorie du Potențial. Centro Intemazionale Matematico 
Estivo Stresa 1969.

[5] Mokobodzki, G. Structures des Cones de Potentials. Siminaire Bourbaky, 377, 1970.

81

https://biblioteca-digitala.ro / https://unibuc.ro



A Cauchy problem involving almost periodic 
measures

Silvia -Otilia Corduneanu

J. Lamadrid and L. Argabright defined the almost. periodic measures on 
a locally compact abelian group G. The set ap(G) of all almost periodic 
measures is a locally convex space with respect to a topology which is called 
the product topology. In our paper we try to find the solution for the following 
Cauchy problem

f ~ ^ ~  =  p  * U W> “ (^  =  “Ol

[ u(0) =  UQ,

where u € C1(]R,ap(G)), v i s a  bounded measure on G and UQ is a certain 
almost periodic measure.
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OPERATOR-V/VLUED MOMENT PROBLEMS INVOLVING 
EXTENSION RESULTS

Luminița Lemnete-Ninulescu

In this note we present two complex moment problems solved by a theorem o 
extension of linear operators [4],The theorem is:

"Let X  be a locally convex space, let Y be an ordered complete vector lattic 
with strong unit and let X n be a vector subspace ofX. Let A cz X be a convex subst 
such that the following two conditions are fulftlled: ,
(a) there exists a neighborhood V of the origin such that (X„ +V)r\A = <& 
(b) A is bounded

Then for any equicontinuousfamily o f linear operators { f} ,^  e L(X„,Y) 
and for any y> 0 (y e Y) .there exists an equicontinuous Jdmily 
{f,},,:1 G L(X,Y) such that f  . = f  and f .  | > y j  e I.Moreover, let unbe 

a strong unit in Y and lei V be a convex circled neighborhood o f the origin 
with the properties 
fa  f ( Y ^ X ,) c i [ - u , .u n]
(d) (X„ +Y)cyA = <I>.We denote by pv the Minkowski funcțional attached to

V; if  we choose 0<a&R such that p„ \A <a and (h a , G R such that 
y < a,u. then the following holds:

(e) f  (x) <(\ + a + a. )p,.(x)uny x  G X, i G J "
We consider Y=C: on C we have the order relation z. < z, iff Re 2, < Rez; 

and Im z. < Im z ,. Endowed with this order relation C is an order complete 
vector lattice with strong unit u.} = 1 + / Let X = Cc {T) with T a compact set 
in C.OG T FA considered as a real vector space'; X is a locally convex space. 
The sequence of complex numbers [«,_}„, c C  is positive defined on T if 

the following implication holds: j £ L ‘ ^ ' l i l V z e 7  implies

-1 < ReV c a  1 and -1 < ImV £ a  <1. 
” m  n.m

Remark : In any situation of T *<&,there exists such a sequence.
Problem 1 : Let T a compact set in C with OG T and 
X =C,.(T).X. = sp{z"z ,n + m>l}, A=co{ e '^  .z G T} .We consider Y=C as 
before and { a , J „ c C  a positive defined sequence on T. In these 
conditions for anv n & R therp exi$M feL lX ^V ) SUîkttat
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(1) f ( z n :"'} = a„m, V n ,m eN ,n  + m>\
(2) / ( ^ ^ ( l  + i) y k & l ^
(3) /(x )< (2 + a ,) ||x ||( l  + /)Vx€C c (D .

With a minor modification when H is a complex Hilbert vector space and 
AeA(H ) is a selfadjoint operator on H it is known from [2] that if 
A,={U eA(H).UA = AU} and A. ={V e A„VU = U VyU  e A,} An is a 
complete vector lattice with strong unit wn = /.We have the same in the 
bidimensional case:
Let / /  be a complex Hilbert space and An a part of A(H)xA(H) with the 
following properties:
(i) I f f^ .JO  a n d ( y , / : )e? l0 ,then (Ut W ^ V ,  + / , ) e / „
(ii) I f (U ,/ ) e 4 a n d  2 e A, then Ă.(U,V) = { W , A.V) e Aiy

(iii) If ({/J)and (V,A) e ^,then (UV,A) e ^an d  UV=VU

(X ,y )a n d (^ J )e ^ ,th e n  (A,UV)eAn and UV=VU
(iv) If (U6 , V* )g^ is a generalized sequence in A„ such that the component 

sequences {U^ ) 4 and {V* }s are bounded and pointwise convergent to 
the operators U respectively V, then {U ,V}^An .

In these conditions, 4. is a complete vector lattice and if ( / ,/ )  e/„,then 
(1,1) = u„ is a strong unit in A„.
Concrete example : Let H be a complex Hilbert space and N = U„ +iV„ a

N + N' N -N "normal operator on H, U„ = — -— , Vu = — ——  such that the spectrum

tr(A')c B(0J).We define
A, = { (W U A (H )XA(HYUIJ« = U ^ ,W n = W W = W J j y  = ™ n}anâ 
/ o = {(£ /,/)e^such that UU,=U,U,W,=vy,UV,=V,U,U V = V U ^x
V ( I / , / ) e 4 |. I n  these conditionsj, is a complete vector lattice and if 
(I.I)eA„  then (I.l) = up is a strong unit in 4 ( i t  satisfies conditions i-iv). 
Moreover,if(L'l t E)and(L/; ,K)belongs to4,then also
( ( / / / . - K /..(/.L .+ /,(/.) e .4, .If we identify W e^(//)w ith the pair 
(U..,K)eA,we have also N* N '” e AQ for Wlc. m e N with the same 
Identification.
Problem 2 : Let K a compact set in C such that Oe. K and 
X = C,. (A7) organized' as'a’ real' vector' space.
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X r,=sp{z"z ,n + m >1} a  X,A = co{e~k : ',k e N .z e K},Y = Aa as before and 
a. > O.In these conditions, there exists f  e L(X,Y) such that:
(1) f(z"  z'"') = N"N'm ^(n,m) e N 2 ,n + m> 1(with' the' mentioned' Identification)
(2) f(e-*': l)> a fI ,I)= a .u n,V k e N
(3) /(x) < (2 + a ,) || x li u„ ,where || x ||= sup{| x(t) |, t e K}
Proof Let X  - C c (K) iS locally convex , 7 = 4 , as before is a complete 
vector lattice with strong unit M 0 = (/,/). Because ( / ( /„ J l^ l .w e  have (d). 
We thus,only verify that f ( X a nB(0,l)) c [ - u 0 ,u„].This is : 
if I y  <f ^ z "  |< 1 we must have 

«• ni ? I
- /< R e  Y ^  N " ^ " '  < /  and -Z <Im  y j n N n N - '  < 1 . 

n ~m A  n-rm^\

That is - l'< —--------------- —------------- < /  and2 
— n.nt N W - y c 7  N W n.m

" “ î T  “ '
From the integral representation of the normal operator N with respect 

to the associated spectral measure p  the inequalities becomes:
-  f d u ( z ) <  J R e t X ^ z ' z " ] ^ ) ^  \ d p ( z )  and

a |.V j  o (.V ) n~m>\ ^ f V )

-  J dp(zj < j  Im [^  ; , m: ”:"]((u(‘ )^  \dp^z), inequalities that are true.
/T i A ■ r r i .V  n - m i\  G ( \ ’ )

Q.E.D.
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THE REPRESENTATIOxN OF CERTAIN 
OPERATORS AND FUNCȚIONALE AS 

INTEGRALS OF THE COMPOSITION OF
FUNCTIONS IN ORDERED LINEAR , 

SPACES

Gilda Moldoveanu

*

The following transformations of integrals are based on the rcsults of [1]. 

[2]. [31. [4], [51. [61. [7]. The notion of /z-integrable function îs introduced in 

[1], [2] and [3]. The notions regarding order are from [2] and [4;.

Lct A'. T be a-regular. complete vector lat tio  s and R{X. T; the complete 

vector lattice of the regular operators defined on A', with values in T T  is a 

set. T  is a a-algtbra of subsets of T. and fi : T  — HL is countably additivc. 

L0 (T, X . fi) is the set of jx-integrable functions. G = { f  £ L tfT .  X. fi) [ f ( t )  = 

Qpa.e.}, L (T .X ,fi) = Lo {T ,X .p ) | G which is a vector lattice.

T heorem  1: Let w i T  —r R { X .Y )  be u pc-sitive function with the fo l­

lowing properiies:

(1) Vx E A'. wA : T  —> K  defined by wx (t) = u.-(fil.r). 77 € T, is /ontegrable 

(2) 3P € R(X. Y) such that w(t) < P, Yt E T .

The operator U : L(T, X ./i) —>Y is defined by

=. j ^ ,  f;{ t)d /i( t f  Y f  E L (P  X ,li)

where < w.. f  > (t) = w(t)Cf(G). V t E T.
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Then there exists a measure m : T  -* R{X, Y) such that in(A) < p(A)P, 
7.4 G T  and for which

L V ) = I  1 V V V V  V f € L (T ,X ,p). -

The existence of. U is based on theorein 3 of [7]. The existence of m  is 
proved using theorem 2 of [6].

Theorem 2: Let U : L(T- X, p) —>■ JR be defined by '

I V )  = /  f[t)dm(t), V/ € UT, X, p), 

where m : T  —̂ X* is a measure for which there exists P € X* such that 

m(A) < p(A)P. ' ^  € T.
Then there exists a functwn w .T  -¥ X ‘ with the following properties 

(1) Va; G .Y. the function wx : T —> R . defined. by wx (t) = w(t)(x): ^ t G T ; 
is p-integrable
(2) 0 < w(t) < P. Vi G T
and U(f) - f{w ,f,dp(t), V f G L(T ,X ,p).

The proof is based on prop l/p.199 of [5] from which it follows tiuit the 
space C^lfT.T.p) has the lifting property.

The last transformation of integrals shows that the integral representation 
of [1] can be considered for the functionals as an integral representation of 
the composition of certain functions.

Proposition 1: The general form of the linear positive functionals U : 
UT, X ,p) —> R  for which there exists P  G X* such that

U{f)\ < P ( / \ f ^ \d p { t ) ) ,  ^ f e U T X , p ) 

is g i. ce u uy
I V )  = /  ('^  f)dp(t), v  G U T, x ,  p),
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where w : T - tX *  has the properties (1) and (2) from theorems 1 and 2.
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EXTENSION OF LINEAR 
OPERATORS, DISTANCED CONVEX 
SETS AND THE MOMENT PROBLEM

OCTAV OLTEANU

A bstract

» One applies a general extension theorem for linear operators (the- 
orem 5 [5]. p. 969) to the classical moment problem in the spaces 
C([0,J]) and Aj. Onr Solutions fulfil some natural sandwich type con- 
ditions.

T HEOREM 1. Let 0 < b < 1, X  :=  £([0,6]), x^ft) = V, j  E N, j  > 1, 
{ w k E N } c X ,  II^H < 1, ^ ( 0 )  =  i j e  IV. Let Y  be an order complete 
vector lattice with a strong unit UQ, and let {yi,y2, ■ ■.} <2 Y  be such that 

n

the sequence {uo.y1.y2, - ■ ■} îs positive on [0,6] ( ^ ^ f J > 0 Vt 6 [0,6] => 
j=0 

n

XQUQ -1- ] Xjyj 0 271 Y, n E N , Xj £ R ) -
j=i

Then for any a i € R + , there exists f  € L{X , Y )  such that

/ ( ^ j  =  Vi, > e  N , j  > 1

f ^ k )  > aiuo, k E N

/ ( j ) < ( 2  +  a i) |W I“o, z e X

In the following X  will be a space of analytic functions. Let 6 > 0 and 
X  := Ab the space of all functions x which may be represented as an abso- 

00

lutely convergent series x{z} =  ^  A ^ ,  |z| < 6, A, G R , x  being continuous 
j=o

in the closed disk |z| < b. For x E X ,  we denote | | r | |  := sup{|r(z)|; |Î | < 6}.
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Let Xj G X , Xj(z) = z i, j  G N. Let Y  = L°°(Ll) with respect to a positive 
measure on Q. We denote by uo E F  the function u0 (w) =  1 Vw G fi. For 
y G K, we note ||y||oo =  esssupy. _

THEOREM 2.1. Let b > 1, {<p^k £  7V} C X  such that | | ^ | |  < M , 
^ ( 0 )  = 1, k € N . Let {yj : j  € N , j  > 1} C Y  be a sequence such that 
llyjlloo <  b -  1, j  > 1.

Then for any y E Y + , there exists f  G L (X . Y )  such that

f ^ i )  = y»  j  e  N , j  >  1 "

f M  > y , £ G N

/ ( i ) < ( l + ^  +  l|j/llx)IMI«o, x ^ X

References
[1] R. Cristescu, Ordered vector spaces and linear operators. Abacus Press, 

Tunbridge Wells, Kent, 1976.

[2] L. Lemnete Ninulescu and O. Olteanu, Extension of linear operators and 
the moment problem, (to appear)

[3] M. Niculescu and O. Olteanu, Applications of two sandwich theorems for 
linear operators to the moment problem in spaces of analytic functions. 
Rev. Roumaine Math. Pures Appl., 44, 5-6 (1999), 807-817.

[4] O. Olteanu, Convexite et prolongement d ’operateurs lineaires. C.R. Acad. 
Sci. Paris, 286, Serie A (1978), 511-514.

[5] O. Olteanu, Theoremes de prolongement d ’operateurs lineaires. Rev. 
Roumaine Math. Pures Appl. 28  (1983), 953-983.

[6] O. Olteanu, Jensen type inequalities related to the Gamma function and 
a new integral formula. Rev. Roumaine Math. Pures Appl. (to appear).

[7] Fl.H. Vasilescu, Initiation in the theory of the linear operators. Technical 
Publishing House, Bucharest, 1987 (Romanian).

90

https://biblioteca-digitala.ro / https://unibuc.ro



Some Remarks upon a Paper by P. Cojuhari

GEORGE POPESCU

September 2001

Hardy's inequality for lr  or 1? spaces has been of high interest for qiiite a long time. The aim of tlris 
paper îs to produce Hardy type inequaUties in Hilbert spaces in a similar manner to Hardy’s inequality 
for l2 . The starting point and also main theorem is an inequality due to P. Cojuhari [C] for a pair 
T, J  of bormded operators on a Hilbert space H. AU Hardy type inequalities that wiU be proved, are 
consequences of theorem 1.1 or its version for unbounded operators. If written for the adjoint operator 
this inequality yields a ■'conjugate" Hardy type inequality. We wiU denote these two inequalities by 
(H) and (H*). We add a technical tool to supply Cojuhari's proof using unbounded operators to 
produce Hardy type inequalities in l2 . Then we prove tlrat the power series of the unilateral shift lz . 
namely ^ J V n  . Ș2(V*)"J are so-convergent.
Consider now a Hilbert space TI and let B(H) denote the algebra of bounded linear operators on ’H . 
Theorem 1.1 [C) I f T . J  € B^H) and J  is positive. then the operator S  = J  — TJT* is selfadjoint 
and the following inequalities hold :

i) ||.r||- inf < S y .y  > < 2 • ||(f -  T )J r || for all x  e H .

ii) (H) ||(/Ț ||- inf < Sy. p > < 2 - ||:r|| for all x&  'H.
II/II=I

iii) (H*) ||U‘x|| ■ inf < S y .y >  < 2 -  ||r || for all x e H

Wliere U is the extension of ((7 -  r ) J ) - 1 . By applying these inequalities to particular choices of the 
Hilbert space ’H and the operators T, J  we get Hardy type inequalities also denoted by (H) and (H*).

1. THE FINITE DIMENSIONAL APPROACH (BOUNDED OPERATORS;
Consider now the finite dimensional Hilbert space W =  Cp  . for p > 1 , the right shift V(țr. ...,{p ) = 
(0. £i,..., £p —i) and the diagonal operator J  defined as J(£n )n=r.p =  (££n)n=i.p > which is clearly 
positive. By applying theorem 1.1 to the operators V and J ~ l we get Hardy’s inequality for l2

(H)

(»*)

2. T HE INFINITE DIMENSIONAL APPROACH (UNBOUNDED OPERATORS)
Theorem 2.1 [C] I fT .J  G B(TC) and is J  positive urith ker J  =  {0}. then the operator
S  = J - 1 — T  J~^T* is symmetric and the folloiving inequalities hold :

i) | | i | | ’ inf < S y .y  > < 2- ||(Z - T ) J ~ 1x|| for all x .yeT > S - 
/i/'i=l .

ii) (H) I|CT || inf < Sy. y > < 2 • ||x|| for all r  G W.

iii) (H*) ||C‘x|| • ini' < Sy. y > < 2 ■ ||x|| for all x & H .
iq=i

Where U is the extension of ((/ — T )J  ’) 1 . Consider now' the Hilbert space ’H = l2 . the unilateral 
shift V  and the diagonal operator J  defined as J(^ n )n>r =  (£țn)n>r for (?n )n > i€ l2 .

Proposition 2.4 The linear operator T  : l2 —♦ l2 defined as T ț  d= £  J V n ț  is bounded on l2 , ||T|| < 2 
n=0

and T * ț=  ^  (V")n J ț .  We also have T ț  = J ( I  — V) ~ l £ for  < G . and T*ț = (I -  V*)~l J ț 
n—0

for ț e l 0  n i
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Some Remarks upon a Paper bv P. Cojuhari

Corollary 2.5[C] Let V and J  defined as before. Then we get Hardy'$ inequality for a dense subset:
/  ^  I n | A  ^ ^  / a c  \  1 ^

(H) £ £ £ &  < 2  E m  fo ra ll f c l n a ^ V i ' )
y n = l  l u i  I /  \ n = I  /

Propositiou 2.6 In the above stated context we have:
i) | s o -  lim £  JV* ) £ =  £  for »H £ € 72( f _v )  C l2

\  “ " ^  A _ o  /  n = 0

ii) ( s o -  lim £  (V * )* ^  £ =  £  (V*)V< for all £ € l1 C l2

\  n  3 0  fc=O /  n=0

. 3 . IMPROVEMENT TENTATIVES
Propositiou 3.1 Let (o n )n >i be a strictly decreasing sequence with a n  > 0 for n > 1 and 

inf{ —. ---— ) . n > 2} = 3 , with 0 < 3 < oo . Then:i a r  ^a„ an - 1 ' - — J '

(
ac n 2 \  1 /2  /  x  \  1/2

f ^ f f t  I < 2 | f m  fo ra ll 

n = l U I  J  \ n = l  /

(  x  I ac 2 \  1 / 2  /  x  \  1/2

(H ‘ ) j  £ E a ^  < 2  fo ra ll
\ n = l  k = n  )  \ n = l  /

( s n ) n > l  €  l2

( s n ) n > l  £  i

Propositiou 3.3 The best farm for the Hardy type inequality (H) or (H*) (in proposit.ion 3.1) corre- 
sponds to the choice oin = ^ , n >  1 i.e. J ( £ n ) n > t  =  ( j f n ) n > i -

4. HARDY TYPE  INEQUALITIES IN I 2 ^ )
Consider now the Hilbcrt space H  =  L2 (R+), V a shift type operator defined a»

( -  1) : for X e [l.co)
and the operator J  defined as J ^ fx )  = J +ȚX *) f°r  a " r  6 T2 (R+).

Theorein 4.1 [C] In the above stated conditions, the following Hardy type inequalities hold :

(H*)

(H) X J - k)

1/2

r  G H a -V )

-P^ + n) 
x  + n +  1

for all ^ J p  £ ^ 1 -  v-)

To complete the proof for inequality (H) we need to build a context similar to the “finite dimen­
sional" one in section 1. Just as in section 2, we get a similar result to prop. 2.6.
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PARETO EFFICIENCY, CHOQUET BOUNDARIES AND OPERATORS IN 
HAUSDORFF LOCALLY CONVEX SPACES

VASILE POSTOLICĂ
Bacău State University
Department of Mathematical Sciences,
B-dul Traian nr. 11, bl.A1, sc. A, apt. 13, 
5600 -  Piatra Neamț, ROMANIA

• Abstract
This research paper is devoted to develop the study of the propenies for 

Pareto type efficient points sets in separated locally convex spaces, being based on 
the first result established by us on the coincidence of Pareto type efficient points 
sers and the Choquet boundaries and its natural corresponding extension for the . 
approximative efficient points sets in Hausdorff locally convex spaces, both of these 
results representing also an important connection between two great fields of 
Mathematics: Vector Optimization and the Potențial Theory . Thus,if A is a non-empty 
arbi trary choosen subset of E  and o^E A, then

D efin ition  1. We say that a^ is a K-efficient point of A (a Pareto type minimum for 

A u iți respect to K), in notation, a0 E e ff (A ,K ) (or a^E MINK (A)) f i t  satifies one of the 

following equivalent conditions:
(i) A n ( a 0 - K ) Q a 0 + K-, (ii) K  Q f a  -  A )Q -K-,
( i i i ) (A + K )r \(a 0 - K ) z a 0  + K-, (h) K (] (a 0 - A - K )Q -K .
Whenever K is pointed, that i s ,K D (- f  ) = {0}, tlien a^E e ff {A ,K ) means 

that a0 fiilfiles one of the next equivalent relauons:
a) A O (ao - K )  = {*0 }; ^ M n ( a o - A ) = { O ] ;

^ n ( a , - ^ \ { O } ) = 0 ;  ^ ( K \{ O } ) D ( a o - A )  = 0 .

In a similar manner one defines the Pareto type maximum elements of A. In 
fact, a0 E a is a Pareto type maximum point for A  with respect to K, in notation, 
a^6 MAXK (A) if it is a Pareto minimum point of A  with respect to - K ,  that is, 
a ^ e e f f ^ A . - K ) , ^ .  a^e  MINK (A ).

The immediate connection with the fixed points for multifunctions is 
obviously contained in

Rem ark 1. a^E e ff (A ,K )  is and only if it is a fixed point for at least one of 
the following multifunctions:

F, : A ^ A , F f t )  = { a e  A : A ( ] ( a - K ) Q t  + K }, 

F2 :A -+ A , F2 (t) = {aE  A :A (] ( t  -  K ) ^ a +  K ], 

F2 : A - ^ A ,  F3 (t) = { a e  A f A  + K ) n ( a - K ) ^ t  + K ], 

F ^ A ^ A , F i (t) = { a e A : ( A  + K ) n ( t - K ) Q a + K } , 

that is, a^ E F, (a^) for same i = 1,4.
Rem ark 2. It is known that, if A Q E is an arbitrary non-empty set, then a 

point-to-set mapping P : A —> 2* is called a generaHqed dynamical șystem when f(x )  * 0

93

https://biblioteca-digitala.ro / https://unibuc.ro



f o r  ev e ry  XE A  A  p o in t  a , e  A  is sa id  to  b e  a critica/ (sometimes equilibrium po in t fo r  r ) 

i f  r (OQ ) =  {oj,}. I t  is easy  to  see  th a t  th a t  w h e n e v e r  K  is a p o in te d , c o n v e x  c o n e  in  E , 

th e n  OQ E e f f ( A , K )  i f  a n d  on ly  i f  □„ is a c ritic a i p o in t  fo r  th e  g en e ra lized  dynam ical 

sy s te m  r  d e f in e d  by  r ( a )  =  A n ( a - X ) , s e A .  T h u s , o n e  can  says th a t  e f f ( A ,K ) 

d e s c rib e s  a s ta te  o f  eq u ilib riu m  fo r  r  a n d  th e  id ea l equ iiib ria  are  c o n ta in e d  in  this 
se t. I f  X  is an y  n o n -e m p ty , c o m p a c t s u b s e t  o f  E  a n d  K  is a n  a rb itra ry  c lo sed , co nvex 
p o in te d  c o n e , th e n  -

T h e o r e m  1. e f f ( X , K )  coincides w ith  the Choquet boundary o f X  with respect to the 

convex cone o f  a // rea/ continbous functions which are increasing with respect to order relation <K . 

Consequently, the set e f f ( X , K )  endowed with the trace topology Tx  induced o n X  by T i s a  Baire 

space. Moreover, i f X i s  metri^able, then e f f ( X , K )  is a  G s  - set in ( X  , r x ).

C o ro lla ry  1.1
( i ) e f f ( X , K )  = { x e X - . f ( x ) = s n p { f ( x ) - . x ' e X n ( x - K ) } f o r a l l f E C ( X ) } .

f i )  e f f ( X , K ) a n d  e f f ( X , K ) O { x E  X  : s ( x ) < 0 j  (S E S )  are compact sets with 

respect to Choquet’s topology;
(iii) ef f { X , K )  is a  compactsubset o f  X .

., R e m a r k  3 . T h e re  ex ists m o re  g e n e ra l c o n d it io n s  th a n  c o m p a c m e s s  im p o se d 
u p o n  a  n o n -e m p ty  se t ^4 in  a  s e p a ra te d  locally  co n v ex  sp a ce  o rd e re d  by a 
c o n v e x  c o n e  K  en su rin g  th a t  e f f ( X , K ) * 0 .  P e rh a p s  o u r  c o in c id e n c e  re su lt 

su g g e sts  a  n a tu ra l ex te n s io n  o f  th e  C h o q u e t  b o u n d a ry  a t le a s t in  th e se  cases. 
D e f in i t io n  2 . I f  a  non-empty subset o f  E ,  then a ^E  A  utili be called an m inim a/

element ( £ -  eficient point, Pareto E -  eficient point, E -  near to minimum point) o f  A  with 
respect to K  i f  there exists no a E  A  such tha! a ^ - a - E E  K , that is, [a^ -  £ -  K ) ( }  A  = 0 .

T h e  e  -  e f f ic ie n t p o in ts  se t o f  A  w ith  r e s p e c t  to  K  will b e  d e n o te d  by 
E - e f f ( A , K ) ,  '

R e m a r k  4 . I t  is c lea r th a t  th e  c o n c e p t  o f  th e  E -  e f fic ie n t p o in t  d o e s  n o t 
in c lu d e  th e  n o t io n  o f  e ffic ie n t p o in t ,  e f f ( A , K ) Q E - e f f ( A , K ) , ' t i £ E  ^ \ { 0 ] 

a n d e # ( A , K ) =  Q  [ s - e f f ^ A K ) ] .

D e f in i t io n  3 . A  rea/ function f  : E  —t  R  is called £ + K  -  increasing if 

f ( x t )>  f ( x f )  whenever x t , x ,E  E  and x t E x , + E  + K .

T h e o r e m  3 . I f  X  is any non-empty and compact subset o f  E , then the set 
£  -  e f f  ( X , K )  coincides with the Choquet boundary o f  X  with respect to the convex cone and all 

£  + K  -  increasing real continuous functions on X .  Consequently, the set £ - e f f ( x , X )  endowed 

with the trace topology is a Baire space and i f  ( X . T ^  is metrițable, then E - e f f ( x , K )  is a 

G s  -  subset o f  X .

T h e  p a p e r  in c lu d e s  a lso  so m e  c o n n e c t io n s  w ith  L o to ts k y -S c h n a b l o p e ra to rs , 
A lto m a re  p ro je c t io n s  a n d  re le v a n t re fe re n c e s .
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Benistein operators of second kind have been introduced and studied in 
[1]. Other properties of them have been established in [2].

In this paper we study the associated blending System, preservation prop­
erties and Voronovskaya type properties.
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ON SOME APPROXIMATION PROCESSES 
IN LOCALLY CONVEX CONES

Ligia -  Adriana Sporiș

• The aim of this paper is to present a Korovkin system for a cone of weighted 
continuous set -  valued functions.

§ 1. Preliminaries

• Let (G,K) be a separated locally convex cone such that G is a linear space. 
We shall consider:

(1) CConv(G) = { ^ c  G | 0 *  A G C C onvțp ),4-, compact in the ttpper topology on G }, 

which becomes a locally convex cone, as a subcone of the tuli locally convex cone 
{pC onv(G ),V), where V = {v | v = {v}v e V }.

It’s not difficult to verify that (cC onv(G ),F ) is a A^-uniformly up-directed 
cone, v -semilattice and all its elements are bounded.

Recall that there’s a natural embedding j  :G ’ ->(CConv(G))‘ . j(p) = p, where 
j l ^ )  = sup{|i(a) | O G  A \  A G C Conv(G).

Let (2) M = {p e (CConv(G))* | p e G* ). Then, M  has the following properties:

1. (v) V G V, M  r X 0 , v '  -  compact;
2. (v ) >4,WgCCoHv(G), (v )  v e K  pentru care (3) p > 7 a.i. A < B  + pv , 

(3) p  e  M  n  v°  a.i. p (^ )  > p(B )+  7.

3. p ^ o { n ; .....a„ })= V  p ( a j  a , G G, i = l .n  .

• Let I  be a locally compact Hausdorff space and w , a weight on X .
Now, we shall consider:

(3) C w (X;CConv(G ))=  { f  G C s (X;CConv(G ))\ (v)veK, ( 3 ) j  c X ,  compact such that 
f  < v w and 0 < f  -‘- v v  on X X  }

endowed with abstract neighborhood svstem = 4 v i  v, V G V and

(4) MJ = j p, | px e [ c w (X ;C C onV (G ))J, H G M . X G X ^ .

Then, it can easily be proved that (3) and (4) inherit the some properties as 
(l)and(2).

§ 2. A Korovkin system for C '"(X;C C onv(G ))

• First! y, we consider
(5) F ' , (X ;C C o n v (p ) )= [ f  G C w (X;CConv(G ))\ (3)<p, G C M (X ;G ) o f  fin ite  rank, i = l,n 

such that, (V ) X G X, f ( x )  = co(<pI (x),...,<{>n (x)) ^  = F *  |.
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• Prop. 1: F “' is a sup-stable subcone of (C "(A',CCO?7V(G)),TH,).

• Cor. 2: F w is an M  -uniformly up-directed cone and v-semilattice.
• Prop. 3: If f e C w (X;CConv(G)), (v)vel^ peG  , xeX, l ^ g  e F" r\vw such 

that R r C / j^ U ) .
• Theorem 4: F"' is a lower-Korovkin system for C“'(X;CConv(G)).
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On some inequalities for operators

' Nicolae T ița

University of Brașov, ROMANȚA

Let (X, ||*||) be a normed Abelian group and let H-H* be an other norm. 
For all z  G X, the sequence {En}n  is defined as follows:

E n (i)  := inf {||z - y | |  : y E X , \\y\\* < n } ,n  = 1,2,...

If X  =  L(E), the space of all linear and bounded operators T  : E  E, 
where £  i s a  normed space, the norm ||-||* is ||7’||‘ =  rankT  and

E n  (x) =  a„ (T) =  inf {UT — A|| : rankA < n} .

I f B : X x X - > X i s a  bilinear and bounded operator, it is well known 
tha t the following inequalities hold:

n=l

E n (B (x ,y » 
n

k
< 6 - £ 

n=l

E n  (z) + En  (z) 
n

,k  = 1,2,

If ||B  (z, j/)|| < ||z|| ■ ||y|| then ||z0 |j < n, ||yo l| < n imply that

||B  (zo,yo)|| <  n 2 .

(Here. without losing the generality. we shall suppose that ||z|| < 1, ||y|| <

For the special case when X  =  L(E ), the operator B  may be the tensor 
product operator T  ® T2 G L(E  ®a  E), where a  is a tensor norm, [1], [21.

In this case, the inequality (1) is of the form:

P  a U T J  +  a n ^ )
n n=l n

If there are considered r operators, r  > 3, by reiteration, the inequality 
(2) is(in this case)
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( 3 ) E 
n=l

k an ® Ti
< 6 ^  E

k X  O-n (Ti)
,k  = 1,2,...

Unfortunately the constant 6r  1 is far to be optimal. But, by a direct 
computation, we can obtaine the inequality:

W E
n=l

k On ( ® Ti
< 2 - 1 (2r  -  1) • £ 

n=l

* EOnCTi)
,k  = 1,2,...

R em ark s 1. We shall recall that, here, ||Tî|| <  1, i =  1,2, ...r. If this 
condition is noi fullfiled, the constant 2r —1 (2r  — 1) whould be replaced by 
2r - 1  (2r  — 1) • c, where c =  (m ax { ||7 i||} j .

2. I think that the factor (2r  — 1) is not the best.
C o n jec tu re  The factor (2r  — 1) may be replaced by r.
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SUR CERTAINES THEOREMES DU POINT FIXE COMMUN

Florica Voicu

Definition 1. Soient X  un espace lineaire completement reticule, d : X  * X  —> X. une 
metrique vectorielle et A, B e . ^  * ( ^ )  - ^ ° ‘l ^> ^ e t  u est element unite On note par

N (e ,A ) = {xe  X , d (x ,A )< e u ]

E (A ,B ) = [eu; A a  N(E,B), B a  N(E.A)}
H - . ^ X ) * : ^ ^
H {A ,B ) = m fE (A ,B ) .

Definition 2. Soient X  un espace lineaire completement reticule el T : .V —> /  (.V). 
On dil q u eT  est une application multiforme (bref: m-application) definie sur X  a \aleurs 
en soi meme et on note par T : X  —° X.

Definition 3. Soit f : X  ^  X  et T : X  -> ^ j ,  (X ) .  On dit que le point x 6 X  est un 
point de coincidence pour f  et T si f x  e Tx. Si xhaque x e X  est un point de coincidence 
p o u r f e t i  a lo rs f s'appeie la selection de T.

Un point x e Xs'appeie poin tfixe  pour T s i x  E TX.
O nnoteC r = { f  : X ^ X \ T X < z f X e t  fT x  = Tfx } V x e X \

T et f  s'appelent applications commutatives si que! que soit x e X. f(T x ) = 

= fT x  = T ( f x ) .

Lemme 1. (Dube (1975)). Soit S, T : - t - f ^ ^ X )  et x0 ,x t e X  . Alors. pour tout 

po in ty  e T (x } ) on a:

(1) d (y ,S x 0 )< H (T x t ,Sx 0 )
Le resultat suivant elargit le theoreme de Banach aux applications multifonnes 

satisfaisant Ies conditions de type contractive.
Theoreme 2. Soient X  espace lineaire completement reticule avec Tunite forte, 

S, T: X  -> . - ^ ( X ) ,  f  e C s r\C r , U :X  -+ X t  (o)-continue, inversable el isotone. On 

suppose que pour tout x, y  e X  on a:
(2) H (S x ,T y )< a d ( fc ,J y )  + ^{d (Jx ,S x )  + d(Jy,Ty)}

+ l{d { fa ,T y )  + d { fy ,S x )}  +

+ 8 K 1 (u + d ( fc ,fy ) )d ( fc ,S x )d (J y ,T y )

oii a ,P ,y,S  > 0 er 0 < , a ^  +  \  < 1.
l - P - Y - S

Alors, il existe un point de coincidence commun pour f e t T e t  pour f  et S.
Corollaire 3. Soient S, T : X  —̂ ^ ^ ( X )  des applications multiforme (o)-continues 

et f :  X - ^ X ,  f  e  Cs  f \C r  (o)-continue satisfaisant la condition (2).

100

https://biblioteca-digitala.ro / https://unibuc.ro



FLORICA VOICU

Si f(z)eSzCTz ii implique:

(3) l im / 'z ^ *

alors, y* et un point fixe commun pour S, T et f.

Les mathematiciens Meir et Keeler (1969) ont etabli un remarcable theoreme du point 

fixe pour un appiication T:X-»X, (X,d), satisfaisant la suivante condition.

(4) V (3 )6>0 t.q.e<d(x,y)<e+ 8 ii implique d(Tx, Ty) < e

Un autre resultat est donne par Park et Bae (1981) pour £ T:X->X, fT=Tf satisfaisant:

(5) V (3 )8>0 t.q. e<d(fx,fy)<e+ 8

ii implique d(Tx, Ty) < e et Tx=Ty quand fx=fy.

La technique de Meir-Keeler a ete elargi aux applications contractives multiformes 

dans les espaces metriques par J. Siegel, L.S. Dube, K. Iseki, S.B. Nadler, S. Reich, B.K. Ray, 

I. Rus, T. Hu, I Beg et A. Azam, etc.

Par la suite on donne un theoreme du point de type Meir-Keeler pour les applications 

compatibles.

Definition 4. Soient X  espace lineaire completement reticule, f:X-»X, T: X-»^;b(X). 

On dit que f et T sont compatibles si la suite {xn }„gN c X  satisfait la condition suivante-

(6) lini fx„e lim Tx„=> lim H(fTx„, Tfxn)=0.

Lcnnne 3 (Hu (1980)). Soient Xespace lineaire completement reticule,

M ,/„c  (Bț.b(X) etH(A„, .4 )4  Opour A c ^ ( X ) .

0

Si x„tA„ ei d(x„,x) -> O alors xeA .

Theoreme 4. Soient X  espace lineaire completement reticule avec tine norme 

monotone, T:x—* TȘf b(X) et f:X —>X compatibles et satisfaisant les suivantes conditions:

(7) f V (3 ) E>0 (3 )8>0 t.q.e<|| d(fx,fy) || < e+ 6

[il implique ||d(v,w)||< e,veTx, w eT y et Tx=ty quand fx=fy

Si f  est (d)-continue, alors f  e tT o n t ttn point fixe commun.
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• The Newton:s inequalities (Symposium. June 29. 2000).

• Convexity associated to averages.

L.Pavel

• Hypergroups with the property (T) of Kazhdan.

G.P&tineanu

• Frontal ideals and antisymmetric ideals in locally convex lattices (Symposium. June 

25. 1999).

• Generalization of the theorem of Alain-Bernard concerning the frontal set with respect 

to a closed vector subspace (Symposium. June 29. 2000).
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I.Polyrakzs (Athens. Greece)

• Lattice subspaces.

N.Popa

• Dyadic Hardy spaces (Symposium. June 25. 1999).

• Matriceal harmonic analysis (Symposium. June 29. 2000).

• Some topics in matriceal analysis using vector-valued functions.

G.Popescu

• Order relations in C*-algebras and in operator algebras.

• Positif operators in C*-algebras.

• An incquality of type Schwartz in non-commutative C’-algebras.

L.Sporiș

• On Korovkin cones in locally convex lattices.

• Quantitative aspects of the convergence of the Korovkin approximation sequences in 

locally convex cones.

D. Stănică

• Pseudoinverse of a linear applications.

• Cubature formulas on the n-dimensional simplex.
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• Florica Voicu (Bucharest) - Points fixes communes pour applications multiformes.

• Gheorghe Popescu (Craiova) - Power series of the unilateral shift and Hardy inequali- 

ties. .

• Ligia Adriana Sporiș (Constanța) - On some approximations processes in locali}' con­

vex cones.

11:30 - 12:00 Coffee break

12:00 - 13:30 Communications 

Chairman : Paolo Terenzi

• Ileana Bucur (Bucharest) - Derivability of the set functions.

• Vasile Postolică (Bacău) - Pareto efficiency. Choquet boundaries and operators in 

Hausdorff locally convex spaces.

• Luminița Lemnete - Ninulescu (Bucharest) - Operators valued moments problems in- 

volving extension results.

• Ion Chițescu (Bucharest) - Absolute continuity and Radon-Nykodim representation 

into funcțional frameworks.

Friday. September 28 

Social Programme
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Colloquium schedule

Wednesday. September 26

9:30 - 11:30 Communications 

Chairman : Romulus Cristescu

• Romulus Cristescu (Bucharest) - On the extensions of some positive functionals and 

on extensible regular operators.

• Găurii Păltineanu and Dan Tudor Vuza (Bucharest) - Some approximation results for 

locally convex lattices.

• Nicolae Popa (Bucharest) - Some matrix Banach spaces.

• Mihai Voicu (Bucharest) - Locally bounded semigroups.

• Rodica - Mihaela Dăneț (Bucharest) - A Hahn-Banach theorem for the extension of 

Riesz homomorphisms.

• Nicolae Dăneț (Bucharest) - Some remarks on lattice subspaces.

• Constantin Niculescu (Craiova) - Hermite - Hadamard inequality for functions of a 

vector variable.
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11:30 - 12:00 Coffee break

12:00 - 14:00 Communications

Chairman : Nicolae Popa

• loannis Polyrakis (Athens, Greece) - Geometry of cones and theory of Banach spaces.

• Gilda Moldoveanu (Bucharest) - The representation of certain operators and function- 

als as integrals of the functions in ordered linear spaces. r.

• Marinică Găurită (Bucharest) - Fonctions vectorielles derivable (o)-convexes.

• loan Roșa (Cluj) and Tiberiu Vladislav (Bucharest) - Bernstein operators of second 

kind.

• Liliana Pavel (Bucharest) - Induced representation of hypergroups and positive definite 

measures.

• Octav Olteanu (Bucharest) - Extension of linear operators distanced convex sets and 

the moment problem.

Thursday. September 27

9:30 - 11:30 Communications

Chairman : loannis Polyrakis

• Paolo Terenzi (Milano, Italy) - The basis of the general separable Banach space.

• Gheorghe. Bucur (Bucharest) - Transformations acting in Dirichlet spaces.

• Silvia Corduneanu (Iași) - A Cauchy problem involving almost periodic measures.

• Nicolae Tița (Brașov) - On some inequalities for operators.

110

https://biblioteca-digitala.ro / https://unibuc.ro



V. Timofte

• An unicity theorem for a mechanical model.

M. Voicu

• Resolvents on locally convex spaces (Symposium. June 25. 1999).

• Projective limits of linear operators (Symposium. June 29. 2000).

D. T. Vuza

• Strongly modular and strongly latticial classes of regular operators (Symposium. June

25. 1999).
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