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A MATRICEAL ANALOGUE OF FEJER’S THEORY
SORINA BARZA, LARS-ERIK PERSSON, AND NICOLAE POPA-

ABSTRACT. J. Arazy [A] pointed out that there is a similarity
between functions defined on the torus T and the infinite matrices.
In this paper we develop in the framework of matrices the theory
Fejer developped for Fourier series.

0. Introduction

Let A = (ay;), i,j =0.1,2,... an infinite complex matrix.
For k£ =0,+1,%2..., let us deﬁne A; = (a};), where
> ' a;; if ] —-i=k

% = 0 otherwise.

Ay is called the Fourier coefficient of k- order of the matriz A. (See
[Sh].) We have now a similarity between the expansion in the Fourier
series f = Y, axe’* of a periodical function f on the torus T and the
decomposition A = ), , Ax.

There is a similarity between the functions defined on the torus T and
the infinite matrices, similarity remarked for the first time by Arazy
[A] 1978 and exploited further by A. Shields [Sh] in 1983. Our main
tool is an important characterization of Schur multipliers given by G.
Bennett [B] in 1977.

Moreover, there is a similarity between the convolution product f g
of two periodical functions and the Schur product of two matrices A4
and B, C = A * B, where the matrix C have the entries c;; = a;; - b;;.
for A = (a,-]-)i,j and B = (bij)i,j- (See also [Sh])

The aim of this paper is to extend in the framework of matrices the
theory of Fejer developped for Fourier series. (See [H].)

In particular we mention the following results by Fejer, which have
been guiding for our investigations:

(A) A function f(6) = Zake”‘g on T is continuous on T, that is f €

keZ )
C(T), if and only if the Cesaro sums o,(f) = Z ax <1 - ﬂ—)

+1

k=—n
converge uniformly on T to f.
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SORINA BARZA, LARS-ERIK PERSSON, AND NICOLAE POPA

(B) A function f(6 kae’“ € L! if and only if
kEZ

lHon(f) = fllorem = 0.

The paper is organized in the following way: In order not to disturb
our discussions later on we present some preliminaries in Section 1.

In Section 2, we derive some properties of and relations between the
basic spaces B(£2) and C(¢;) of independent interest.

The main results are presented in Section 3 and Section 4 is reserved
for some concluding remarks and results.

Acknowledgements: The first named author thanks the Royal
Swedish Academy of Sciences and the Romanian Academy of Sciences
for financial support which made this collaboration possible. The last
named author wants to thank the members of the Dept. of Eng. Sci-
ences, Physics and Mathematics for hospitality during his visit at the
University of Karlstad, Sweden.

1. Preliminaries
In view of the Fejer’s result (A) it is natural to givc the following
definition:

Definition 1. Let A be a matriz corresponding to an operator from
B(¢,), the space of all bounded operators on 3. Denote now by o,(A)

the Cesaro sum associated to Sp(A) def Y b Ak, that is 0,(A) =

D k=—n A (1 - ld_)

+1
Then we say that A is a continuous matriz if

lim |on(4) — Allae) = 0.
7n—00

Let us denote by C(¥¢3) the vector space of all continuos matrices.
On this space we introduce the following norm:

. def
l|Alicte,y = max(sup ||on(A)||Be): [|AllBe))-

A matrix M = (my;);; is called a Schur multiplier iff M x A € B({,)
for all A € B(¢,).

The space of all Schur multipliers will be denoted by M (¢;) and the
Schur multiplier norm of M will be, by definition:

def
IMl|me) =  sup  ||M * Allp,)-
liAilB(eg)<1 6
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A MATRICEAL ANALOGUE OF FEJER’S THEORY

Then it is known (see [B]) that M(#;) is @ Banach space which is a
commutative unital Banach algebra with respect to Schur product.

Moreover, if M is a Toeplitz matrix M, i. e. a matrix whose entries
mij = mj_;, for all 1,5 € N*, then the following statement holds (see
Thm. 8.1 - [B]).

(1) The Toeplitz matriz M is a multiplier if and only if there exists
a bounded, compleg, Borel measure uy € M(T), on T with the Fourier
coefficients

pny=m, forn=0=x1%2,...
Moreover, we then have

1M pmqez) = |11l | amacry.

We mention also the following well-known fact (see for instance [KZ])

The Toeplitz matriz M represents a linear and bounded operator on ¢,
if and only if there ezists a function f € L®(T) with Fourier coefficients
f(n) =my, forallneZ.

Moreover, we have

”MHB(lz) = ||f“L°°(T)-

2. Some properties of the space C(4,).
Let C denote the space of all matrices defining compact operators.

Proposition 1. C(¢,) is a proper Banach subspace of B(€y) which, in
its turn contains Co, properly.

Proof. It is clear that ||Al||p(,) < ||Allc(e,) and, on the other hand,
we have:

k
lon( s =1 3" A (1 - —"—) lsten < 1 Mallaen I Allscen,

k=—-n

where M, is the matrix

1 n
(A 7,0,
1—n1 1 1_n+1 1_n+1 1—n+1 0
1-— 1— 1 1 1— n—2 1-— n—1 __n
n+l n+l tte n+l n+l1 n+1
— I — L — 1
1 n+1 n+l 1 i 1 n+l 1
—_n — — — —
0 S : 1 n+l 1 1 n+l
7
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SORINA BARZA, LARS-ERIK PERSSON, AND NICOLAE POPA

Hence, by Theorem 8.1 -[B], we have:

n k .
loa( A5 < | 3 (1 - L) 4] pucry - 1Al aten

= n+1

= || Ka ()|l mery - 1Al = 1} All Be2) (1)

since K, the Fejer kernel, has the M(T)-norm equal to the L(T)-norm
and finally equal to 1. '
Hence

HAllcw) = l|1All e

and C(4;) is a normed subspace of B(4,).

But it is easy to see that C(¢;) is a closed subspace of B(¢;), that
is C(¢,) is a Banach subspace of B(¢;). Next we note that C(¢;) does
not coincide with B(¢;).

Jhe matrix A = ZA’“ where Ay =0V k < 0 and Ar = €x41.2k+1,

kEZ
k > 0, e;; being the matrix whose single non-zero entry is 1 on the jth
row and on the jth column, belongs to B({,), since (AA*)Y/2 = I, the
identity matrix. Moreover

k
llow(A)= Al = | ZAk+ ZkAknB(ez = V1 =1

k>n

for all n, thus A ¢ C(£,).
Now let A € C. Denoting by

Pa(A)(ig) = {

we have

a; 4L,J<mn
0 otherwise,

[|Pr(A) — AllB(e,) — 0.

But, by Bennett’s theorem, we have for & > n:

|Pa(A) = 0% (Pa(A))]l ey = | Z

{=-n

<
k + llla(ez) <

~ |
<y = 1¢ o - 11Pa(A)llse) 152 0
{=—n

Hence P,(A) € C(4,) for all n € N, consequently Co, C C(¥3).
8
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A MATRICEAL ANALOGUE OF FEJER'S THEORY

1
Now let A be the Toeplitz matrix given by a(i,i + k) = o for all
t € Nand &k # 0. Then

¢iko 1
Al =11 D 72 ll=m < EEE < 0o.
kez\{0} k

But it is well-kpown that a Toeplitz matrix does not represent a
compact operator.
On the other hand
ikf

1 ekt 1 e
A = —_— — o <
> e > ikl Aellae) =11 PoaL ) > ] llLeo(m) <,
Ik|>n fk|<n [k >n lk|<n
1  logn

< —

"C<k>znlc2+n+l)’
which means that the Toeplitz matrix A in fact belongs to C(¢;) and
we have also proved that Cy is contained in B(¢;) properly.

Proposition 2. C(¥;) is a commutative Banach algebra whithout unit
with respect to Schur multiplication.

Proof: 1t suffices to observe that for A, B € C(¢,), on(A * B) =
on(A) * B and then we have for A € C(£;), B € B({,)

||AxB—0,(A*B)||p(e,) = || [A — 0n(A)]*B||B(e) < [|A—0n(A)IB(t2)" || Bllaer)

< |IBllaee) - |14 = oa(A)l|Beea)-
Here we used the simple remark that

[|Bllme) = || B * Al meer) < I BllBiea) - 1A Me2) = || BllBea)

where A;; =1 forall 2,5 € N, and ||Al|ve) = 1.,
Remark. By Fejer’s theorem (A) we have that a Toeplitz matrix

d )
T = (tx)kez € C(¢3) if and only if fr(0) -—Sf E tye*? € C(T), and in
k€Z
this way we can consider that the notion of a continuous matrix is the

extension of that of continuous function.
3. The main results
Now we would like to give another characterization of the space
C(¢,), using the continuous vector-valued functions.

Consider now the function f4 : T — B({;) given by fa(t) = ZAke““,

. keZ
then we ask ourselves: how should be the matrix A in order that the

function f4 be a continuous B(#;)-valued function.
The answer to this question is as follows:

9
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Theorem 1. Let A be an infinite matriz.
Then fa is a B(¢y)-valued continuous function if and only if A €
C(¢,), with equality of corresponding norms.

Proof. = Since f4(t) € B({y) for all t € T, it follows that A =
fa(0) € B(£;). The function f4 : T — B(¢2) being continuous we can
adapt the proof of Fejer’s theorem (A) (see [H]-p.35) and we get that
V 6 > 0 sufficiently small,

llon(fa) — faller.Beesy) < supsup ||fa(z —t) — fa(z)llBen+
z€T lt|<é

+2| falle(r,Biez)) - Sup Ka(t),
|t|>d

where K, (t) is the Fejer’s kernel

Kol =1 |

n

sin gt

2
] , t€T and o,(fa)(t) = Z (]___nl_k|_)Akeikt _

¢
sin £
2 [k[<n

= o [ fal@)Ka(t = 2)d.
2 J_4
It follows that

limsup ||on(fa)(t) — falle) = 0.

n teT

For t = 0, we get that ||0,(A) — A||Be,) — 0, 0n(.4) as in Section 1.
n

Thus A € C(¢,).
Conversely, let A € C(¢;) and f4 : T — B(¢2) as above. Then V¥
t €T, we get

lon(fa)(8) = Fa)llee) < llon(A4) — Alle,) - 1M ()] amce)

where M () is the Toeplitz matrix with entries (e**),cz.

But |[M(®)l|mey = 11D _ e | mer) = 16-ellmm =1, V€ T.
k€Z
Thus Stll%)HO'n(fA)(t) - fA(t)||B([2) < HO’n(A) - A”B(gz), which in turn
€

implies that o0,(f4) — fa in the space B(T; B(£;)) of all bounded

B(¢;) -valued functions. Consequently, since o,(f4) are B({;)-valued
continuous functions defined on T, the same holds for f4.

Moreover it is clear that ”AHC(Eg) = ||fA”C(T',B(l2))1 .

Now what can you say about subspaces of M(¥€3) in connection with
multiplier property? 10
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A MATRICEAL ANALOGUE OF FEJER'S THEORY

The following theorem is a justification for introducing C(¢;) and
gives a partial answer to the above question. It is the matriceal ana-
logue of Theorem 11.10 - Chap. IV - [Z], which precizes Theorem 8.1
-[B].

Theorem 2. The Toeplitz matrizc M = (my)kez 1S a Schur multiplier
from B(£,) into C(¢,) iff

‘ kae“‘o e LY(T).
keZ

Proof If A is Toeplitz matrix A = (ax)rez, then for any € > 0 there
is ng = ng(e, A) such that for all n > ng and for all p € N*, we have

lon(M) — onsp(M)] * Allaees) < €.

(This inequality above means that M * A € C({,).)
But

2r
gr | om0 ™) = o (30 e ()3 e <
k k &

< |on(M) — onsp(M)] * Allgey <€ VR > ng, Vp > 0.

Consequently, taking Zake““ = xg(t) for any measurable set £ C
keZ

o -
/E n(; )(t)dt

converges whenever n — 0o, hence, by Theorem 9.13 (i)- Chap. IV -
[Z] it follows that the functions

’

T, we have that

¢
/ an(kaeik")(u)du are uniformly absolutely continuous. Thus
0 k

llon (D mee™®) = onp (D mae™)ly —— 0.
k k ’
Hence, by Fejer’s theorem (B) it follows that m(t) = Y, mie** €
LY(T).
Conversely, if m(t) € L'(T) then

llon(m(t)) = onsp(m(D)lLrr) —= 0

n,p—co
hence

lon(m(®)) = onsp(m)llmm 7-52 0
which in turn implies

|lon(M * A) = 0nip (M x A)l[8e2) < llon (M) = Onip(m){|aacry - [|All Bee2)s
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for all A € B(¢,).
Consequently M is a Schur multiplier from B({;) into C(¢2).
Now we define the notion of a integrable matriz in a similar way as
we defined the notion of a continuous matrix, guided by (B).

Definition 2. We say that an infinite matriz A is an integrable matriz
if on(A) — A in the norm of M(¢;). The space of all such matrices,
n

endowed with the norm induced by M(£,), will be denoted by L' (£y).

Of course L'(¢,) is a Banach space.

Remark. If A € L'(¢;) then it follows that A x B € C(¢2) for all
B € B(¢4,).

Indeed, for B € B(¢,), by

llon(A * B) — A * B||p,) = |lon(A) * B —Ax B||p(e,) <
< llon(A) ~ Allascen) - [|Bllseny 752 0,

we, get A*x B e C(ly).,

Now it is clear that L'(¢,) is a commutative Banach algebra (without
unit) with respect to Schur product.

Indeed, for A, B € L*({;) we have

|lon(A * B) — A * Bllme,) = |llon(A) = Al * Bl pmeenn) <

< loa(A) = Allmie) - |Bllaiey — 0,
which in turn implies that A * B € L(¢,).
View Theorem 2 and the remark above is natural to ask: If A is
a Schur multiplier which maps B(¢2) in C(¢y) does it follow that A €
L'(£y)?
The answer to the above question is negative:
Example Let A be the following matriz.

111 ...
A= 000...)'

Then it follows that A is a Schur multiplier which maps B({3) in
C(£2) but does not belong to L' ({5).

A is a Schur multiplier with the property that A x B € C(¥¢,) for all
B € B({,) since the matrix A * B has the rank 1, therefore represents
a compact operator and consequently it belongs to C(¢;).

A does not belong to L'(4y) by the lemma 1.

Therefore the Banach space M (B(f;),C(¢3)) of all infinite matrices
is different from both M (4,) and L'(4,).

It seems to us that this space deserves to be studied in more detail.

12
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A MATRICEAL ANALOGUE OF FEJER'S THEORY

On the other hand the space M(C(£2), C(¢2)) of all infinite matrices
A such that A x B € C(¢,) for all B € C(£2) can be described easily.
More precisely we have:

Theorem 3. M(C(¢;),C(£,)) is ezactly the space M(¢;) of all Schur
multipliers. -

Proof. Since 0,(A * M) = 0,(A) * M it follows easily that M €
M(C(¢), C(£,)) if M € M(£,) and A € C(£2).

Conversely, let M € M(C(£,),C(£;)). For A € C(¢£;) the map A —
M * A from C(¢;) into C(¢2) has clearly a closed graph. Now let
M x A, — B in B(f;). Then obviously B = M % A. Therefore by closed ,
graph theorem it follows that A — M * A is a continuous map from

C(£3) into C(4), that is there is ¢ > 0 such that ||M xA|| < c-||Al|p,)
for all A € C(4,).

By the definition it follows easily that
sup || PoAll () = ||AllBe2)

where AG.3)
. { AG,j) i<n
PaA(i,g) = { 0 otherwise.
But P,A € C(¢4;) and therefore

M * PoAl|B,) < c||Padllse) < cllAll VA€ B(6),Vn.

Thus ||Po(M * A)||@,) < cl|AllB,) for all n. Consequently ||M *
AllBey) < c||AllB(,) for all A € B(€;) that is M is a Schur multiplier.,

Proposition 3. If M € L'(¢,) and ¢ > 0 there is M, € C(4,) and
M; € L'(£,) such that M = My + M, where ||Ma||L 1, < €.

(The above Proposition is the matriceal analogue of Luzin’s theo-
rem.)

Proof By Definition 1 there is an n such that M, def M — o,(M)

verifies ||JVIQHL1(£2) <e

But obviously M; = o,(M) € C(¢;) (as a finite sum of diagonals
My.),

Now we get the following analogue of Riemann-Lebesgue Lemma:

Lemma 1. Let M € L'(¢,). Then
Am [ My |22y = 0.

Proof We use the decomposition given by the above proposition and
we get, for € > 0, that, if |k| > n(e), then (My)x =0, (My)x = M} and
1(M2)kllL1(e) < 1Me|lLiey) < € |

13 1
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Hence for all ¢ > 0 there is an n(e) such that for |k| > n(e) it follows
that || Mil|Lie,) < €

We give now a characterization of integrable matrices in the spirit of
Theorem 1:

We recall that by L!(T, M(¢;)) we mean the space of all Bochner
integrable M(¢,)-functions with the norm ||f|| = / N ()| amcend

Theorem 4. The matriz A € L'(£;) if and only if the function f4(t) €
LY(T, M(£,)). Moreover the norms of both spaces are equivalent.

Proof. Let A € L'(£;). Then it follows that nl-l—bn;o on(A) — Allpmee,) =
0. We consider now the function f4 and we have the relation:

lon(Fa)(®) = fFa®)llmeen) < llon(A) = Allmeen - 1€ kezllme) =

= llon(A) = Allmeea), ’
which in turn implies

lim ||oa(fa) = fallorrmie) < lim [{on(A4) — Allpmee,) =0,
n—o0 n—o00

that is the Cesaro sums o,(f4) associated to the function f4 converge
in L(T, M(4y)).

But this implies that f4 belongs to L!(T, M(£2)).
Conversely,

lon(Fa)=Falloe e = o= / [ / [ a(t=8)— Fa(t) Kn(8)d0] | aagenyt <

< 27r_/ /lIfA (t—0)— fa(t)||m(e,) Kn(6)dOdt = ( by Fubini’ s theorem )

= 2—/Kn(e)“(fA)O“fA“Ll(T,M(lz))de < sup |[(fa)e— fallLr(r.mee)+
TJr 16]< 5
+2|| faller (ot mie)) - SUP Kn(t),
18]1>6
def

where (fa)o(t) = fa(t —0).
But, for § sufficiently small it follows that

/1r falt = 8) = Fa®)llandt < €

On the other side we have

lim sup K,(t) =0,
n--+00 ltlzé‘

14
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A MATRICEAL ANALOGUE OF FEJER'S THEORY

therefore it follows that
7}1_{20 lon(fa) = fallor @ mie)) = 0.

But we may find a subsequence o,,(f4) which converges a.e. on T
to fa. Then, it is some ty € T such that -

Hom (A) — Allamieg) < |one(£a)(to) = falto)llmeeny - 1€ )il mery =
= llon. (fa)(to) = falto)llme) ~——2 0.

L' being a closed subspace in M(£), it follows that A € L'(¢,).

The equivalence of the norms follows from the obvious inequality -
| fallzrer mes)) < 1|Allme,) and by Banach’s isomorphisms theorem.

Remark. Let A be a Toeplitz matriz. Then A € L'(£;) if and only
if fa belongs to the subspace of L'(T, M(¥€;)) consisting of all Toeplitz
matrices, therefore belongs to a space isomorphic to L*(T).

4. Concluding remarks and results.

We recall the following well-known result (see Theorem in Chapter
2 of [H]):

(2) A function f on T belongs to L=(T) if and only if

sup ||on(f)llLe(r) < 00
n

We have the following matriceal analogue of (2):

Proposition 4. Let A be an infinite matriz. Then A belongs to B(¢;)
uf

sup |lon(A)l|(e) < oo.
n

Proof Let sup||on(A)||pe,) < co. Then, by Alaoglu theorem, since,

forall 7, j € N, we have 0,(A)(z,j) —— a,, it follows that A € B(¢,).
The converse holds by the proof of Proposition 1.,

Proposition 5. A € M({,) if and only if

sup |lon(A4)||me) < o0
n

Proof. We use the well-known fact that the space M(¥¢5) of all Schur

multipliers is a Banach dual space , namely M(4,) is the dual space of
?, ®q £1, where

a(v) = inf{| Z B2 1o )21 1(ais) | Bees.tny}
’ T s
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where the infimum runs over all representations of v of the form

Z aja;jfie; ® ;. (see [P]). Then by Alaoglu’s theorem we get that if
ijEN

sup ||on(A)|lrme) < 0o
n

then A € M(¥,).

Conversely, let A € M(£;). Then 0,(A) = A * 0,(M), where M =
(m,-),-ez with m; = 1.

Thus

llon (Al mie) < N Allmee) - lloalM) e <
< (by Theorem 8.1 -[B]) < ||A}|arez)-o

Another characterization of matrices from M(¥;) is as follows: First
we attach to each infinite matrix A a linear bounded operator pu,4 :
LYT) - M(¢,), given by ps(g) = A x G, where g € L}(T) and G is
the Toeplitz matrix corresponding to g, matrix belonging to L!(¢;).

More specifically we have the following result:

Theorem 5. Let A be an infinite matriz. Then A € M(¥43) if and only
if ua € L(L}(T), M(£;)), the corresponding norms being equivalent.

Proof. Let A € M(€,). We consider the linear operator p4 : L} (T, M(4,)),
given by p4(g) = A x G, where G is as above.
L4 is a bounded operator. Indeed

Hea(@)llmen) = 1A*Gl mes) < Al mee) HGllLie) = 1Al 1gll Ly,

Vg c LI(T), WhiCh, in turn, implies that H/JAHL(L‘(T),M(tz)) _<_ HAHJM(fz)'

Conversely, let p4 € L(L'(T), M(¢;)), g € L'(T). Then, using the
above notations, we get:

||0n(-4)|IM(tz) = ||A* KnHM(ez) = ||,U'A(kn)”.\4(£z) < H#AHL(L‘('\I‘),M(!;))

for all n € N, since the Fejer’s kernels k, have the L!'-norms equal to
one, for all n € N. Then, by Proposition 5 it follows that 4 € M(¥,)
and [|Af|mee) < CllpallLwimmie) o
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ON THE DERIVATION OF SET'S FUNCTIONS

by Ileana Bucur

We consider a metric space (X,d). As usually we denote:
B(x,r):={yeX|d(y,x)<r} VxeX ¥V r>0.
8(A):=sup{d(x,y) | x,yeA} V AcX,A#D.

A=A (X) - the class of all Borel sets of X i.e. the c-algebra generated by the family of

all open subsets of X.
Definition 1. 4 positive measure & : B(X)— R. is called a Vitali-measure if
a) 0< A(B(x,r))<w= VxeX Vr>0. ’

b) there exist a positive number 8 such that
k(B(x,Zr)) SG).(B(x,r)) VxeX V r>0.

For any nonempty set A € B we denote
. a(A)::sup{T;((j’)T)ﬂ AcB(x,r)}
and a sequence (4,), of Borel subsets of X will be termed regular if
inf {(4,)| neN}>0.

From now on we suppose that X is fixed Vitali measure on (X, d).

Definition 2. A sequence (F,), of closed subsets of X is called convergent to x, € X if]
x,€F, foranyne N and }.EES(E')=0'

Let E be a Banach space. A map p : £ — E is called: additive if p(A4,UA,)=
=p(4,)+u(4,) for all paire (A, 4,) of Borel, disjoint sets of X.

Definition 3. An additive map u : .5 —E is termed regular at a point A € .73 if for any

positive number €, € # 0, a closed subset F and an open subset G of X such that F < A < G and|
for any finite B-partition (B,),, of G\ F (ie. Be A V i<k BNB=Dif i#j G\F=

UB, ) we have

1Sk

ik

2lu(B)<e.

The additive map | : 77— E will be called regular on a subset ~# of .43 if u is regular]

at any point 4 € =HA.
We recall also that y has bounded variation on a Borel set A of X if there exist a
positive number M such that
2[r(4)
nsk

<M

for all finite B-partition (4,),_, of A.
It is almost obvious the following assertion.
Proposition 1. If p: 8 — E is additive then we have:

a) the map :|p|: B — R.-termed the variation of p
18
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Iul(A)=f:fi};||P(A.)||'

where (A4,),, runs the family of all finite B-partition of A, is additive.

b) p has bounded variation on A € B iff |u|(4) <.

¢) nis regular at a point A € B iff |u| is regular at this point.

d) if A € B the restrictionof u to A ie themap p,: B —>E, p,(M)=p(4NM)
VY M e B is also additive; moreover 1, has bounded variation on X iff n has
bounded variation on A and v is regular at a point A'c B, A' < A iff n, is regular
at 4’

e)if Ac Band B=X\Athen p=p +pu,, |u={n,|+psl-

Definition 4. The additive map . : £ - E is called derivable at a point x, € X if for all

regular sequence (F, )n of closed subsets of X, converging to x,, the sequence

)
converges in E.

We remember two assertions which generalize in some sens the well known Lebesque
theorem on derivation.

Theorem 2. If u: .# — R, is a positive measure then | is derivable on X outside a \-
negligible set (or equivalently \ a.e. on X).

For the details on the proof one can see [M.N], 25.30.

Theorem 3. If p: % —> R is a bounded additive and regular map on % then . is
derivable )\ we. on X.

For more details one can see [I.B-D].

The aim of this paper is to extend Theorem 2 to the case where p is and additive vector
valued map namely:

Theorem 4. Let E be a Bannach space, . : B — E be an additive map which is regular
and has finite variation on any bounded subset A of 5.

If there exist an increasing sequence (X,) in.# such that

){X\OX,,]:O,

ne|

A .
E, = {%} AeB, Ac X, 0<y(A)} is compact ¥ ne N
Y
then | is derivable ). a.e. on X.
Proof. First we show the following assertions:
a)If 6:.%8 > E is ,carred“ by a closed subset F of X, i.e. 8(4) = 0 for all 4 € B,

AN F = then 0 is derivable at any point x € X\ F.
b) If 6 : ¥ — E has bounded variation, is carred by a set 4y € & (6(4") = 0 if
A'NAg=D)and B is regﬁlar at Ay then 0 is derivable A a.e. on X'\ A,.
Indeed, the assertion a) follows from the fact that for any point xo & F there exist r > 0
such that B(x,,7)\F=@. In this case, if we consider a regular sequence (F,), of closed
subsets converging to xo we may choose ng € N such that

19
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8(F) _
ME)

Hence 6 is derivable at xo and the derivative 0'(x,) of © at x is equal 0.

b) We show that outside a A-negligible subset we have 8'(x) =0 on X\ 4. For this it will

be sufficient to show that for any p > 0 and any € > 0 we have A’ (Mp) <e where M, is the set

nZnO:FZ,CE(xD,r),

n

of all point xe X\ 4, for which there exist a regular sequence (F ') of closed subsets

converging to x such that

lim M
=~ A(F;)

n

>p

So we fix € > 0 and we consider a closed subset F, of 4¢ such that

lel(4\ F) <e.

Then we decompose 6 under the form 0 =6, +6, where 6,,6, are defined by
0,(4)=0(F.N4), & (d)=0(4N(4\F,))
From the preceding point a) we have |0, [' (x)=0 at any point xe X\F, since [0, is
carred by F.
Herice |6,[ (x) =0 atany point x & X\ 4,.
If x € M, there exist a regular sequence (F,,' )" of closed subsets of X, converging to x,

E’ c X\F, such that

o|( £ 8,|( F~
p<limI |( ")=lim| zl( ").
) T AR
Using Vitali covering lemma we may choose a countable family (F;, )" of pairwise closed
subset, F, < X'\ F, such that

l(;zl(l‘%)>p Y neN, A.'(M,,\UF;.]=0-

neN

We have
P2 ME)S L il(F) < Bl(X\F)=[os](4\ ) <,
ne neN

l.(Mp)=k(L’_'JF:,)Se/p.

Let now (X, ) be an increasing sequence of & such that l(X \UX,,) =0 such that

the set

)

i$ relatively compact. We replace any X, by the set X/ defined by
X, =X,NF(xp,n) ¥ neN

where x is a fixed point in X. Obviously the sets

E, ={”(A)|Aeﬁ, A(4)>0, ACX,,}

20
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g =B )IA B, A(4)>0, Ac X}, neN
A(4)
are relatively compact. For any n we consider the additive maps p,,6,,7, defined on £ as

follows
i, (4)=p(4NX}), 0,(4)=p(4N(X\X;)NB(x;,7)),
1o (4)=s(4N(X\ X;)N(X\ B(x,,n))).

Since y, is carred by the closed set X\ B(x,,n) and X, c B(x,,n), using assertion a)
we deduce that v, is derivable at any point x € X, and v, (x)=0. Since 8, is carred by the
bounded set B(x,,n)(X\X,) we deduce that 6, is with bounded variation and regular.
Hence, using assertion b) we deduce that 6, is derivable at any point of X, outside a
A-negligible subset 4, X . - ‘

Since the set E, is relatively compact, i.e. the closure K, of E, is compact subset of E
then the topology of K, coincides with the O‘(K,,,E') -topology. Hence we may consider a
sequence ( f,, )m in E’ which separates the points of X, and therefore a sequence (x/, )P of X, is

convergent iff for any m € N the real sequence ( /. (xp )) is convergent.
4

Now for any m € N the map ®,, on # with values in R defined by
4> £, (1, (4)) =0, (4)
is regular,_ with bounded variation and additive. From Theorem 3 we deduce that w,, is derivabie
on X outside a A-negligible set B, € B,
Hence outside the A-negligible set U B, all the maps ®, are derivable on X and

meN

therefore the map p, is derivable on X \UB;' . Using all preceding considerations we deduce

that p is derivable on X, outside the ;.'-negligib'le subset A, UUB,: . Hence outside the

A-negligible subset of X given by ’
U(A,,UUB,’,',JU[X\UX,’,J

the map p is derivable.
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ABSOLUTE CONTINUITY AND RADON-NIKODYM REPRESENTATIONS INTO FUNCTIONAL

FRAMEWORK
Ion Chitescu
1. General setting
We shall consider a Loomis system (X, B, I). Namely. X is a non empty set. B is a vector
lattice of functions f : X — IR (pointwise order and operations) and I : B — IR is a linear
and positive functional. Write B, := {u € BJu > 0}. We shall also assume that B is an
algebra with unit (i.e. for all »,v in 3 one has uv € B and the constant function 1 € B5).
In the pa.rticular case when I (u,) — 0 for every decreasing sequence u, | 0 (pointwise). the
functional I is called a Daniell iﬁtegra.l. We shall also consider another linear and positive
functional J : B — IR.
Definition. We say that J is absolutely continuous with respect to I (and we shall write

J & I)if for all € > 0 and for all h € B... there exists § > 0 such that for all B, 3 u < h

with I (u) < § one has J (u) < e.

II. Approximate functional Radon Nikodym theorem

Theorem. Assume J <« I. Then, there exists a sequence (v,),, in B such that for ail f

in b one has
J(f)=UmI(fva).

Comments and supplementary results
Let us introduce some new notations:

AC(I) = {T:B o IR|T linear and positive, T < I}

R(I) {T : B — IR|T linear and positive, T is ] —representable} .

22
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(T is I-representable means: there exists a sequence (v,), in B such that for all f € B one

bas T (f) =lim 7 (fvn)).
SR(I):={T: B — IR|T linear and positive, T strongly /—representable} .

(T strongly I-representable means : there exists v in B such that for all f € B one has
T(f) =1 (fv)).

Of course SR(I) C R(I), and the inclusion is generally strict.

The theorem from above says that AC (I) C R(I).

An “exact Radon-Nikodym theorem” would say that AC (I) = SR (I). but this is not true
in general. Pragtically. our result is the best possible. Namely. the inclusion AC (I) C SR ({)
is generally false (see the example which follows).

Example. Take X = [0,1],8 = {f: [0,1] — IR|f is continuous}. The functionai
I : B — IR is defined as follows: write QN [0,1] = {z.|jn € IN, 2o =0.m # n. = T, # .} .

Let (an), be a sequence with a, > 0,a9 = 1 and ¥ a, convergent. Define I : B — IR via

1(f) = ganﬂzn) —FO+ éanf@n).

The functional J : B — IR is defined via

Then J € AC (I)\SR ().
Proposition. One has SR({I) C AC (I) in each of the following situations:
(1) The lattice B consists of bounded functions.
(i) The functional I is a Daniell integral.

Open question. Is it always true that SR(I) C AC(I)?

23
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ITI. Exact functional Radon-Nikodym theorem

One must impose supplementary conditions.
We shall work with Daniell integrals I and J.

Standard procedure gives the spaces:

L(1)
Ly (I)

I—integrable functions;L (J) := J—integrable functions.

{f € L(I)|f is bounded} ; L, (J) := {f € L (J) | f is bounded} .

Proposition. J « I = Ly (I) C Ly (J).
The standard extension of I (resp. J).to L (I) (resp.L (J)) is denoted by I (resp. J).

Let us introduce the following numerical sets (for u € Ly (), u > 0 and € > 0):

k)

AL (@) = {f((;’))[ogvgu, ve L(I), T() >0}

As(f.j)('u) = {J:GIRI |a:—a|<eforal]a€ﬁ([—,j)u)}.

In order to state our theorem (the ”exact functional Radon-Nikodym theorem™). we shall
make three supplementary assumptions. The first assumption is more “complicated”. being

sequential and inductive. It consists of a sequence of steps.

Assumption 1. The following sequence of conditions (steps) build up this assumption:

s(1): There exists a sequence (hn;), ¢y OF & finite family (hni)ic,ep, -0 < hay €
L(I), I(hny) > 0 such that
(t1) Thpa=1.
n
s(2): For every n € IN or 1 € n < p;, there exists a sequence (h(”");2)¢em or a finite

family (h(,.,,-);z)lgspz , 0< hinia € L(I), I (Anaa) > 0 such that
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(i) X hniyz = hng, all possible n.

Assuming the step s(n — 1) for n > 2 has been written (this for the family (han-1)4-
where a € IN™!). we shall write (conventionally) (a,i,) € IN™ for every a = (31,12, ,in-1) E
IN™! and i, € IN. Now we can write the next step : ’

s(n): For every o € IN™"! in the set of all possible a given by the previous steps. there

or a finite set {A(a.i)n of positive functions in L (/
(a.i);

exists a sequence (h(a,i);n) L<i<
215Pn

telN

with T (hg) far all possible 3 such that
(ln) Z h(a,i);n = ha;n—l all pOSSible o

(this implies % hgn=1). So, hgyn € Ly (I)---.
Assumption 2. For every natural number n and for every a € IN™ in the set of all
possible a. one has
Ag-n (I,J) (hap) # ¢
Assumption 3. There exists a number M > 0 such that for all n in IV and for all a in

the set of all possible o € IN", one has
Ag-n (1,J) (hayn) € [-M, M].

Theorem. Assume that I, J are Daniell integrals such that J < I and the Assumptions

1.2.3 are fulfilled. Then there exists a positive bounded function f in L (I) such that
J (u) = I (fu)

alluin L(I).
for all u in L (I) 25
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The function f (called the Radon-Nikodym derivative of J with respect to I) is J-almost
unique, which means that if g € L (I) is such that J (u) = I (qu) for all w in L(I). then
I({ff-gl)=0.

Final comments

A. The theorem in II (“approximate” Radon-Nikodym theorem) appeared in “Rendiconti
del Circolo Matematico di Palermo”, serie II. vol.48(1999). p.443-450. )

The theorem in III {“exact” Radon-Nikodym theorem) will appear in “Studia Mathe-
matica”.

B. These results were obtained jointly with the Spanish mathematicians.

Prof.dr. Enrique de Amo Artero (University of Almeria).

Prof.dr. Manuel Diaz Carrillo (University of Granada).
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ON THE EXTENSION OF SOME POSITIVE FUNCTIONALS AND ON
EXTENSIBLE REGULAR OPERATORS

Romulus Cristescu

In this paper we give some theorems concerning the extension of continuous positive
linear functionals and the extension of positive normal operators. Some spaces of extensible

7

regular operators and of monogenic regular operators are also considered.

§ 1. Extensible continuous positive linear functionals

The first theorem is concerned with positive linear functionals which are continuous with
respect to the \:opology given on an ordered vector space.

Theorem 1.1. Let Z be a directed vector space endowed with a locally convex-solid
topology and X be a topological vector subspace of Z. If f : X — IR is a continuous positive

linear functional. then f extends to a continuous positive linear functional g : Z — IR.

Proof. Let p be a continuous solid seminorm on Z such that
If(z)l <p(z), (Vz € X).
Putting
Q={z—ap(z)<};0<a€ Z}

the set @ is balanced and convex. If ¢ is the Minkowski functional associated to Q. then ¢

is a sublinear functional and

flz) <q(z), (Vz € X).

By the Hahn-Banach theorem, there exists a linear functional g on Z such that g|X = f

and
9(2) < q(2), (Vz € 2).
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From this inequality it results that
(1) 9(z2)<1,vVzeQ

therefore g (—nz) < 1,Vz € Z,V¥n € IN, since —X; C Q. Consequently g > 0.

On the other hand, Q is an’open set and by (1) it results that the linear functional g is
continuous.

The theorem.is proved.

Let now Z be a directed vector space and X a majorizing vector subspace endowed with
a locally convex-solid t@pplogy_,r. Let P be the set of all (7)-continuous solid seminorms on

X and consider, (as in [2)) thg topology T on Z defined by the set
P = {5lp< P}

of the seminorms gif/eh' by the formula

(2) p(z) =inf{p(z)| £z <z € X},(2€2).

The topology 7 will be called the natural extension of T on Z.

Remarks (i). Every seminorm 7 given by the formula (2) is a solid seminorm and 7|.X = ~.

(ii) If 7 is a locally convex-solid topology on Z such that 7|X = 7 then 7 < 7.

Indeed. if p/ is a (7 )-con_tinuous solid seminorm on Z, then there exists a (7)-continuous
solid seminorm p on X sucﬁ that o' (z) < p(z), Vz € X. If z € Z then there exists r € X
such tﬁht +2 <. “We have p’ (2) S p’ (z) < ;;(z) therefore p' (z) < p(z), Vz € Z.

Theorem 1.2. Let Z be a directed vector space and X be a majorizing vector subspace
endowed with a locally convex-solid topology 7. Let 7 be the natural extension of 7 on Z. If
f:X — IR is a (7)-continuous po':sitive' linear functional, then any positive linear functional
g : Z — IR which extends f, is (7)-continuous.
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Proof. Let p be a (7)-continuous solid seminorm on X such that
If @ <p(2). (Vz€X).

Let g : Z — IR be a positive linear functional such that g|X = f. Let v be an arbitrary
positive element of Z. For every number € > 0 there exists £ € X such that v < z and
p(z) < p(v) +e. It results g (v) < p(v). For an arbitrary element z of Z, let v € Z such
that +z < v. We have ‘

+g(z) <g(v) <P(v)

therefore |g (z)| < p(v). It results

K

lg ()| <P (2), (Vz€ 2)
and the theorem is proved.

§ 2. Extensible positive normal operators

If X is a vector lattice and Y an (0)-complete ordered vector space. we denote by R (X, Y)
the complete vector lattice of all regular operators from X into Y.

We shall use the definition of normal operators given in [12] (and in more general condi-
tions. given in (7]).

Theorem 2.1. Let X be a vector lattice . G a majorizing vector subspace of X and Y
an (o)-complete ordered vector space. Let Up : G — Y be a positive normal operator. If G
is order dense and U : X — Y is a positive linear operator such that U|G = U, then U is a
normal operator.

Proof. Let 0 £ V € R(X,Y) and let E be a totally normal subspace of X such that
V (E) = {0}. Putting F = ENG, the set F is a totally normal subspace of G and putting
Vo = V|G then Vp (F) = {0}. From Uy AVp =0 it results U AV = 0 (since G is a majorizing
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subspace of X). If V' is any abnormal operator then we take into account that |V] is also an

abnormal operator.

Corollary. If X is a vector lattice, G an order dense majorizing vector subspace of X and
Y an (o)-complete ordered vector space, then every positive normal operato} Up: G- Y
extends to a positive normal operator U : X — Y.

Remark. If in the theorem 2.1 we consider an Archimedean vector lattice G, the Dedekind

extension X of G and a complete vector lattice Y. then we obtain a theorem of Veksler [11}.

§ 3. Some spaces of regular operators

We shall use the definition of ideal introduced in a previous paper (5] in the framework
of directed vec;or spaces (see also [7)).

By space of type (R) we mean (as in [8]) a directed vector space which has the Riesz
decomposition property.

If X is a space of type (R),Y an (o)-complete ordered vector space. G a vector subspace

of X and Z a vector subspace of R (X,Y) we shall denote
Z.(GY)={UeR(G.Y)AVeZ VIG=U}.

The following theorem generalizes a theorem given in [7] and the proof is similar.

Theorem 3.1. Let X be a spaces of type (R) and Y an (0)-complete ordered vector
space. If G is an ideal of X and Z an ideal of R (X,Y) then Z, (G,Y) is an ideal of R (G,Y) .

Ezamples (i). If X is a space of type (R) and Y an (o0)-complete ordered vector space.
then the set Z of all (w)-continuous regular operators from X into Y. is an ideal (even a
band) of the space R (X,Y), (see [8]);

(ii). If X is a Banach lattice and Y a space of type (K B), then the set Z of all summable
operators (from X into Y) is an ideal of R (X, Y). (see [3]).
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We shall now use the following definition given in [10] but considered in the sequel in

more general conditions.

Let X be a space of type (R) and Y a complete vector lattice. Let G be a vector subspace
of X and Z be a vector sublattice of R (X,Y). A positive operator U € Z is said to be
monogenic (with respect to Z and G) if from 0 < V € Z and VIG=U|G it results V =U.

We shall denote by M (Z, G) the set of all operators U € Z such that [U| be monogenic
(with respect to Z and G). ’

Remark. If G is a full vector subspace of X, if U € M (Z,G) and U|G > 0 then U > 0.

Indeed if / € M (Z,G) then U, € Z and if 0 < a € G then U, (a) = U (a).

In the following lemma, by directed vector subspace of a directed vector space X. we
medn (as in [9]) a vector subspace G with the property: if e € G and a < z € X, then there
exists b€ G, such that a < b < z.

Lemma. Let X be a space of type (R),G a majorizing directed vector subspace of X
and Y an (o)-complete ordered vector space. If Z is a full vector sublattice of R (X,Y) and
O < U € Z. then the following two conditions are equivalent

(i) Ue M(Z,G);

(i) 0<VeZUIGLVIG=2ULV.

Proof. (i) =>(ii). Let U € M (Z,G) and 0 £ V g Z such that U|G < V|G. Putting

P(z)=inf{V(2)|0, z2<z€ X},(z € X)

we obtain a sublinear operator P: X — Y.

We also have
3) P(a)=inf{V(b)|0,a < b€ G},(Va € G).

Indeed. denoting by A the set in the right side of the formula (3), we have obviously
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P(a) < inf A. On the other hand, if e € G and 0,a < z € X, then there exists b € G such
that 0,a < b < z and we have V (b) < V (2). Consequently inf A < P (a).

Using the equality (3), it is easily seen that
| U(e) < P(a), (VaeG).
Therefore there exists a linear operator W : X — Y such that W|G = U|G and
W(z) < P(z), (Vz € X).

From this inequality it results 0 < W < V. therefore W € Z. From 0 < W € Z and
W|G = U|G it results W = U since U € M (Z,G). Consequently U < V.

(i) =(@). f0 <V € Z and V|G = U|G. then from U|G < V|G and (ii) it results
U < V. On the other hand, from 0 < U < V and U|G = V|G it results V < U since if
z€X,andz<a€ G, thenU (a—z) <V (a— z) therefore V (z) < U (z). Consequently
U=V thatisU € M(Z,G).

The lemma is proved.

The following theorem generalizes a theorem in [10] (and [4]).

Theorem 3.2. Let X be a space of type (R),G a majorizing directed vector subspace
of X and Y an (o)-complete ordered vector space. If Z is a band in the space R (X, Y} then
M (Z,G) is a band in the space Z.

Proof. Using the previous lemma, we establish (as in {4]) that if 0 < U),U; € M (Z2.G)
and 0 < a,3 € IR then al} + fU; € M(Z,G). f0< U, < U, €e M(Z,G) and U, € Z
then U} € M(Z,G) and if Us JJA WUinZ2and0<Us € M(Z,G) then U € M(Z.0).
After that, we take into account the definition of M (Z,G).

Remark. If the conditions of the above theorem are satisfied, then the set M (Z2,G) is a

component (1] of the space R (X,Y).
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Some Remarks on Lattice-Subspaces

Nicolae Dianet

1 Preliminaries on lattice-subspaces

A vector subspace X of an ordered vector space E is said to be a lattice-
subspace if X under the induced ordering is a vector lattice. Foreachz,y € X
we shall denote by z 7 y the supremum and by z A y the infimum of {z,y}
in X. If zVy and z Ay, the supremum and the infimum of {z,y} in E, exist,
then we'have zVy <zYyand z Ay < zAy. If E is a vector lattice and
zvVy=zvyyforallz,y € X, then X is a vector sublattice of E. Obviously,
every vector sublattice is a lattice-subspace, but, in general, the converse is
not true. The difficulty for study of lattice-subspaces is that z 7 y in X
depends on the subspace X. In lattice-subspace we have the induce ordering
but the lattice structure is not the induced one.

Let E an ordered Banach space. A sequence {e,} is called a positive basis
of E if {e,} is a (Schauder) basis of E and the positive cone E. is equal with
{z€ E|z=Y 2, Aen Ay > 0forall n}. A positive basis in E is unique in
the sense that if {b,} is another positive basis of E, then each element of {b,}
is a positive multiple of an element of {e,}. If {e,} is a positive unconditional
basis of E, then the lattice operations in E are given by

axc o0

zVy=) MaVpden and zAy=) (AnAp,)en

n=1 n=1

foreach z =3 20 Anén, ¥y = D nc lnen in E.

For the study of finite-dimensional lattice-subspaces the following theo-
rem is very important (see (1] and [7]).

Theorem 1 A finite-dimensional ordered vector space E is a vector lattice
if and only if E has a positive basis.

Lattice-subspaces have applications in economics (see (2|, [3] and [9]).
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2 The lattice-subspace X(z) = [z*, z”]

Let E be a vector lattice. Every element £ € E has the decomposition
z =z — z~. If £ has another decomposition £ = u — v, with u,v > 0, then
z* < u and z= < v. This means that the decomposition z = z* — z~ is a
minimal decomposition among all the positive decompositions of x. In the
particular case when v = z* and v = z~, in plus, we have uAv = z*Az™ = 0.
Conversely, if z =u — v, with u Av =0, then u = z* and v = z~([5], p.73).

Let z be an element in F such that z = z+—z~, withz* # 0 and = # 0.
Then z* and z~ are linearly independent vectors in E. (Indeed, if \;, A\, € R .
are such that A;z% + Apz™ = 0, then, using the fact that \;z* L Mz~, we
have

0= [Mz* + doz| = M|z + [Aolz™ > [Miz™, [Aelz > 0.

Therefoze |\ |z™ =0, [A2Jz™ = 0, from where it results that A\, = A, =0.)

Denote by X (z) = [z7, 2], or simply by X, the (closed) linear subspace
generated by 2% and £~ endowed with the induced ordering from E. Then the
set {z*,z7} is a positive basis for X. To prove this assertion, let A\;, A2 € R
be such that Az + Az~ > 0. We must show that A;, A, > 0. Using again
the orthogonality Ajz+ L Ayz~, we obtain

Mzt 4+ Xz = Mzt + Aoz = Az + Aoz

The uniqueness of the representation of a vector in the basis {z*, z~} implies
the equalities A; = |A;], A2 = |Az|, from where it results A, > 0, A; > 0.

Since X = [z, z~| has the positive basis {z*,z7}, X is a lattice-subspace
in E, and the lattice operations are given by the following formulas:
if z=Mz* + dz” and w = pzt + poz”, then

z 7w = max{A,p}z” + max{ds,p,}z”
zAw = min{A;, g} + min{Ag, go}z”
lzlx = Mzt +|Aglz”

In fact, X = [z*,z"] is a sublattice of E. This results from the observation
that, for every z = Ajz* + A2z~ € X, we have

2] = [Az™ + doz™| = [Nz + Aol = [2]x.

Let £ be a directed vector space and z an element in E. Let z = z; — 75
be a positive decomposition of z such that z;,z, are linearly independent.
We can consider X(z) = [z1,z2] and construct a positive basis {b;,bs}
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in X(z). (In 2-dimensional case such a basis always exists, see (7].) If
2z = A by+Agby is an element in X (z), then we can define |z|x = |A1|b;+|A2|ba.
This construction can be useful in some situations, but, in general, we can
not use |z|x like a substitute for the modulus of z because the construction
depends of the initial positive decomposition of z. ’

3 An algorithm to determine the
lattice-subspaces in R™

For applications in economics it is important to determine whether or not a
given set of n linearly independent positive vectors of R™ (n < m) generates
a lattice-subspace. Such an algorithm is describe in [1].

In this section we obtain a simple form of this algorithm which permit to
observe that we can use the classical Gauss-Jordan algorithm to decide if a
given collection of positive vectors generates a lattice-subspace.

Let x;, X2, ... , X, be n linearly independent positive vectors of R™. where
1 < n < m, and denote by X = [xj,Xa,...,X,] the n-dimensional vector
subspace they generate. We shall write these vectors in column form

Ilj
Z; .
X; = . , J=1 T
Tmj
Let A be the matrix of type mxn whose columns are the vectors x;, Xz, ... ,Xn.
Hence
I Iz Tin
T2y T2 Ton
A=| T .| € Mua(R).
Zml Tm2 ZTmn
Since x;.Xa, ... , X, are linearly independent vectors, the rank of the matrix

A is equal to n. Consider now the transpose matrix of A,

i1 T2 .. Im
T2 Z22 ... Zm2
AT=| 7 7 7 | € Man(R).
Zin T2n --+ ZImn
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The columns of the matrix AT are vectors of R" which will be denoted by
¥1:¥2:--- . ¥m. Therefore

Y = . s i=1,...,m.

Since the matrix A7 has the rank n, and 1 < n < m, it follows that there

exist n linearly independent vectors among the vectors yi,ys,... ,¥m which

are denoted by ¥i,,¥i,,--.,Yi.. Then the rest of the vectors y;, where-
i€{1,2,... . m}\{i1,%2.... ,ia}, can be written like a linear combination of

the vectors y:,,¥i,, - .- : Yin, 1.€.,

n
Y. = Z fik}’i,,-
k=1

If the vectors yi,t € {1,2,... .m} \ {i1,%.... ,in}, belong to the cone gen-
erated by the vectors y;,.¥i,, .. ; ¥i., Which means that all the coefficients
&,. are nonnegative, then the set {i;,i2....,i,} is called a fundamental set
of indices for the collection of vectors.x;, xa,... ,Xx, € R}.

In {1] it is proved the following theorem.

Theorem 2 The vector subspace X is a lattice-subspace of R™ if and only if
the vectors x;,Xa, ... ,X, admit a fundamental set of indices {11,%;.... ,in}.

In the sequel we shall show how we can construct, in a easy manner for
using a computer, a positive basis for X, if {i1,%,.... ,i,} is a fundamental
set of indices for the vectors x;,Xs, ... ,X,.

Let B be the submatrix of the transpose matrix AT which has the vectors
Yi;1Yig - - -, ¥i. as columns. Since these vectors are linearly independent, the
matrix B has a nonzero determinant and therefore it is invertible. Define
now the vectors e, es, ... ,e, of R™, symbolically, by the formula

More precisely, if we denote CT = B~!, and C = [ct;] € M, .(R), then we
have the following vectorial relations

ejzzcijk‘ J=1 . N, (1)
k=1
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Oor, on components,

e,-j=chja:.-k, j=1,...,n, i=1,...,m. (2)
k=1 i
We shall prove that the vectors e, e,,... ,e, form a positive basis for X.
Firstly we observe that the relations (1) show that the vectors ey, e,,... ,e,
belong to X and, since det C' # 0, they form a basis for this subspace.
In the sequel we shall prove that ey, es, ... , e, is a positive basis of X. For
simplicity of notation we assume that the vectors y;,ys,. .. ,y. are linearly
independent, and yn.+1, .- ,¥m have the following expansions

Yo+l =&niY1 H&ni12¥2 + - + &1 nYn

Ym = fm,IYI -+ gm,2y2 +oe+ gm,nyfl
or

yP=Z§mys, p=n+1,...,m, (3)
s=1

where £, > 0. Using these notations we shall prove that the vectors
e, ey, ... ,e, have the following form

r1 F 0 7 [ 0 ]
0 1 0
e = 0 , ey = 0 , e, = 1 (4)
En-é-l‘l £n+1,2 €n+1.n
L Em,l J L 51!1,2 p L fm.n i
With other words, using the relations (2), we have to prove that
€; = chjzik=6ij1 j=1,...,n, i=1,...,n. (5)
k=1 '
n
ep; = chja:pk=§pj j=1...,n, p=n+1,...,m. (6)
k=1

For proving these relations observe firstly that CT = B~! implies
CTB = I,,, and then, between the components, we have

n

T ;g —
E Cikbei = 655, 1,7=1,...,n.
k=1
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Since by; = T4, we obtain
n
E ijl‘,'k=6,'j, i,j=1,...,n.
k=1

The relations (5) are thus proved.
The vectorial relations (3), written on components, give

kazzgp‘a:,k, p=n+1l,....,m, k=1,...,n
s=1

Then we have

n n n n n
€pj = E ckapk=§ Ckj _S_ €psTsk =§ €ps _S_ Ci; Tsk
k=1 k=1 s=1 s=1 k=1
Y

= ngséj-' = Epj Z 0.
s=1

and the relations (4) are completely proved. They show that e;,es,... e,
are positive vectors and form a positive basis for X.

To decide if we have a fundamental set of indices for the vectors
X1,X2,... X, € RT we can transform the matrix AT to reduce row
echelon form using the well-known Gauss-Jordan algorithm ({4]. p.364).
With the aid of this algorithm it is easy to decide when a collection of positive
operators Ty, Ty, ... , T, € L(R",R™) determine a lattice-subspace.
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A Hahn-Banach Type Theorem for
Riesz Homomorphisms

Rodica Mihaela Danet

Abstract
In this paper, we give an extension theorem for Riesz homomor-
phisms, along the line of Hahn-Banach result. As a consequence, we
can obtain the classic theorem of W. A. J. Luxemburg and A. R. Schep
(1979). This theorem, actually a Kantorovich type theorem, was re-
preved in 1985 by Z. Lipecki. The idea of our result is due to Lipecki’s
proof.

1 Preliminaries

When we say a Riesz homomorpshism between two vector lattices X and Y,
we understand a linear operator T : X — Y such that, for all z;,z; in X,

T(zy V z2) = T(z1) V T(z2)(or equivalently,T(z, A z2) = T(z,) A T(z2)).

Hence, the Riesz homomorphisms are the morphisms in the vector lattices
setting. (For a monographic study of these operators and an intenesting view
on the problems of this theory, see [D4].)

We also recall that a majorizing subspace of an ordered vector space X
is a vector subspace G of X, such that for any z in X there exists v in G
satisfying z < v.

If G is a majorizing subspace of X, Y is a complete vector lattice and
T : G — Y is a positive linear operator, then we can consider the function
T : X —Y, associated to T by the following formula:

T(z) = sup{T(v) | v € G,v < z}, for each z in X.

This function, introduced in a particular case, in 1923 by F. Riesz, has the
following properties:

1) T is sublinear; 2) T is increasing and positive; 3) T = T on G;
4) S(z) < T(z), for all z in X and for any § : X — Y a positive linear
extension of T.
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2 The Main Results

The problem of the extension of the Riesz homomorphisms was solved for
the first time in 1962, by A. Hayes, in the lattice groups setting. The Riesz
homomorphisms are positive operators, but the classic proofs for the éxten-
sion of positive linear operators didn’t assure that the extension of a Riesz
homomorphism is also a”Riesz homomorphism.

In 1979, W. A. J. Luxemburg and A. R. Schep proved that this is true if
the domain of the operator which must be extended is a majorizing sublattice
G of a given vector lattice X and the range space Y is a complete vector,
lattice. Later, in 1985, Z. Lipecki gave another proof for Luxemburg and
Schep’s result.

In [D3] we investigated some conditions in which more general results of
extension should be valid. The obtained results completed some theorems of
[L1}, {C1), [D1] and [D2].

For example, the following result is a first step in the extension of Riesz
homomorphisms.

Proposition 1 ([D3] and [D4]) Let X and Y be two vector lattices, G a
vector sublattice of X, M a wedge of X closed under finite suprema and
containing G, H = Sp(M) and P : M — Y a function, such that it is
additive and positively homogenous on M. Let also T : G — Y be a Riesz
homomorphism such that T = P on G. Then:

a) H is a vector sublattice of X;

b) there erists a Riesz homomorphism S : H — Y which ertends T and
such that S =P on M iff P(2; V z3) = P(z) V P(z3), for all 21,29 in M.

Note that the operator S is defined by S(z; — z3) = P(z,) — P(z), for
each z,z0 € M.
The following theorem is the main result of this paper:

Theorem 2 Let X and Y be vector lattices, G a vector sublattice of X,
T :G — Y a Riesz homomorphism and P : X — Y a positively homogenous
operator such that P =T on G, P(x, V z3) = P(z,) V P(x3), for all z,,z,
in X and P(v+ z) = T(v) + P(z), for all v in G and z in X. Then there
eTists a Riesz homomorphism S : X — Y, which eztends T.

Proof. First we will extend T to the vector sublattice generated by G

and an element zp in X \ G.
Let M = {_\_1}1(1),' + ai:co)lv,- S G, o, € R+,‘i = ].,_Tl,Tl (S N} .

Obviously, M is a wedge in X, closed under finite suprema and containing
G. Moreover, P is additive on M.

43

https://biblioteca-digitala.ro / https://unibuc.ro



If H is the vector sublattice generated by G and zy, then H = M — M.

With Proposition 1, there exists a Riesz homomorphism T} : H — Y
which extends 7, such that Ti(zy) = P(zp). We recall that
Ti(z) — z2) = P(21) — P(23), for all z;,2, in M. (Also, we remark that T is
uniquely determined.) )

Now,. by a standard application of Zorn’s lemma, we obtain a Riesz ho-
momorphism which extends T to the whole X. m

Applying Theorem 2, for Y a complete vector lattice, G a majorizing sub-
lattice of X and P = T, we obtain the following result of W. A. J. Luxemburg
and A. R. Schep concerning the extension of the Riesz homomorphisms (see .
also the proof of this result, due to Z. Lipecki).

Theorem 3 ([L3] and [L2]) If X and Y are two vector lattices, G is a ma-
jorizing sublattice of X and T : G — Y is a Riesz homomorphism, then there
ezists a Riesz homomorphism S : X — Y, which eztends T.

Unlike Luxemburg and Schep’s proof for Theorem 3, which is very long
and technical, our proof is very simple.
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OPERATEURS (0) - CONVEXES, DERIVABLES

M. Gavrila

On connait bien qu’une fonction réelle de variable réelle, f, qui est dénvable
est une fonction convexe si et seulement si sa dérivée f* est croissante.

Cette propriété ne reste plus valable si la fonction f a comme domaine de
definition un espace réticulé Banach X, ayant la dimension, dimX>2. Plus
exactément il ya des fonctions f: X — R de classe C'(X) qui sont (0) — convexes
et leur dérivée n’est pas croissante, mais il y a aussi des exemples de fonctions
S : X - R de classe C'(X) pour lesquelles la dérivée est croissante, sans qu’elles
soient (0) — convexes.

Dans cette note on donné une caractérisation de (0) — convexité en termes de

monotonie de la dérivée.

DEFINITION 1: Sotent X, Y deux espaces Banach, .X un espace linéaire dirigé,

Xy €E. On dit que un opérateur f:X — Y a une différentielle Gdteaux dans x,, st
(V) seX (3) y(xn 5) €Y, donné par

im f(Xo + ).S) - f(Xo)

;s)=1
o)==

On note f'(xqg): X = Y "opérateur linéaire donné par la formule
f'(x0)(s) = y(x9,8) :=<f"(xg),8 >
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S (xg) s’appelle la différentielle Gateaux de f dans x,.

Onnote f': X —» L (X,Y)
xo = f'(xq)
S s’appelle I’ opérateur gradient de f (1I’opérateur de la derivée de f).
Un opérateur g:Ec X —>L (X,Y) s’appelle gradient si (3) f:E—>Y

différentielle sur le domaine E telle que g=/".

DEFINITION 2: Soient X, Y deux espaces Banach qui sont aussi les, espaces

hinéaires ordonnées, E — X un sous-ensemble convexeet f:E—> Y.
On dit que fest (0)-convexe si
f((1-2A)x+Ly) <(1-2)f(x)+ Af(y)

(V) x,yeE (fes ¢élémentes comparables et (V) 1€/0,1].

DEFINITION 3: Soit X un espace linéaire reticulé et ¥ un espace linéaire
ordonné.  L’opérateur f: X — Y s’appelle monotone-symetrique ((s)-monotone

croissant) si pour tous €léments x,y,p’ €E qui verifient I’inégalité |y} <ly’}, on a

Jxty)Hf(x-y) SSlx+y’)H(x-y’).

DEFINITION 4: Soit X un espace linéaire reticulé et ¥ un espace linéaire. Un

opérateur f: X — Y s’appelle ortogonal-additif si pour x,y eX xLly(|x|A|y|=0)

on a la relation

Sxty)=f()H/(y).

Pour a€E on considére I’opérateur f, : X — Y définie par la relation
Jax)=fla+x)-f(@) , (V) xeX.
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Un opérateur f:X — Y s’appelle monotone-croissante si f{x)>f{y) pour

tous X,y eX, x 2y.

THEOREME 1:

Soient X, Y deux espaces Banach telle que X est aussi un espace linéaire
reticulé, Y un espace linéaire ordonné, E c X un sous-espace linéaire reticulé,
f:E > Y une différentielle Gateaux, g le gradient de /. Si f est un opérateur (s)-
monotone croissant, alors:

1} pour tout a E, g, est ortogonal-additif;

2) g est monotone-croissante;

3) si ylz alors <g(y), z>=<g(0), z>, et plus généralement
" <g(x+y), >=<g(x), >, (V) x<E.

Démonstration:

1) Soint a eFE et f,(x)=f(a+x)-f(a), (V) xcE.
On montre que f, est un operator ortogonal — additif et donc

Sy ity )=y ) Ha(y2)
pour tout y,,y2€E, y,1y,.
En utilisant la définition de £, 1l résulte que
Satyrty)=flaty)+flaty)-fla)
Analoque, pour tout heE et f (0,00) nous avons que f.q est ortogonal-additif, et
donc
Sasn Ot +Y2)= Laran W)+ Faran (02 ) Y915 ¥2 € B 31 dys.
[l resulte
Satth+y ry)=fla+th+y )+f(a+th+y)-fla+th)

et donc:
Sla+thy ty)-flaty ry)=[flatth+y)-fla+y ) |+ {f(a+th+y)-flaty) |-
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-If(atth)-f(a)].
Par conséquence

im @1ttt - f@+y, +y,) L S@ry )= f@aty)

>0 4 t—0 4
lim Sla+y, +tI:)—f(a+y2)+lim f(a+th)- f(a)
t—0 t t—0 t

d’ou 1l resulte

glatyty)=g(aty)+glaty))-g(a)

et donc

8 a(yl +y Z) =8 a(}’l) +ga0"2)

2) Si x,y e E telle que x<z, alors x <z et x'>7".
[l résulte que
" x+Hy<z"+y, vyeE., Vte(0,),
et donc
x" +g'—z+i 5§z+ + 1y —x*i

Parce que f est (s) - monotone croissante, il résulte:

f(xt+)- f(xT)S f(2F +)- f(27).

et donc
<g(x*)y><<g(z*)hy> VyeE,.
De maniére analoque -x" <7
et donc
X tiy<~7+ty, YyeE,, Vit e (0, oo).
Il résulte que
(—x)+y - ()<l )+ - (-x7)
et parceque f est (s)-monotone croisante, ou obtien:
Sx"+o) - f(=x )< f(-2 +O)-f(-2)
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Donc

<g(-x"),y><<g(-27)y> Vyek,.
Parceque I’operateur g, est ortogonal — additif il résulte
8o(x)=go(x")+g(-x) = g(x) - g(0) = g(x ) - g(0) + g(-x ") - g(0)
De la méme maniére on demontré

£(2)-8(0)=g(z")-g(0)+g(-z)-g(0)
et donc '

<g(x)y><<g(z,y> VVyekE,.

3) Soient y,ze E telle que ylz. Puisque fy est ortogonal-additif et
ylez, Vte (O,oo),
il résulte que
Joy+)=fo(y)Hfo(t2) < fy+e)-fy)=ftz)-f(0) <
S+8) - fO) . f(&)~ £(0)
t

lim e <g(y)>=<g(0),z>.

t—>0 t{ t—>0
Analoque en utilisant fx est ortogonal-additif, il résulte que

<g(x+y),z>=<g(x),z> VxeE.

THEOREME 2.

Soit X un espace Banach qui est aussi un espace linéaire reticulé, Ec X un
sous-espace linéaire reticulé, g: E »> L (X,R) un opérateur gradient, continu qui
vérifie:

1) pour tout a eFE, g, est ortogonal-additif;
2) g est monotone-croissante;
3) si ylz alors <g(y), z>=<g(0), z>, et plus généralement

<g(x+ty), 2>=<g(x), >, (V) xeE.
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1
Si f(x) = [< g(tx),x >dt alors
0

1) a €E, f, est ortogonal-additif;,

2) fest (s)-monotone croisante.

Démonstration: Soient y,ze E , ylzetaecE. ‘
Puisque fo(y+2)=f(a+y+e)-f(a)= |

1 1 1 5
j'<g(t(a+y+z)),a+y+z>dt—j< g(ta),a>dt = [ < g(t(a+ y +2)) - g(ta),a > dt
0 0 0 .

1 1
[<gtt@a+y+z),p>di+[<gt@a+y+z),z>dt
0 0

et g est ortogonal-additif, il résulte que
BulHY=gul)8ultd), VIE[0,1] & gltatty+iz)-g(ta) = g(ta+ty)+g(ta+tz)-2g(ta).

Donc

1 1
[<g(t@+y+2)) - gta),a > de = [< g(t(a + y)) + g(t(a + 7)) - 2g(ta),a > dt
0 0

et de I’hypotheése 3) il résulte que
1 1
[<g@+y+z2),y>dt=[<gt@+y)y>d
0 0

et

1 1
J'< gt(a+y+z)),z>dt =I< g(t(@+z)),z>dt
0 0

En conclusion

1
Sfay+2)=[(<gt(a+ y)ya+y>+<gta+2)),a+z>-2<g(a)a >
0

flaty)Hfla+)-2f(@)=fu(y)4/o(2),
ce qui montre le fait que f; est ortogonal-additif.

Pour I’operateur f nous avons
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JO)HO) M), (V) y2eE, 0 <y <z

Puisque g est monotone — croissante, il résulte que

0=g(0) <g(ty) <g(rz) Vte(0,o), y,ze E,0<y<z.

Donc
<g(ty),y> <<g(tz),2>, Vte(0,0) = f(y)< f(2).
De la méme maniére, puisque 0 > -y >-z, il résulte que
0=2g(0)2 g(-ty) 2 g(~1z), Vt €(0,0)
et donc

<g(-ty),—y ><< g(-&), 2> = f(-y)< f(-2).
En conclusion pour g(0)=0 nous avons

SO <fA)H-2).

Si g(0)= 0 on consideére

go(x)=g(x)-g(0), vxecE.

et
1
F:E >R, F(x)=f<g0(tx),x>dt, xekE
0

Puisque g,(0)=0, on a
F(y)+F(-y) <F(z)+F(-z), ¥»,z€E, 0 <y <z
On vérifie
F(x)=f(x)-<f(0),x>, vxeE

et donc

SO () <f)H-2), ¥9z€E, 0 <y <z
Soient a €E, y,y’eE telle que |y| < ‘y’l.

Puisque
f‘,’(x) =g(a+x),VxeEet f,(00=0
il résulte que
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1
f.(x)=[<ga+x),x>dt, Vxe E
0

) Y]y <

= o)+ LoD L (pP+ £y Y=

JSest (s) — monotone — croissante.
Dans cet théoréme on donné une caractérisation de (0) — convexité en termes de

monotonie de gradient.
THEQREME 3

Soit X un espace Banach qui est aussi un espace linéaire  o-reticulé et
E c X un sous-espace linéaire reticulé. Si g:E— L(X,R) est gradient continu pour
f:E— R, alors les affirmations suivantes sont équivalentes:
a) fest (o)-czonvexe et sia ek, f, est ortogonale-additife;
b) I’opérateur g satisfait les conditions:
1) pour a €E, g, est ortogonal-additif;,
11) g est monotone-croissante;

i) siy,zeE et ylz, alors <g(x+ty), 2>=<g(x), 2> (V) x€eE.
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THE HERMITE-HADAMARD INEQUALITY FOR CONVEX
FUNCTIONS OF A VECTOR VARIABLE

CONSTANTIN P. NICULESCU

Universi_ty of Craiova, Department of Mathematics, Craiova 1100

ABSTRACT. The Hermite-Hadamard inequality is discuesed in the light of Cho-
quet’s theory.

It is well known that every convex function f : [a,b] — R can be modified at the
endpoints to become convex and continuous. An immediate consequence of this
rcmark is the integrability of f. The mean value of f,

b
, M)=5= [ 1@
can then be estimated by the Hermite- Hadamard Inequality,
(k) 1(557) s mun < 110

2
which follows easily from the midpoint and trapezoidal approximation to the middle
term. Moreover, under the. presence of continuity, equality occurs (in either side)
only for linear functions. An updated account on (HH) are to be found in [2].
What about the case of functions of several variables? A recent paper by S. S.
Dragomir (3] (see also [2]) describes the case of balls in R?, by proving that

@) < o %ma Vol Ba(a ///an(a) (z)dV < ATeGSR(a //sa(a) (z)d5

for every continuous convex function f : Br(a) — R. However, as we shall show in
the sequel, more general results are already available in the existing literature. In
fact, the right approach of the entire subject of Hermite-Hadamard type inequalities
comes from Choquet’s theory, a theory whose highlights were presented by R. R.
Phelps in his booklet [5]. For a more advanced material, see the monograph of E.
M. Alfsen [1].

The basic observation is that the middle point (a+b)/2 represents thé barycenter
of the given interval [a,b] (with respect to a uniform distribution of mass), while
the right hand side of (HH) represents the mean value of f over the set of extreme
points of the given interval.

Then the two sides of (HH) follow different routes, with different degrees of
generality.

To enter the details, let K be a compact convex subsel K of a locally convex
Hausdorff space E and suppose there is given a Radon probability measure 1 on K

1991 Mathematics Subject Classificatton. Primary 26D07, 26D 15, 46A55. Secondary 52A07.

Key words and phrases. Convex function, barycenter, extreme point.
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(which can be thought of s a mass distribution on K). The p— barycenter of K
is defined as the unique point =, of K such that

(B) ?(an) = [ (a) dutz)

for every continuous linear functional ' on E; see [5], Proposition 1.1. When F is
the Euclidean n—dimensional space, the normed and the weak convergence are the
same, so that

| Ty = /K z dp(z)

i.e., the barycenter coincides with the moment of first order of p.
An immediate consequence of (B) is the validity of the inequality

@) < A f(z) du(z)

for every continuous convex function f : K — R, a fact which extends the left part
of the classical Hermite-Hadamard inequality. For details, see the remark before
Lemma 4.1 in [5]. Another remark is the following monotonicity property (noticed
by S, S. Dragomir [3] in a particular case):

1. Proposition. Under the above hypothesis, the function
M(t) = /K fltz + (1 - 1)z,) du(a)

is convez and nondecreasing on [0, 1].

When F = R"™ and p is the Lebesgue measure, the value of M at t equals
the mean of f|K,, where K, denotes the image of K through the mapping z —
tr+ (1 —t)z,, ie.,

1
M) = /K 7(@) duta).

Proposition 1 tells us that shrinking K to z,, via the sets K, the mean of f}|K,
decreases to f(z,). The proof will need the following approximation argument,
which was shown to us by Prof. Gheorghe Bucur:

2. Lemma. Fvery Radon probability measure y on K is the pointwise limit of a net
of discrete Radon probability measures u, on K, which have the same barycenter
as p.

Proof. We have to prove that for every € > O and every finite family fj, ..., fn of
continuous real functions on K there exists a discrete Radon probability measure v
such that

T, =T, and sup |V(fk) - #(fk)| <e.
1<k<n

As K is compact and convex and the fi's are continuous, there exists a finite
covering (Da). of K by open gonvex sets such that the oscillation of each of the
functions fy on each set D, is <.&. Let (¢,) be a partition of the unity, subordi-
nated to the covering (D,). apd put

= Ea 1(Pq) Ex(a)
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where z(a) is the barycenter of the measure f — u(p, f)/p(p,). As Dq is convex
and the support of ¢, is included in D4, we have z{a@) € D,. On the other hand,

W) = Y ulhoa) = 3o, M ) = 3, miate)) - wiva) = ()

for every continuous affine function h : K — R. Consequenly, 1 and v have the
same barycenter. Finally, for each k,

W (fe) — u(fe)l = |Z wp,) fe(z(@)) _Za e, fk)’
Za 1(#a) [fk.(z(a)) - M]

1(®a)
< E'Za /-"((Pa) =c. N

Proof of Proposition 1. A straightforward computation shows that M(t) is convex
and M(t) < M(1). Then, assuming the inequality M (0) < M(t), from the convexity
of M(¢) we infer

M(t) — M(s) > M(s)— M(0) >0
t—s - 3 -
for 0 < s < t <1 ie., M(t) is nondecreasing. To end the proof, it remains to show
that M(t) > M(0) = f(z,). For, choose a net (i1,) of discrete Radon probability

measures on K, as in Lemma 2 above. Clearly,
f@) < [ fz+ (- t)z,) duy(o) for al
K

and thus the desired conclusion follows by passing to the limit over . B

The extension of the right hand inequality in (HH) is a bit more subtle and
makes the object of Choquet’s theory, briefly summarized in the sequel. Given two
Radon probability measures p and A on K, we say that u is majorized by X (i.e.,
@< A)if

| rew@ = [ @

for every continuous convex function f : X — R. As noticed in (5], < is a partial
ordering on the set of all Radon probability measures on K.

3. The Choquet Theorem ([5], ch. 3). Let i be o Radon probability measure on
a metrizable compact convez subset K of a locally convezr Hausdorff space E. Then
there exists a mazimal Radon probability measure ) > u such that the following two
conditions are verified:

i) The barycenter of K with respect to A\ and u is the same;

11) The set Ext K of all exiremal points of K is a Gs—subset of K and X is
concentrated on Ext K (i.e., M(K\Ext K) = 0).

Under the hypotheses of the above result we get

(Ch) f(z,) < /K f(z) du(z) < /E @@

for every continuous convex function f : K — R, a fact which represents a full
extension of (HH) in the case of metrizable compact convex sets. Notice that the
right part of (Ch) reflects the mazimum vrinciple for convex functions.

In general, X is not unique, except for the ce = of simplices; see [5], ch. 9.
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Another useful remark is that every Radon probability measure A, concentrated
on £zt K, for which (Ch) holds, is maximal. CFf. [5], Corollary 9.8.

According to the above discussion, if K = [a, b], then necessarily ) is a convex
combination of the Dirac measures €, and &5, say A = (1 — a)e, + ae,. This re-
mark yields Fink's Hermite-Hadamard type inequality [4] in the case of probability
measures:

(F) /f 7)du(z) < == - f(a) + 2

for every continuous conver functions f : [a b] — R and every Radon probability
measure p on [a,b]; as usually, z,, denotes the barycenter of ,u, ie z, = f bzdu(z).
In fact, checking

—a

-1(b) .

/ f(z)du(z) < (1 - a) - f(a) + - £(B)

for f(z) = (z — a)/(b—a) and f(z) = (b— z)/(b — a) we obtain

I,—a b—1z
a> =t and respectively 1 —a > —£
b-a b—a

ie,a=(z,—a)/(b—a).

The argument above can be extended easily for all continuous convex functions
defined on n--dimcosional simplices K = [Ag, Ay, ...,An] in R™. Then the corre-
sponding analogue of (F) for Radon probability measures i on K will read as

X,) S/K f@)du <Y Voln ([Ao, Ar, -, Ag, ..., An] - f(Ar);
’ k=0

here X, denotes the barycenter of x, and [Ao, A;, ..,.:4:, ...y Apn] denotes the sub-
simplex obtained by replacing Ax by X,; this is the sub-simplex opposite to Ay,
when adding X, as a new vertex. Vol,, represents the Lebesgue measure in R™.

In the case of closed balls X' = Bg(a) in R3, £zt K coincides with the sphere
Sgr(a); the paper by Dragomir (3] illustrates the aforementioned theorem of Choquet
in the case where 4 is the normalized Lebesgue measure on Dg(a). Ilis argument,
based on Calculus, avoids Choquet’s theory, but it cannot be extended to arbitrary
compact convex sets and arbitrary Radon probability measures on them.

The Choquet theory is today a well established subject in Mathematics, with
many extensions and ramifications, and Theorem 3 above is just the beginning of
the story. The reader will find much fun formulating many other results in the
Choquet theory as Hermite-Hadamard type inequalities.
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Induced representations of hypergroups
Liliana Pavel

First we shortly present the main directions of the study of induced
representations of hypergroups so far, and we describe in which way the results
in this topic have been naturaly inspired by the analogous resuits on locally
compact groups. We illustrate these ideas relating positive definite measures on
hypergroups to induced representations of hypergroups.

Although great progress has been made since the beginning of systematic
studies of representations of hypergroups, the concept of induced
representations has not been developed in the general case of an arbitrary
closed subhypergroup H of K up to Hermann [7]. The most general result prior
to this paper was the one of Hauenschild, Kaniuth, Kumar [6]: the authors laid
the foundations to induce a representation from a closed subgroup (that means
a subgroup of the maximal group (G(K) ={ xeK | 8, *6_, = 0_.*6, = 4,})
of K. They translated the classical induction procedure basically invented by G.
Mackey to the case of hypergroups, when H is a closed subgroup of XK. The
main tool that allows this translation and supports the whole computation is:

VxeK, teG(K), there exists an unique y (denoted by xr) such that §_ *5, =
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this way is a Hermitian 4-module, which is called the Hermitian 4-module
obtained by inducing ¥ up to 4 via P.
Actually, if H is a closed subgroup of a locally compact group G, then the C" -
algebra; C* (H) of H is not o subalgebra of C" (G), but rather acts as an algebra
of right centralizers oh C" (G). Also the natural candidate for a conditional
expectation from C' (G) to C" (H) is not continuous, or everywhere defined.
For these reasons, Rieffel generalized the definition of a conditional expectation
and surpassed some technical obstacles, including the Mackey's construction as
a special case of his construction for C" -algebras. The obstacles are the same
when H is a closed subhypergroup of the hypergroup X.
In his,work, [7], Hermann has translated the way in which Rieffel surpassed the
above difficulties, directly, when H is a closed subhypergroup of the
hypergroup K, describing the Rieffel's inducing process for the C’ -algebras,
C'(H), C'(K).
Roughly speaking, hypergroups are locally compact spaces, whose regular
complex valued Borel measures form an algebra which has properties similar to
the convolution algebra (M(G),*) of a locally compact group. For basic
notations and references, one can consult the paper of Jewett, [8]. Let K be a
hypergroup. We shall denote by C.X) the space of all complex valued
continuous functions with compact support on K and by M(K) the bounded
regular Borel measures on K. Furthermore, all hyperhroups occuring in this
paper are supposed to admit a (left) Haar measure, my. Its modular function is
denoted by Ax. We mention that it is still unknown if an arbitrary hypergroup
admits a left Haar measure, but all the known examples such as commutative
and central hypergroups [6] do, in addition, in [15] it is proved that each
subhypergroup of a hypergroup having a left Haar measure, also admits a left
Haar measure. With this assumption, one can define the convolution algebra,
L'(K). Further, as the left regular representation of X is faithful, we can embed
LY(K), as well as C{K) in its enveloping C -algebra, C'(K). By analogy to the
59
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=4,. Conquuently, any technique based on this kind of computation (Mackey)

fails when H is only a subhypergroup.

Studying the paper of Rieffel [12], who invented an abstract inducing process
from which the Mackey construction can be obtained as a panicula; case,
working in the groupal algebras of a locally compact group, Hermann has
translated the way of obtaining the Mackey construcﬁon from the abstract
Rieffel inducing process, working in a proper, carefull way in the hypergroupal
algebras. We notice that there are a lot of analogies between the natural
algebras associated to a locally compact group and to a hypergroup possesing a
Haar measure.

Rieffel's inducing process for C” -algebras is rougly as follows. Let A be a C -
algebra, let B be a subalgebra of 4, and let } be a Hermitian B-module, that is
the Hilbert space of a nondegenerate *-representation of B. It is considered the
algebraic tensor product A&} and it is tried to answer the question how to
equip this A-module with an inner product in such a way such that to obtain a
nondegenerate *-representation of A. An analysis of this question shows that in
general there are many different ways of doing this, in contrast to Mackey's
theory for locally compact groups where there seems to be essentially only one
natural choice of inner-product. This difference is explained by the fact that in
the case of locally compact group G and a closed subgroup H, an additional
piece of structure is present, namely the restriction map from functions on G to
H. Rieffel noticed that, roughly speaking, this map is a conditional expectation,
where for a C’ -algebra A and a subalgebra B, a conditional expectation is a
positive projection, P, of 4 onto B, having the property P(ab)=P(a)b, for all
aed, beB. Once a conditional expectation has been chosen, there is a
canonical choice of a preinner-product on A&V, whose value on elementary
tensors is given by: (@;® vy, @&® ;) = (P(a a;)v,, v)r . This definition, is very
closed to that used in the Gelfand-Naimark-Segal construction of a

representation from a positive linear functional. The Hilbert space obtained in
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case of a locally compact group, the irreducible representations of X are in one
to one correspondence with the non-degenerate (irreducible) representations of
L'(K), and hence C"(K). Corresponding representations of the objects K, L'(X),
C'(K) will be denoted by the same letter. -
Let H be a closed subhypergroup of K. Hermann [7], considered "" the action
of C(H) in C(K) given by

1

AK]H 2
(f.@)> f-p=1* 2| 9 CE)XC(H)>C.(K).

14

Consequently,

(@)= [ fO*1" WA A )W®)  @(t)dm, (©).
As observed in [7, Lemmal]
(f*9)-o=f*( 9),Vf.geC.(K), peC.(H).

He also considered the map P: C (H) — C (K), P= [%]2 S

With Lemma 2 and 3 [7], the map P is a *-linear, generalized conditional
expectation, P(f)* = P(f*) and P(f)* @)= P(f - p), Vf € C.(K), p € C,(H).
Contrary to the group case, it is not possible to induce each representation of
an arbitrary closed subhypergroup H to K, because the Rieffel process requires
the positivity of the preinner product and the norm-conrinuity of the
representation that are automatically fulfilled working with the groupal
algebras. So, the central notion of the Hermann's paper is the inducibility of a
representation of H. Bearing in mind the abstract Rieffel inducing process he
defined the inducibility as follows:
Definition (Hermann). Let p be a representation of H, p is said to be
inducible (from H) to K if the following two conditions hold:
(i)p is P-positive, i.e.

(PP * V)20, WfeCK)  ve H,
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(1i) p is P-bounded, i.e.
(o * &) *(f * W) I -, (P(PUE" * V), g C), v H,

If (i) and (ii) in the definition above are satisfied one can define a preinner

product on the space /'=4 &), (algebraic tensor product) by setting on VxV,
(/B v, g®w) 1= (p(P(g W), W), -
It is a part of the Rieffel theory that this preinner product is well defined. If we
set N={xeV| (x,x) H, =0}, (-, H, becomes an inner product on V/N. Finally, if

Hingp is the completion of V/N with respect to this inner product, we get the so-

called‘ induced Hilbert space on which the induced representation indszs p
(where A=C.(K), B=C.(H)) is defined by

indg, P(fXE®V)=(f*8)®V.
It is clear that every represntation of the subgroup of X is inducible to X, so the
definition includes the most general case known so far, [6].
In his elegant note appeared in 1963 [2], Blattner shows that an alternate
definition of Mackey's induced representations (for groups) can be given in
terms of lifting positive definite measures from subgroups. He stated the next
resuit.
Theorem (Blattner). Let G be a locally compact group, H a closed subgroup

of G. If u is a positive dfinite measure on H, we let u be the measure on G

1 1
obtained by inflating [LZK'" Jz,u, 2= (AAKW jzfl,, ,f€C(G). Thenji
H H

is positive definite and T™ is equivalent to indynT* .

(The meanning of 7™ is the standard one, T,” ([f})=[g#], Vfge C(G).)
Looking at all these prior works, some classical, conceming the induction
process on locally compact groups ([9], [2], [12]) and some connected to
induced representations of hypergroups ([7], [6]), we were also tempted to
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adapt Blattner's idea to induce representations of subhypergroups to
hypergroups. In addition, a nice, ambitious and promising program could be
initiated: using this idea one might hope to answer questions on imprimitivity
for representations of hypergroups, so to get an answer to the difficult
question: which, representations of K are induced from representations of a
given subhypergroup H? (Mackey [9], Theorem 6.6). The next results might be
considered the first steps to get close to this objective.

First stage in develdpping Blattner's idea on hypergroups is to study positive',
definite measures on hypergroups, surpassing the relative poverty of prior
works on this subject. There is no hope for a positive definite measure on X (in

the usual sense J.x S * fdu>0, Vv fe C(K)) to give rise to a proper

representation of the hypergroup, so certainly one has to restrict the class in a
proper way. Which should be the measure's properties (except the positivity) in
order to ensure that 7™ is a representation of the hypergroup?

The (B)-boundedness condition seems at the first glance unnatural, and not
very confortable to handle with: a positive definite measure is called (B)-
positive definite if

[ re *g*faus<|eli] f = fau,vige CaK).

Fortunately, a carefull analysis shows that this condition is automatically
fulfilled for several nice cases such as positive definite measures generated by
bounded positive definite functions ad postive defnite measures (bounded) on a
commutative hypergroup. Moreover, one can link this condition with former
work on subjects connected to positive definite measures on hypergroups such
as [3], [5].

As it follows from Hermann's work [7], not every representation of a closed
subhypergroup H can in general be induced to K. Accordingly, in order to
obtain an analogue to Blattner's description of the induced representations in
terms of positive definite measures, we need for the measure u a property
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which is a substitute for Hermann's inducibility: the natural condition is the one
from the definition of inducible measure.

Definition. 4 (B)-positive measure u on H is said to be inducible from H to K
if u is B-positive definte on K. ‘

For y inducible from H to X, i is denoted by indyx u

With this definition we naturally translate the Blattner's procedure to
hypergroups.The problem that must be solved further is if this construction
concords to the prior work of Hermann [7]. We gave a complete, definitively
positive answer to this question with the next theorem, our main result:

Theorem. Assume H is a closed subhypergroup of the hypergroup K, and let u
be a [B)- positive definite measure on H. Then, u is inducible from H to K if
and only if the representation T* is inducible from H to K (in the sense of

[7]). In this case, T"""* is equivalent 10 indyn.T* .

We can add that this procedure includes the Blattner's description of induced
representations in terms of positive definite functions, obtained in [6] for the
particular case of H a closed subgroup.

We also obtained the Theorem on Induction in stages, whose proof in this
approach is very attractive and natural.

Finally, we notice that this induction procedure on hypergroups, combined with
Hermann's resuits [7], can be used to show in certain cases that a (B)-positive
definite measures on a subhypergroup H of K can be "extended" to a positive
definite measure on K. For example, if H is a compact subhypergroup of X or
H is a subgroup of X, then by [7], each representation A can be induced to K.
In view of our theorem, each (B)-positive definite measure on H is inducible

fromHto K.
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SOME APPROXIMATION RESULTS IN LOCALLY
CONVEX LATTICES

GAVRIIL PALTINEANU AND DAN TUDOR VUZA

,

Let X be a compact Hausdorff space and let F' be a vector subspace
of C(X). In the approximation theory one can define two classes of
subsets of X, with respect to the vector subspace F', namely: antisym- .
metric sets and frontal sets. In this paper we firstly remind the main
properties of these classes then we show how these concepts and their
properties can be generalized to the closed order ideals in locally convex
lattices. Typical examples of such lattices are the weighted spaccs.

1. ANTISYMMETRIC SETS

Let X be a compact Hausdorff space and let C'(X) be the space of all
continuous complex valued functions on X, equipped with the topology
of uniform convergence.

We denote by A° the polar set of any subset A of C(X). Also, for
every subset K of X, we denote by xx the characteristic function of
K and by Ix = {f € C(X); f|K =0}.

Definition 1.1. Let F be a vector subspace of C(X). A subset S of
X is said to be anlisyminelric with respect to F (F - antisymmetric)
if every f € F with the properties:

a) f|S is real valued

b) fg|S € F|S for any g € F, is constant on S.

Remark 1.1. Let A be a subalgebra of C(X). A subset S of X is
said to be antisymmetric with respect to A if every f € A, real-valued
on S, is constant on S. Thus, we reobtain the concept of antisymmetric
set introduced by E.Bishop in 1961.

Theorem 1.1. (G.Paltineanu 1978) Let F be a closed vector
subspace of C(X). Then:

i) The family S of all mazimal F - antisymmetric subsets of X
forms a pairwise disjoint partition of X. L

i) A function f € C(X) belongs to F iff f|S € F|S, for any
Ses.

1991 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary
05A15, 15A18.
Key words and phrases. antisymmetric set (ideal), frontal set (ideal), interpolat-
ing set (ideal).
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wi) F'|S is closed in C(S) for any S € S.
This result generalizes the well known Bishop’s approzimation theo-
rem.

2. FRONTAL SETS

The concept of frontal set with respect to a vector subspace of €(X)
was introduced by Alain Bernard in 1967 as a generalization of the
concept of intersection of peak sets with respect to a subalgebra of
C(X).

Definition 2.1. A closed subset K of X is a frontal set with respect
to the vector subspace F of C(X), if for any f € F, any neighborhood
V of K, any = >0 and any n > 0. there is a f € F such that:

FIK=FIK. |[Flx <Wflc+m [[Fllxy <=

Remark 2.1. Let A be a closed subalgebra of C(X) containing the
constants and K be a closed subset of X. Then, K is a frontal set
with respect to A, iff K is an intersection of the peak sets with respect
to A.

The following theorem is a characterization theorem for the frontal
sets.

Theorem 2.1. Let X be a compact Hausdorff space, F a vector
subspace of C(X) and K a closed subset of X such that F/F NIk is
complete. Then, the following assertions are equivalent:

(i) K is a frontal set with respect to F.

(i1) xx F° C F°.

(iii) For every f € F, and every g continuous nonnegative function
on X such that |f(z)| < g(z) for £ € K, and every € > 0 there ezists
f € F with the properties:

fIK=fiK and |f(z)]<g(z)+c for z€X.

Theorem 2.2. The family of all F - frontal subsets of X is closed
with respect to the finite reunions and with respect to any intersection.

Theorem 2.3. Every mazimal F - antisymmetric sets is a F -
frontal set.

3. FRONTAL IDEALS

Our generalization of the concept of a frontal ideal is motivated by
Theorem 2.1.

Let E be a real, metrizable, locally convex, locally solid vector lattice
and let Vj, be a basis of open, convex, solid neighborhoods of the origin.

Definition 3.1. A closed ideal I of E is said to be a Vo - frontal
1deal with respect to the vector subspace F of E if for any £ € F and
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any y € E, with the property (|z| —y), € I and for any V € V), there
ezists a T € F suchthat z~Z €1 and (|| - y), € V.

Remark 3.1. If E = C(X), then a closed subset K of X is a
frontal set with respect to the vector subspace F' of C(X) iff the closed
ideal Iy is a frontal ideal in the sense of the Definition 3.1.

Indeed, it is sufficient to remark that (|f| — g), € Ix iff
f(2)] < g(a), = € K and that (7] - g)- ] < ¢ i |7(@)| < g(a) +=
forz € X. _

Theorem 3.1. (G.Paltineanu, D.T.Vuza 1996) Let E be a real
metrizable, locally convez, locally solid lattice, [ a closed ideal of E. F
a vector subspace of E and V, a basis of the origin, consisting of open,
convez, solid neighborhoods. If F/F NI is complete, then I is a V,
- frontal ideal with respect to F iff P;(F®) C F°, where by P; it was
denoted the associated projection E' — I°.

Further, we shall denote by Fp(FE) the family of all closed ideals of
F., Vo - frontal with respect to F.

Theorem 3.2. The family Fp(FE) has the properties:

(i) If (Isy C Fr(E) then S Ia € Fr(E)

(i’i) If1,JC }-F(E) then INJ € fF(E)
(1) If (Ioy C Fr(E) and the band generated by | JIa® is o(E' E) -

closed, then (Mo € Fp(F)

a

(iv) Let I and J be two closed ideal of E such that I C J. If
I € Fp(E) and F/F N1 is complete, then J € Fp(E) iff J/I is
frontal ideal of E/I with respect to F/I.

The following result is a generalization of a theorem of a Bernard
concerning the frontal set with respect to a closed subspace F of C(X).
Given a continuous seminorm p on E, we associate to it the quotient
seminorm:

Pi(z) =inf {p(z +u);u €I}, z € FE.

Theorem 3.3. (C.Niculescu, G.Paltineanu, D.T.Vuza, 2000)
Let F' be a complete vector subspace of E. Vy a basis of conver and
solid neighborhoods of the origin, I a Vy-frontal ideal with respect to
F.z e F,y€ E, suchthat (|z{ —y)+ € I,V € Vy and p a continuous
of (AM)-type seminorm on E such that py(z) > 0. Then. there exists
a T € F with the properties:

T-z€l, (7| - y)+ €V and p(z) = p;(z)

Theorem 3.4. Let F be a vector subspace of E. let I be a Vo-
frontal ideal with respect to F, z € F, J a closed ideal of E such that
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z € l+J, p a continuous and solid seminorm on E and € > 0. Then
there ezists a T € F with the properties:

T-z€l,p(T) <pi(z) +eand py(T) <€

If F is complete, p is a (AM)-type seminorm and p;(z) > 0 then
p(Z) = pi(z).
4. ANTISYMMETRIC IDEALS

Let now E be a real. locally convex, locally solid vector lattice of
(AM)-type. The center Z(E) of E is the algebra of order bounded -
endomorphisms U € L(E, E), i.e those U for which there exists A > 0
such that |U(z)| < Alz| for all z € E. We define the real part of the
center by Re Z(E) = Z(E)4+ — Z(E)54.

Definition 4.1. A closed ideal I of E is said to be antisymmetric
with respect to the vector subspace F of E if for any U € ReZ(E/I)
with the property Uln;(F)] C 7;(F) it follows that there ezists a € R
such that U = alg/, where 1g,; is the identity operator on E/I.

We shall denote by Ap(E) the set of all closed ideals of F, antisym-
metric with respect to F.

Remark 4.1. If E = C(X), then u closed subset K of X is an
antisymmetric set with respect to F iff the closed ideal Ik is antisym-
metric with respect to F' in the sense of Definition 4.1.

It is sufficient to observe that Z(C(X)) = C(X) and that 7, (f) =
f | K for every f € C(X).

Theorem 4.1. (G.Paltineanu, D.T.Vuza ). The family Ag(E)
has the properties:

(i) If (Ie) C Ap(E) and J=Y Ia # E then I = Nla € Ar(E).

(i1) Bvery I € Ap(E) contains a unique minimal ideal Iy € Ap(E).

(1) If the family of all continuous lattice homomorphisms
h: E — R separates the points of E, then the intersection

N {I; Ie .ZF(E)} = {0}, where Ar(E) denoted the family of all min-
imal antisymmetric F- ideals of E.

() Let T = {I, Iy, ..., I;;} C Ap(E) and J = {J1,Ja, .., Ju} C
.ZF(E') such that Iy N J; = {0} for every l. Then E = KﬁIIK + lélJL

(v) If F is complete, then Ap(E) C Fr(E).

The following Lemma generalized de Branges’ Lemma.

Lemma 4.1. Let'F be a vector subspace of E and V a con-

vez, solid neighbourhood of the origin, which is also sublattice. If
f€Ezt{VONF® and I = {z € E; |f|(|z|) = 0}, then I € Ap(E).
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The main result concerning to antisymmetric ideals is the following
Bishop’s type approximation theorem.

Theorem 4.2. Let E be a real metrizable l.c. of (AM)-type and let
F C E be a vector subspace. Then for any = € E we have:

z € F iff m(z) € m;(F) for every I € Ap(E) -

Remark 4.1. Theorem 4.2 generalizes Theorem 1.1.

Corollary 4.2. If F is complete and I € Ap(E), then =,(F) is
complete.

Theorem 4.3. Suppose that F' is complete. Let Z;, T, be two finite
and disjoint subsets of Ap(F) (i.e. INJ = {0} for any I € Z; and any
J €T1y),and let Iy = N{I[;I €Ty} and I, = N{I;I € I}. Then, for
every z € F, every continuous seminorm p on £ and every ¢ > 0, there
is a T € F such that:

T—z€l, p(T) <pn(z)+eand p,(z)<c¢

If in addition p is an (AM)-type seminorm and py, (z) > 0, then p(Z) =
pr (I )
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LOCALLY BOUNDED SEMIGROUPS
Mihai Voicu

After a short introduction we have introduced the notion of locally bounded
semigroups. At first, we consider locally bounded semigroups on projective limits of
normed spaces and a characterization in this context is given.

Secondly we investigate locally bounded semigroups on locally convex spaces and a
characterization in terms of projective families of semigroups acting on Banach spaces is
given.

’

1. INTRODUCTION
Definition 1.1. Let (1 , <) be an ordered set and (%, o )ae , a family of topological
vector spaces. Suppose that for any a, B € I, a < B there exists a continuous linear
mapping fup : By = B, verifying that
LIf a<P28then fu;=fup fos-
2 Foranya € I, fo, =1,. (1, is the identical operator on Z,). We say that (JJ o fuﬂ)
is a projective family of topological vector spaces. Let us denote by

lg_n ‘z‘a'_' yen'%‘c( :asBEI’aSﬂ’ faﬁprp(}’)=Pfa()’)}

ae/
the projective limit of (Jé" i fau)-

Example 1.2. Let (2 , ) be a locally convex space whose topology is given oy the
family of seminorms 22 ={p, :a & I}. Consider on I the following order relation: if
a, B € I, we say that a < B iff p, < pp. For each a e I, we denote by J, = p;'(0) and
g =& ]Ja the quotient space. If x, = x + J, we denote by ":(m“Cl = po(x). Thus .2,
becomes a normed space. Leta, B € /,a <P and f,,: 4p - 2, defined by fqp(x + JB)=
=x+J,. Then (.,8" w faﬂ) is a projective family of normed spaces, which is called the
projective family associated to (%", 7).

Remark 1.3. Let (3", 7), #={p, :a eI} be a Hausdorff locally convex space,
(}" . fuﬂ) the projective family associated to (}{,/’) and [ : .%‘—)liin e defined by
fx)=(x+ Jy )‘1 s - Then it is clear that f realizes an embedding of . into li‘l_'n./;’[,. Ifin
addition (.2, 77) is complete, { will be an isomorphism ([3], p.70) and consequently %
and lif_n By can be identified.

Definition 1.4. Let (J& o fuB) be a projective family of topological vector spaces

and Vy : Do — %4 o € I afamily of linear operators. We say that (Vu )GE ; Is a projective

JSamily of operators if the following diagram is commutative
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In this case the linear operator

v (HDuJ Niim %, >lim %,
ael < <

defined by

' V(y)= (Va (pru (y)))ael ’

is called the projective limit of (V, )ae , and it is denoted by V =limV/, .

Definition 1.5. Let (JE' . faﬂ) be a projective family of topological vector spaces and
for each o. € I, T, a semigroup of linear operators on & . We say that (T, )ae ;s a
projective family of semigroups if for each t = 0, (T‘,(t))‘IE ; is a projective family of

operators. In this case the mapping T : [0, ©) > L(lim e a) defined by T(t)=limT, () is

a semigroup and is called the projective limit of (T,)

ael °

(For short T=limT).

2. LOCALLY BOUNDED SEMIGROUPS
Definition 2.1. Let 2" be a locally convex space and T : [0, <) - L(.4) a
semigroup. We say that T is locally bounded if there exists a family of seminorms Q which
gives the topology of & verifying that: for any p € Q, there exist M(p) >0 and w(p)> 0
such that p(T(t)(x)) < M(p)e® P p(x) for all x € & and t 2 0. In this context we say

that T is Q-locally bounded.
Proposition 2.2. Let £ be a locally convex space, 7 the family of all continuous

seminorms on % and S : [0, ©) - L(&" ) a semigroup. Then the following statements are

equivalent:
1. S is locally bounded.

2 Foranyp € 7 there exist g € 7 and > 0 such that p(S(1)(x))< e q(x) for all x ./

andt20.
Proof. If § is locally bounded, from Definition 6 it obviously follows that the second
condition is fulfiled. Let us suppose that S fulfils the second condition. Letp € .2 o > 0
and g € 2° given by the second statement. We can define the following functional

up: Z— R, by u,(x)=sup e“‘"p(S(tj(x)).
120
It is clear that u, 2 p and u, < g, which implies that the family O ={up pE /’} is
equivalent to 7. Letnow (, s € [0, ) and x € 2. Then we have:

e ) p(S(r + sXx)) < u,(x)
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e e p(S(NS(s)(x) L u, (x)
Multiply the last inequality by e“’ and obtain
e ™ p(S()S(s)(x)) < eu, (). .

By passing to supremum as ¢ > 0 and by taking into account the definition of u,, we

have
u, (S(s)(x)) < ®u,(x).

Therefore S is locally bounded. Q

Corollary. Let ( ) be a normed space and S : [0, ) —)L(,zf' ) a semigroup.
Then the following assertions are equivalent:
1. S is locally bounded.
2. There exist M >0 and ® >0 such that |S(t)|| < Me® for all t20.

The proof'is a simple consequence of Definition 2.1 and Proposition 2.2.

Since any HausdorfT locally convex space can be embedded into a projective limit of
normed spaces we consider at first, locally bounded semigroups on projective limits of

normed spaces.
Theorem 2.3. Let (I,<) be a ordered set, (J%" s fuﬂ) a projective family of normed

ae/

Z c lim#, verifying that pr, (Z):,’“&"‘1 foralla e I Letalso S : [0, ©) - L(Z) be a

mapping. Then the following statements are equivalent:
1. S is a 2 -locally bounded semigroup.

2. There exists a unique projective family of locally bounded semigroups (s o )aE ; acting on

spaces, [HJ{;, ?] the product space where 7 ={p,:0.cl} and a subspace

A&, suchthat S(t) = (h:n S, (t))|Z forall 120.
Proof 2= 1. Leta €] and M(a)and w(a) given by the above Corollary such
that S, (1) < M(a)e™®”, forall 12 0. If z € Zthen S(r)(z) = (S, (")(pr.(2))), , and
Pa(SUX2)) = S, )pro ()], < M () e |pr, (2)f, = M(0) e p,(2)

which means that S is a 7#-locally bounded semigroup.
1=>2 letae,t20,x, € Zgand y, z € Z such that pr, (z) = pr, () = x, . Since

S is P-locally bounded it follows that p_(S(t)(y)~S()(z))=0, and hence pr, (S(1)(»))=
=pr, (S(l)(z)). In this context we can define S, (f): #£q - Ba by S, (t)(xu ) = pr, (S(t)(y))
where pr, (y) = x, . Moreover, |S, (£)(x, ]Ll: p(S).

For o € [ given there exist M{a)> 0 and o(a) > 0 verifying that

Po(SOY(»)) < M()e* ™ p,(v)
In conclusion
1S )(xe )|, < M(ax) em(“)'"xa]L
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Letnowt, s € [0, ), a € I, xy € %y and y € Z so that pr, (y) = x, . Then we have

Salt +5)xq )= Pra(S(t + 5)())=pro (S() S G52(y ).
On the other hand,
8o (0084(8)(xa )= S (prS(5) )= pra (SOS () ().
Therefore ,
Salt+35Xxe) =82 ()Sa (5)xq)-
In addition we have
5a(0)(x3) = pra (SO)»)) = pra (») = %, - )
Thus, we can assert that S, is a locally bounded semigroup on 25, for all o € I.
Leta,Bela<PB, t20,xp € .23y e Zsuch that prg(y) = x5. Under these
conditions we can write
JapSp (Ol )= fup PRS(P) = L S(@)y -
On the other side we have
TS0 faplws)= S0 fup (PR ()= Sa (O PR () = PLSOY).
Hence it results that
Jop S3(x3) = (0 fap x5
and finally we can say that (S, )uE , is a projective family of locally bounded semigroups.
Let us denote by T = lim S, . It is easy to see that T is a . #-locally bounded semigroup on

lim &, .Lety € Zand t 2 0. Then

TN = (So ONPre 0Naes = Pra (SO ae; =SOK) -
This means that

S() = (limsu (r)) ’z .
Uniqueness: Suppose that there exists another projective family of locally bounded

semigroups (TCI )GE ; such that §(r) = (lim T, (r)) 5 forall r=0.

Leta € [,t2>0,x, € .45 and y € Z such that pr,(y) = x, . Then we have
(13,0 =(1m 7,0 ) 0.
Then it follows that S, (f)(x, )=T, ()(x, ). Hence S,(t) =T, (¢) and finally S, =T, forall
a € I and the proof is complete. O
Corollary. If we replace in the statement of Theorem 2.3,Z by lim £, and suppose
that pra(lim Z u) =& for all a € I then the following assertions are equivalent:

1. S is a P-locally bounded semigroup.
2. There exists a unique projective family of locally bounded semigroups (S, )ae ; acting on
£, such that
75
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S(t)=1limS, (1), for all t 2 0.

Now we apply the previous result to locally bounded semigroups and a characterization of
them is given. )
Theorem 2.4. Let (2", ) be a Hausdor(f locally convex space, 7 ={p,:ael}.

(.%‘ ws faﬂ) the projective family associated to (J’é" , .-'?’) and S : [0, ©) — L(:2") a mapping.
Then the following assertions are equivalent:

1. S is a P-locally bounded semigroup.

2. There exists a unique projective family of locally bounded semigroups (S, )aE ; acting on

%, such that
750) = (uln S, (r)) £, forallt>0.
Proof. Let us remark from the beginning that /: 2"—> 1i+l-11 Z, defined by
. S =(x+Ja)es
fulfils the condition pr,(f(2"))=.8, for all @ e I Let now the product space

{HKQ,Q}, where 0 = {qul e 1} and

ael
(1) g @)=l +Jef, =pa(®). xe £ ael
For each t > 0 we can define the operator T(r): f(.%")— f(.2") by the formula
) T@0)f(x)=fS()x), xe £

From (1) and (2) it follows that T(t) L([ ( )) t 2 0. In addition one can deduce
that: S is a #?-locally bounded semigroup on 4" if and only if T is a Q-locally bounded
semigroup on f(.2"). Now it is possible to apply Theorem 2.3 to (;3" o fuﬂ), Z=f(2)
and 7. Then there exists a unique projective family of locally bounded semigroups (Su)
on 4, such that

ae/

T(t)= th ) l ( )

or equivalently

107 =(limS,0)f

From (2) we obtain finally the formula fS(¢) = (lim S, (t)) /.t 20 and the proof is

finished. Q

Corollary. If in addition in Theorem 2.4, (& ,P) is supposed complete, then the
Sollowing assertions are equivalent:
1. S'is a Co and P-locally bounded semigroup.

2. There exists a unique projective family of Co-semigroups (S, )ue , on JZZG such that
S@)=hmS (1), 120.
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Proof. Since %" is complet then the following conditions are fulfiled ([3], p. 70).
a) lim %, =lim.é" . - (& is the completion of £g).

« -
b) f: & > lim 2, is an isomorphism. -

In this case T constructed in Theorem 2.4 is a semigroup acting on lim.Z,, and
“«—

=1imS, (), ¢ > 0. From (2) it follows that: S is Co-semigroup if and only if T is a Co-
-

semigroup. On the other hand it is easy to prove that: T is a Co-semigroup if and only if S,

is a Cy-semigroup for all @ € I. Consider now the extension S.(f):4, - %, for all

a € Tand ¢20. It is easy to prove that (.§'u )ac; is @ projective family of Co-semigroups

and limS, = lim .§a . Therefore 7'(r) = lim 3\, (t) and by (2) it follows that

a

£SO =TS = [uln Sa (t))f ,

that is S(7) = limSq (r) for all r20.Q

(1]
(2]
3
(4]
(51
(6]
(7]
(8]
19
(10]
[11]

[12]
(13]
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NORMAL CONTRACTIONS PRESERVING POTENTIALS
by Gh. Bucur

1. Let (H ) <_.>) be a Hilbert space endowed with an order relation < such that A becomes
a vector lattice. If for any two element x, y of H we use the notation x A y (resp. x v y) to mark
the greatest lower (resp. least upper) bound of the set {x, y} then we say that H is a Dirichlet

space if for any order disjoint positive elements x, y (i.e. x A y = 0) we have <x. y > < 0.
It is known (see [1], [3]) that if H is a Dirichlet space then the set P of all potentals i.e.

P={peH|<ph>20,V heH.}
is an H-cone. Particularly (see [1]) the elements from P are positive and 4
R,RbeP=>pnp,ebl. .
Also, even if the vector lattice H is not complete, for any subset 4 of 2, 4 # . there exist
the greatest lower bound A4 and we have
A eP, prad=ni{p+qlges} ¥ peP
As for least upper bound it is known (see [3]) that any increasing and dominated family .4
ffom P there exist vA4 and we have i
v4d € P, p+vA=v{p+q|qu} Y peP.
We remember also that P is a closed convex cone which satisfies the Riesz
decomposition property with respect to the order relation <, i.e.
(P.9ud: P, p<g+0)=>(3 p.preP. pSq, p=p+p).
This property is equivalent (see [5]) with the following one
p.geP=>p-R(p-q)eP
where we have denoted:
R(_p—q)=A{te Pl Zp—q}
Returning to the families of potentials which are directed we remember the following
convergence properties:

I (p )‘u is a lower directed family of potentials then it converges in the Hilbert
space Hto Ap,.

If (p.),, is an upper directed family of potentials such that there exist M = R with
[7.[< M foralliel then (p,),, converges in the Hilbert space H to v

2. A Dirichlet space (H , <, >,s) is termed a functional Dirichlet space if there exist

a set X and a family . /" of subsets of X (termed negligible) which is hereditary (ic. A e .+
Bcd=Be./)and o<closed (ie. 4, € .4 = | )4, €./ such that:
. neN
a) the clements of H are equivalent classes of numerical functions which are finite
outside of an element of .#" where the equivalent relation is given by f ~ g3 4e.t’ st
f(x)=g(x) VxeX\4.

b) the order relation < in H coincides with the pointwise order relation in .Y outside an
element of 47 *

c) for any sequence (u, )n in A which converges in the Hilbert space to u, there exist a

subsequence (u,, ) . and an element 4 € /¥ such that we have
2/ pa
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limu, (x)=u,(x) VxeX\A4.
P »

Definition 1. 4 map T: R — R is termed a real contraction if

1)TO)=0

DV x,yeR, [T(x)-T(y)|<|x-y|

One of the most important real contraction is the contraction denoted by T, which is
defined by

Tx=x"nl, VxeR.

We say that a contrgction T acts on the functional Dirichlet space (H,< >,<) if we

have
feH=TfeH and |Tf|<| 1]
It is known (see [1], [3], [4]) that if the contraction 7, acts in H then all eontractions

act in H.
Now we consider the following question: what are the contractions which preserve the

potentials?
The answer to this question is the following :

Theorem 1. A contraction T on R such that T is concave and increasing on R, and
Tx=0 for‘all x < 0, preserves the potentials (ie. TpeP V pe P) in any functional
Dirichlet space in which the contractions act.

Theorem 2, If T is a contraction on R such that T preserves the potentials in any

functional Dirichlet space in which the contractions act then T is an increasing concave
functionon R, and 7x=0 forallx<0.
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A Cauchy problem involving almost periodic
measures

Silvia -Otilia Corduneanu

J. Lamadrid and L. Argabright defined the almost periodic measures on
a locally compact abelian group G. The set ap(G) of all almost periodic
measures is a locally convex space with respect to a topology which is called
the product topology. In our paper we try to find the solution for the following
Cauchy problem
; dutt =v=u(t), u(0) =y,

u(0) = uo,

where u € C1(IR,ap(G)), v is a bounded measure on G and ug is a certain

almost periodic measure.
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OPERATOR-VALUED MOMENT PROBLEMS INVOLVING
EXTENSION RESULTS

Luminita Lemnete-Ninulescu

In this note we present two compliex moment probléms solved by a theorem o

extension of linear operators [4].The theorem is:

"Let X be a locally convex space, let Y be an ordered complete vector lattic
with strong unit and let X, be a vector subspace of X. Let A< X be a convex subse

such that the following two conditions are fulfilled:
(a) there exists a neighborhood V of the origin such that (X, +V)n A= (D

thy A is bounded
Then for any equicontinuous family of linear operators {f},.., € L(X,,Y)
and for anv y>0 (yeY) .there exists an equicontinuous family
{fhae L(X.Y) such that 7\ =/ and 7 ‘2;,1'5 I.Moreover, let u be
a strong unit in Y and let V bhe a convex circled neighborhood of the origin
with the properties
c) f(VrmnX,)c[-u,.u,)
(d) (X,+V)nA=®d . Wedenote by p,the Minkowski functional attached to
V. if we choose 0~ aeR such that p,|,<a and 0<a, e R such that
v < aq,u. then the following holds:
(€) f(x)<(+a+a)p.(x)u, Vxe X,iel."
We consider ¥=C; on C we have the order relation z, <z, iff Rez, <Re:.
and Imz <Im:.. Endowed with this order relation C is an order complete
vector lattice with strong unit u, =1+i .Let X =C.(T) with T a compact set

in C.0eT X considered as a real vector space‘ X 1s a locally convex space.
The sequence of complex numbers {«, },,, = C is positive defined on T if

n.m

the following implication holds: | 75”, z"z" 1<1Vz e T implies

-1<ReX e, <land—1<[mZ£ <1.

n.m nm nm nm

Remark : [n any situation of 7" = @ there exists such a sequence.
Problem 1 : Let T a compact set in C with 0eT and

X=C.(T).X.,=sp{z"z .n+m21}, A=co{e .z €T} . We consider Y=C as
before and {a,,}.,=C a positive defined sequence on T. In these
conditions for anv 2. € R there exists féL(,\’,Y) suchébat
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(1) f(z"z")=a,, ,YnmeN,n+mz1
@) fle™)2a(+i) , kelN
(3) fx)y<2+a) | x| (1+) VxeC(T).

With a minor modification when H is a complex Hilbert vector space and
Ae A(H) is a selfadjoint operator on H it is known from [2] that if
A ={UeAH)UA=AU} and A, =(Ve A, VU=UV,YUeA)} 4, is a
complete vector lattice with strong unit »,=7/.We have the same in the

bidimensional case:
Let H be a complex Hilbert space and 4, a part of A(H)xA(H) with the

following properties:
(1) IfU,.v) and (U,,V.)e 4, then (U, +U, .V, +V,)e 4,

(i) If(U,V)e d,and AeR,then AU.V)=(AU,AV) € 4,
(iii)y If (U,A)and (V,A)e A4, then (UV, A) e 4,and UV=VU

(A,U)and (A4,V) e 4, then (4,UV)e 4, and UV=VU
av) If (U,.V;),.,1s a generalized sequence in 4, such that the component
sequences {U,} ,and {V,}, are bounded and pointwise convergent to
the operators [/ respectively V, then (U,V) € 4, .
In these conditions, A.1s a complete vector lattice and if (/,/)e A, then
(/.1)=wu, is a strong unit in A4,.
Concrete example : Let H be a complex Hilbert space and N=U, +iV, a
N+N° N

N
normal operatoron H, U, = > WV, = 3 such that the spectrum
Z I

o(N) c B(0.1). We define

A ={(U.V)e A(H)XA(H),UU, =U U VV, =V,V, UV, =V,U,U.V =VU,}and
A, ={(U,V)ed,such that UU,=UU VW, =Vl UV, =VUUV =VU, for
V(U V,)e A4 }.In these conditions, 4, ts a complete vector lattice and if
(I.Ihe A, then ({.])=u, is a strong unit in A4, (it satisfies conditions i-iv).
Moreover,if (/,.V,)and (U.. V. ) belongs to 4. ,then also
QU.-Vy.UV,+VU,)e 4, If we identify NeK(H)with the pair
(U,V.)e A we have also N‘N™ed, for VkmeNwith the same

identification.
Problem 2 : Let K a compact set in C such that 0eK and
X =C,.(K)organized as'a'real vector space,
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X, = sp{z"?,n+m 2llc X, A=co{e™ ke N,ze K},Y = 4, as before and
a. > 0.In these conditions, there exists f e L(X,Y) such that:

(1) f(z"z")=N"N"" ¥(n,m) e N*,n+m > I(with'the' mentioned'identification)
Q) fe*HYza(,=au,VkeN

(3) f(x)<(2+a,) |l xliu,,where || x|l=sup{| x(r)|,r € K}
Proof Let X =C.(K) 1s locally convex , ¥ = A4,as before is a complete
vector lattice with strong unit », =(/,/).Because d(X,,4)21,we have (d).
We thus,only verify that f(X, N B(0,1)) = [~u,,u,]. This is :

if | Y¢&,.2"2z" |<1 we must have

nvmz|

’

—I<Re Y& N'N"</and -I<Im Y& N'N™<I.

n-mz! n-ml

25NN+ NN

That 1s - <25 . </7and
SENNT-FE N'NT
_[ S LN J n.m S ['
21

From the integral representation of the normal operator N with respect
to the associated spectral measure x the inequalities becomes:
- [ du(z)< [ Re[ Y &,,2"2" du(2) < [du(z) and

TN a(\) n-mzl a(N)

- _[ du(z) < _[ Im[ > g’,,_mz”?]dy(z) < _[d,u(z), inequalities that are true.

aNG IRA! n=mz| G(\)

QED.
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THE REPRESENTATION OF CERTAIN
OPERATORS AND FUNCTIONALS AS
INTEGRALS OF THE COMPOSITION OF
FUNCTIONS IN ORDERED LINEAR |

SPACES

Giida Moldoveanu

>

The following transformations of integrals are based on the results of {1}.
(2], [31. (4]. [3i. [61. [7). The notion of p-integrable function is introduced in
[1], [2] and [3]. The notions regarding order are from [2] and [{}.

Let X.T be g-regular, comylete vector lattices and B(X. 17} the complete
vector lattice of the regular oj)eratm‘s defined on .\, with valnes in ¥ T is a
set. T is a g-algebra of subsers of T, and p: T — R, is countably additive.
Lo(T, X. ) is the set of y-integrable tunctions, G = {f € L ,(T. X. ) | f(t) =
Opa.e.}, L(T, X, p) = Lo(T, X, ) | G which is a vector lattice.

Theorem 1: Let w : T — R(X.Y) be a pesitive function with the fol-
lowing properiies:
(1) Vx € X.w,: T — Y, defined by w,(t) = w(tir), vt € T, is p-integrable
(2) 3P € R(\N.Y) such that w(t) < P,vteT.

The operator U : L(T, X, 1) =Y is defined by

CU) = [ (w £(du(e). ¥ € LT, X. )

where <, f > (1) = w(t)(f(M). YeeT
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Then there exists a measure m : 7 — R(.X,Y") such that m(4) < p(4)P,
Y4 € T and for which

U(f) = [ f)dmie), Vf € LT, X, ). :

The existence of U is based on theorem 3 of [7]. The existence of m is

proved using theorem 2 of [6].

Theorem 2: Let U : L(T. X, u) = R be defined by ‘
U = [ fodm(t), Vf e LT X, u),

where m : T — X is a measure for which there erists P € X such that
m(4) < p(A)P.7AeT.

Then there exists a function w : T — X with the following properties
(1) Vz € X, the junction w, : T — R, defined by w,(t) = w(t)(z), vt € T,
is u-integrable
(2)0<w()<P. ¥YteT
and U (f) _ S, Fidpdt), Vf e L(T, X, ).

The proof is based on prop 1/p.199 of [3] from which it follows that the
space L°(T, T, u) has the lifting property.

The last transformation of integrals shows thart the integral representation
of [1} can be considered for the functionals as an integral representation of

the composition of certain functions.

Proposition 1: The generel form of the linear positive functionals U :
L(T, X, p) = R for which there exists P € X} such that
UAI < P 1F@)1dute), V¥ € LT, X, n)
is gicen by
) = [tw dute), ¥F € LT, X, p),
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where w : T— X has the properties (1) and (2) from theorems I and 2.
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EXTENSION OF LINEAR
OPERATORS, DISTANCED CONVEX
SETS AND THE MOMENT PROBLEM

OCTAV OLTEANU

Abstract

One applies a general extension theorem for linear operators (the-
orem 5 [5], p. 969) to the classical moment problem in the spaces
C([0,b]) and A;. Our solutions fulfil some natural sandwich type con-
ditions.

THEOREM 1. Let 0 < b <1, X := C([0,8]), z;(¢) =t/, j € N, 5 > 1,
{orike N} C X, |loell €1, px(0) =1, k € N. Let Y be an order complete
vector lattice with a strong unit uo, and let {y1,y,....} C Y be such that

the sequence {uo.y1,ys,...} is positive on [0,8] (D_X;t' > 0 Vt € [0,b] =

j=0
Aotto+ D Ny; 20in Y, n€ N, \; € R).

i=1

Then for any a; € R, there exists f € L(X,Y) such that
f(JTJ):y,n ]EN, .]21
f(ﬁok) Z QaUg, k S N
f(z) £ (24 an)llzlluo, T€X

In the following X will be a space of analytic functions. Let b > 0 and

X := A, the space of all functions z which may be represented as an abso-

lutely convergent series z(z) = » A;2, |z| < b, A\; € R, z being continuous
=0

in the closed disk |z| < b. For £ € X, we denote ||z|] := sup{|z(z)]; |z| < b}.
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Let z; € X, z;(z) = 2/, j € N. Let Y = L*(Q) with respect to a positive
measure on {. We denote by up € Y the function ug(w) = 1 Vw € 2. For
y € Y, we note |||/ = esssupy.

THEOREM 2.1. Let b > 1, {pr;k € N} C X such that ”cpkH < M,
or(0) =1, k€ N. Let {y; : j € N, j 2 1} CY be a sequence such that
lyille <6—=1,521.

Then for any j € Yy, there ezxists f € L(X,Y) such that

f(z;) = jEN,j>1 ,
f(#x) ﬂ keN
f(z) S A+ M+ ||gll)llz]|uo, € X

v
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Some Remarks upon a Paper by P. Cojubari

GEORGE PoOPEscU
September 2001

Hardy's inequality for IP or L? spaces has been of high interest for quite a long time. The aim of this
paper is to produce Hardy type inequalities in Hilbert spaces in a similar manner to Hardy’s inequality
for /2. The starting point and also main theorem is an inequality due to P. Cojuhari [C] for a pair
T. J of bounded operators on a Hilbert space 7. All Hardy type inequalities that will be proved, are
consequences of theorem 1.1 or its version for unbounded operators. If written for the adjoint operator
this inequality yields a "conjugate” Hardy type inequality. We will ‘denote these two inequalities by
(H) and (H*). We add a technical tool to supply Cojuhari's proof using unbounded operators to
produce Hardy type inequalities in /2. Then we prove that the power series of the un.ilatex;a] shift 17,
namely ) JV™ . Y (V*)"J are so-convergent.

Consider now a Hilbert space H and let B(H) denote the algebra of bounded linear operators on X .
Theorem 1.1 [C] IfT.J € B(H) and J is positive. then the operator S = J —TJT" is selfadjoint
and the following inequalities hold :

i) x|l - infl< Sy.y > <2- (I -T)Jz| forall ce™.

i) (H) ||Uz|- i'i’f|1£]< Sy.y><2-|z|f forall reH
ai)  (H* | U*=z||- ;pil< Syy><2-|lz|| forall reH
Where U is the extension of (7 — T)J)~!. By applying these inequalities to particular choices of the
Hilbert space M and the operators T, J we get Hardy type inequalities also denoted by (H) and (H*).
1. THE FINITE DIMENSIONAL APPROACH {BOUNDED OPERATORS)

Consider now the finite dimensional Hilbert space . = CP , for p > 1, the right shift V($;,....&) =
(0.41,....%-1) and the diagonal operator J defined as J(&n)n=1p = (2€n)n=1p . which is clearly
positive. By applying theorem 1.1 to the operators IV and J~! we get Hardy’s inequality for [2

o\ 172 - 12
: ) <2 ( l£n|2> forall  (Sa>1 € 2.
n

x| x| 2\ V2 o 1/2
(H*) Z!Z;&-) SZ(ZM") Jorall  (Sa)nz1 €17,

2. THE INFINITE DIMENSIONAL APPROACH (UNBOUNDED OPERATORS)

Theorem 2.1 [C] If T.J € B(H) and is J positive with ker J = {0}. then the operutor
S§=J V- TJ'T* is symmetric and the following inequalities hold :

i) 1)} - Ii.t_1f1< Syy><2-||(T- T)J‘lz” forall r.yeDs.
lyi= .
i) (H) iUzl inf <Sy.y><2- |z foral reHN.
Lye=
wi)  (H*) 10*zj - in.f1< Sy.y> <2 |z|f foral =zeH.
Y=

Where U/ is the extension of ((f — T)J '1)_1. Consider now the Hilbert space H = {2, the unilateral
shift V' and the diagonal operator J defined as J(&n)n>1 = (%ﬁn)nz; for (Ea)n>1 €12

x
Proposition 2.4 The linear opemtor T : I* — I? defined as TS < S~ JV"< is bounded on i, ||T}| < 2
n=0
x
and T*S = Y (V*)"JE. We also have TE=J(I -V)~'¢ for £ € R-v) . and T*E = (I - 1 RN £3

n=0
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Corollary 2.5[C] Let V and J defined as before. Then we get Hardy's inequality for a dense subset:

a2\ 172 o 1/2
w (Ex|Fal) <2(Eiel) pra e eroy

k=1 n=1

Proposntlou 2.6 In the above stated contert we have:

n 30 3
i) (ao— lim Y JVF)e= 3 Jvrs forall£ € Ry C 2
= k=0 n=0

n o0 .
ii) (so— lim Z(V")"J) =Y (V)*J§ forallecl! ci?
o0 k=0 n=0 ‘

3. IMPROVEMENT TENTATIVES
Pl‘OpOSlthIJ 3.1 Let (an)n>1 be a strictly decreasing sequence with an >0 forn>1 and

m.f{ n—;ﬂ‘—‘l),n>2}— , with0 < 3 <oo. Them
o  in o 2\V2 < 1/2
Yalld e <2 (Zisnl’) forall  (Sa)nz1 €1F
n=1 k=1 n=1
1/2
o0

(H*)

~ 1/2
<2 (Z |s,,|"> Jorall (&4)n>1 € 12
n=1

Proposition 3.2 The best form for the Hardy type inequality (H) or (H*) (in proposition 3.1) corre-
sponds to the choice a, =1 , n>1 ie J(Eadnz1 = (L&)n21-

n

4. HARDY TYPE INEQUALITIES IN L2(R,)
Consider now the Hilbert space H = L?(R,), V a shift type opcrator defined as

ya_J O ,forz €(0.1) )
Vele) = { Pla-1),forre(l,o) ’ for v € L*(Ry).
and the operator J defined as Jy(z) = F¢(x) forall € L3(Ry).
Theorem 4.1 (C] In the above stated conditions, the following Hardy type inequalities hold :

o Bl . 5 1/2 x 1/2
(H) 3 / Z’”f::l Noaz] <2 (/ le@)Pds |  forall zeRy-v
n=0 3 k=0 0

2 1/2 x 1/2
d.r) <2 (/i,:(;r)ﬁdz) Jorally. Je € Ry vy
0

To complete the proof for inequality (H) we need to build a context similar to the "finite dimen-
sional™ one in section 1. Just as in section 2, we get a similar result to prop. 2.6.
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{8Z] S. Str&tila, L. ZsidS, Lectures on von Neumann algebras, Ed. Acad. Abacus Press. 1979
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PARETO EFFICIENCY, CHOQUET BOUNDARIES AND OPERATORS IN
HAUSDORFF LOCALLY CONVEX SPACES

VASILE POSTOLICA

Bac&u State University

Department of Mathematical Sciences,
B-dul Traian nr. 11, bl. A1, sc. A, apl. 13,
5600 - Piatra Neamt, ROMANIA

Abstract

This research paper is devoted to develop the study of the propertes for
Pareto type efficient points sets in separated locally convex spaces, being based on
the first result established by us on the coincidence of Pareto type efficient points
sers and the Choquet boundades and its natural corresponding extension for the.
approximatdve efficient points sets in Hausdorff locally convex spaces, both of these
results representing also an important connection between two great fields of
Mathematics: Vector Optimizadon and the Potendal Theory . Thus,if A is a non-empty
arbitrary choosen subset of E and a, € A, then

Definition 1. We say that a, is a K-efficient point of A (a Pareto type minsmum for
A with respect to K), in notation, a,€ eff (A,K) (or a,€ MIN, (A)) if it satisfies one of the
Sollowing equivalent condstions:

(i) AN{a,-K)CSa, +K; @) KN(ay-A)S-K;

(irf) (A+ K)N(ay - K) S ay + K; () KN(a,-A-K)C-K.

Whenever K is pointed, that is, KN(-K)={0}, then a,& eff (4,.K) means
that g, fulfiles one of the next equivalent reladons:

2) AN(a, - K)={a,}: ®) KN{(a, - A)={0};

9 AD(a, - K\{0})=2; @ (K \{0})N(4, - 4)=2.

In a similar manner one defines the Pareto type maximum elements of A. In
fact, a;€ a is a Pareto type maximum point for A with respect to K, in notaton,
ag€ MAX, (A) if it is a Pareto minimum point of A with respect to -K, thar is,
a € eff (A—~K), l.e. a € MIN, (A).

The immediate connection with the fixed points for muldfuncdons is
obviously contained in

Remark 1. a,€ ¢ff (A.K) is and only if it is a fixed point for at least one of

the following multifuncdons:

F:A> AF(1)={ae A:AN(a-K)cr+K],
F,:A—> A F(t)={ac A:AN(1-K)Ca+K},
F:A—- A F(r)={ac A:(A+K)N(a-K)cr+K},
F:A-AF,(1)={ac A:(A+K)N(t-K)ca+K],

thatis, @, € F,(a,) for same i =1,4.
Remark 2. It is known that, if AGE is an arbitrary non-empty set, then a
point-to-set mapping I': A — 2* is called a generalized dynamical system when T'(x)# @
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for every x€ A. A point a,€ A is said o be a aifical (sometimes equilibrium point for T')
if ['(a,)={a,}. Itis easy to see that that whenever K is a pointed, convex cone in E,
then a,€ ¢ff (A,K) if and only if &, is a critical point for the generalized dynamical
system I' defined by I[(2)=AN(a-K),ac A. Thus, one can says that eff (4,K)
describes a state of equilibdum for ' and the ideal equiiibria are contained in this
set. If X is any non-empty, compact subset of E and K is an arbitrary closed, convex

pointed cone, then
Theorem 1. off (X,K) coinades with the Choguet boundary of X with respect to the

convex cone of all real contintious functions which are increasing with respect to order relation <, .
Consequenthy, the set eff (X ,K) endowed with the trace topology Ty induced on X by 7 is a Baire
space. Moreover, if X is metrigable, then eff (X, K) isa Gs- setin (X,1y).
Corollary 1.1
() eff (X,K)={xe X: f(x)=sup{f (x): x¥e XN(x-K)} forall feC(X)].
(@) eff (X.K)and eff (X,K)N{xe X :5(x)<0} (s€S) are compact sets with
respect to Choguet’s topology;
(iii) eff (X ,K) is a compact subset of X.
. Remark 3. There exists more general conditons than compactness imposed
upon a non-empty set A4 in a separated locally convex space ordered by a
convex cone K ensuring that ¢ff (X,K)#@. Perhaps our coincidence result
suggests a natural extension of the Choquet boundary at Jeast in these cases.
Definition 2. If a non-emply subset of E, then ay€ A will be called an minimal
element (€ — efficient point, Pareto € — efficient point, € — near to minimum point) of A with
respect to K if there exdsts no a€ A such that ay—a—¢c€ K, ithatis, (qy—e-K)NA=@.
The € - efficient points set of A with respect to K will be denoted by
e-eff (A K),
Remark 4. It is clear that the concepr of the ¢ - efficient point does not
include the notion of efficient point, eff (A,K) C £—eff (A,K),Vee K\{0}
and eff (A.K) = ﬂ[e eﬁAK)]

Definition 3. A rea/ Sunction f:E—R is called €+ K~ increasing if
f(x)2 f(x,) whenever x,,x, € E and x,€ x, +£+ K.

Theorem 3. If X is any nonempty and compact subset of E, then the set
E—eff (X.K) coincides with the Choguet boundary of X with respect to the convexc cone and all

€+ K — increasing real continuous functions on X. Consequently, the set € —eff (x,K) endowed
with the trace topology is a Baire space and if (X,z,) is memizable, then €-eff (x.K) isa
Gy — subset of X.

The paper includes also some connections with Lototsky-Schnabl operators,
Altomare projectons and relevant references.
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BERNSTEIN OPERATORS
OF SECOND KIND

I. RASA
Technical University of Cluj-Napoca
Department of Mathematics
15, C.Daicoviciu St.
3400 Cluj-Napoca, Romania

T. VLADISLAV
' "Politehnica” University of Bucharest-
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313, Independentei St.
77206 Bucharest, Romania

Bernstein operators of second kind have been introduced and studied in
[1]. Other properties of them have been established in [2].

In this paper we study the associated blending system, preservation prop-
erties and Voronovskaya type properties.
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ON SOME APPROXIMATION PROCESSES
INLOCALLY CONVEX CONES

Ligia — Adriana Sporis

e The aim of this paper is to present a Korovkin system for a cone of weighted
continuous set — valued functions.

§ 1. Preliminaries

e Let (G.V) be a separated locally convex cone such that G is a linear space.

We shall consider:
(1) CCon(G)={ A<G| @= A4eCConG).¥, compact in the upper topology on G },

which becomes a locally convex cone, as a subcone of the full locally convex cone
W(—;),V), where ¥ = {F| v={}ver }
It’s not difficult to verify that (CComv(G),7) is a M -uniformly up-directed
cone, v-semilattice and all its elements are bounded.
Recall that there’s a natural embedding ;:G" — (CConv(G))', j(u) =i, where
1(4) = sup{u(a)| ae 4} 4eCConv(G).
LetQ) M= {ﬁ e (CCom(G))' | ne G’ } Then, M has the following properties:
1. (v) veV, M ~%°, 5" ~compact;
2. (v) 4 BeCConv(G), (V) veV pentru care (@) p>1 ai A<B+pv.
@ aeMnv’ ai q4)>aB)+1.

o Let X be alocally compact Hausdorff space and w, a weight on X .
Now, we shall consider:

3) C*(X:CConm(G))={ f € C,(X:CConv(G))| (¥)veV, (3)J c X, compact such tha
f<v,and 0< f+V, on XY }

_ f ]
endowed with abstract neighborhood system 7, =4 7, ! %, = Jil, velV } and

4) M} ={E,| . e(C"(X;CConv(G))).. ueM xeX }

Then, 1t can easily be proved that (3) and (4) inhenit the some properties as
(1) and (2).

§ 2. A Korovkin system for C*(X,CComv(G))

¢ Firstly, we consider
(5) F*(x:CConv(G))= {f e C*(X;CConv(G))| ()0, € C*(X.G) of finite rank, i = In

not

such that, (9)x € X, £(c)=o(0,(c)....0, () (: ij.
96

https://biblioteca-digitala.ro / https://unibuc.ro



Prop. 1: F* is a sup-stable subcone of (C *(X;:CComv(G)). ﬂ.).
Cor. 2: F* is an M -uniformly up-directed cone and v -semilattice.
Prop. 3: If f<eC*(X:CComv(G)), (WV)veV, ueG’, xe X, (3)ge F* n¥, such

that i (f) =1, (g)-

N

Theorem 4: F* is a lower-Korovkin system for C*(X;CConv(G)).
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On some inequalities for operators

Nicolae Tita
University of Bragov, ROMANIA

Let (X, ||-||) be a normed Abelian group and let ||-||" be an other norm.
For all z € X, the sequence {E,},, is defined as follows:

Ea(z)=inf{llz-yll:y € X, [lyl" <n},n=1,2,..

k3

If X = L(E), the space of all linear and bounded operators T : F — E,
where E is a normed space, the norm ||-|* is |T||* = rankT and

E,(z) =a, (T) =inf {||T — A|| : rankA < n}.

If B: X xX — X is a bilinear and bounded operator, it is well known
that the following inequalities hold:

oy BEED <oy Bl

E()

k=1,2, ...

If || B (z,y)l| < llzli - llyll then [|zoli < n, [|goll < n imply that

1B (zo, wo) || < n*.

(Here, without losing the generality. we shall suppose that ||z]| < 1, ||y|| <
1)

For the special case when X = L(FE), the operator B may be the tensor
product operator T} ® T € L(E ®, E), where « is a tensor norm, (1], [2].

In this case, the inequality (1) is of the form:

zk: T1®T2 Xk: n (T1) +a"(T2)k=12

If there are considered r operators, r > 3, by reiteration, the inequality
(2) is(in this case)
98
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n -

k an(é Ti> e Y an(T))
Z = <6 LY EH—— k=12,

n=1

Unfortunately the coenstant 67! is far to be optimal. But, by a direct
computation, we can obtaine the inequality:

k a,,(@T) k Zr: (T3)
(4) S —= L <o (2 Z_: = k=1,2,..

n=1 n

Remarks 1. We shall recall that, here, ||T3|| < 1, ¢ = 1,2,...r. If this
condition is not fullfiled, the constant 27! (27 — 1) whould be replaced by

r—1
2r-1(2" — 1) - ¢, where ¢ = (mfl.x {||Tz||})

2. I think that the factor (2" — 1) is not the best.
Conjecture The factor (2" — 1) may be replaced by .
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SUR CERTAINES THEOREMES DU POINT FIXE COMMUN
Florica Voicu

Definition 1. Soient X un espace lineaire completement réticulé, d : X x X — X. une
métrique vectorielle et A, Be 7, (X). Svite >0 et ii est élément unité On note par-

N(e,4)={xe X, d(x,4)<ed}

E(4,B)={eii; Ac N(g,B), Bc N(e.4)}

H: 7 (X)xZ (X)X,

H(A,B)=inf E(A,B).

Definition 2. Soient X un espace linéuire complétement réticulé ¢t T : X — ./ (V).
On dit que T est une application multiforme (bref: m-application) definie sur \' & valeurs
en s0i méme ¢l on note parT: X —o X

Definition 3. Soit /- X > X et T : X ».7, ,(X). On dit que le point x € X vst un

point de coincidence pour f et T si fx € Tx. Si xhaque x € X est un point de coincidence
pour fet T alors f s'appele la sélection de T.
Un point x € X s'appele point fixe pour T si x € Tx.

Onnote Cr={f: X > X|TX < fX et fTx=Tf , VxeX !

T et f s'appelent applications commutatives si quel que soit x € X. f(Ix)=
= fTx=T(fx).

Lemme 1. (Dube (1975)). Soit S, T : > .7 ,(X) et x,,x, € X . Alors. pour out
pointy € T(x,) ona:

(1) d(y.Sx,) < H(Tx,,Sx,)

Le résultat suivant elargit le théoreme de Banach aux applications multiformes
satisfaisant les conditions de type contractive.
Théoréme 2. Soient X espace linéaire completement réticulé avec ['unité forte,

ST X-> 7,(X), feC,NC,, U:X > X, (0)-continue, inversable et isotone. On
suppose que pour toutx, y € X on a:
() H(Sx.Ty)<ad(f, f)+B{d(£.Sx)+d(f.Ty)}
+y{d(f.Ty)+d (f,Sx)}+
+8U" (i +d( fr, fv))d (. Sx)d( f,Ty)
a+B+
Alors, il existe un point de coincidence commun pour fet T et pour fet S.
Coroltaire 3. Soient S, T : X - %, ,(X) des applications multiforme (o)-continues
etf: X—X feC;NC, (o)-continue satisfaisant la condition (2).
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Si f{z) € Sz Tz it implique:
(3) lim f"z=y*

alors, y* et un point fixe commun pour S, T et f.

Les mathematiciens Meir et Keeler (1969) ont établi un remarcable théoréme du point
fixe pour un application T:X—X, (X,d), satisfaisant la suivante condition:

C)) ¥V (3)6>0 t.q.e<d(x,y)<e+ & il implique d(Tx, Ty) <e

Un autre resultat est donné par Park et Bae (1981) pour £, T:X— X, fT=Tf satisfaisant:

(5) V (3)8>0t.q. e<d(fx,fy)<e+ 8
il implique d(Tx, Ty) < e et Tx=Ty quand fx=fy.

La technique de Meir-Keeler a été elargi aux applications contractives multiformes
dans les espaces métriques par J. Siegel, L.S. Dube, K. Iseki, S.B. Nadler, S. Reich, B K. Ray,
I. Rus, T. Hu, [ Beg et A. Azam, etc.

Par Ia suite on donné un théoréme du point de type Meir-Keeler pour les applications
compatibles.

Definition 4. Soient X espace linéaire complétement réticulé, £ X—X, T: X— Zip(X).
On dit que fet T sont compatibles si la suite {x,}ne nC X satisfait la condition suivante:

(6) ]'Im tXn < }'i_r33 Txy = ’l'l_r’rl H(fTx,, Tfx,)=0.

Lemme 3 (Hu (1980)). Soient X espace linéaire complétement réticule,

L)
fAnta T BolX) et Hidn A} — O pour A Zp(X).

(1]
Sixpe d, et dix,,x) - OalorsxeA.
Théoreme 4. Soient X espace linéaire completement réticulé avec une norme
monotone, T:x— 5(X) et fX—X compatibles et satisfaisant les suivantes conditions:
(7) | V(3)e0(3)8>0 tq.e<|d(f.fy) [ <e+d
il implique || d(v,w)]| < &,ve Tx, we Ty et Tx=ty quand fi=fy

Si f est (0)-continue, alors f et T ont un point fixe commun.
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(8]

(9]
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Proceedings of the Seminar
October 1, 1998 - June 30, 2001

R. Cristescu )

e On some linear operators and on some vector integrals (Symposium. June 25. 1999).
e Vector integrals in vector normed spaces (Symposium. June 29. 2000).

N. Dinet

e Spaces of regular operators with the Riesz property.

R.M.Dénet

o Lattice-vector operators and operators of lattice-vector type (Symposium. June 25

1999)
e On the extension of some positive operators.
W. Farkag
e Sobolev spaces associated to certain negative definite continuous functions.
G.Grigore
e Functional equations in topological ordered linear spaces (Symposium. June 25. 1999)
G.Grigore and D.Sténicé
o An algorithm for the pseudoinverse (Symposium. June 29. 2000).
P.Iliag
o Eigenvalues for p-Laplacian in the von Neumann problem.

e Tensor products of locally convex spaces.
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¢ Regular operators in the Banach lattices.

o Nonlinear equations with p-Laplacian.

G.Moldoveanu

e On the representation of some linear operators.

o Integral representation of some positive operators.

C.Niculescu

New considerations on the Newton inequality.

Hardy - Littlewood - Landau inequalities.

The Newton's inequalities (Symposium. June 29, 2000).

Convexity associated to averages.

L.Pavel

o Hypergroups with the property (T') of Kazhdan.

G.Péltineanu

¢ Frontal ideals and antisymmetric ideals in locally convex lattices {Symposiumi. June

25. 1999).

» Generalization of the theorem of Alain-Bernard concerning the frontal set with respect

to a closed vector subspace (Symposium. June 29. 2000).
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L Polyrokis (Athens. Greece)
e Lattice subspaces.
N.Popa

e Dyadic Hardy spaces (Symposium. June 25. 1999).
e Matriceal harmonic analysis (Symposium, June 29. 2000).

¢ Some topics in matriceal analysis using vector-valued functions.
G.Popescu .

e Order relations in C*-algebras and in operator algebras.

e Positif operators in C*-algebras.

e An incquality of type Schwartz in non-commutative C*-algebras.
L.Sporig

e On Korovkin cones in locally convex lattices.

¢ Quantitative aspects of the convergence of the Korovkin approximation sequences in

locally convex cones.
D.Sténica

o Pseudoinverse of a linear applications.

o Cubature formulas on the n-dimensional simplex.
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Florica Voicu (Bucharest) - Points fixes communes pour applications multiformes.

Gheorghe Popescu (Craiova) - Power series of the unilateral shift and Hardy inequali-

ties.

Ligia Adriana Sporig (Constanta) - On some approximations processes in locally con-

vex cones.

11:30 - 12:00 Coffee break
12:00 - 13:30 Communications

Chairman : Paolo Terenz

*

Ileana Bucur (Bucharest) - Derivability of the set functions.

Vasile Postolici (Baciu) - Pareto efficiency. Choquet boundaries and operators in

Hausdorff locally convex spaces.

Luminita Lemnete - Ninulescu (Bucharest) - Operators valued moments problems in-

volving extension results.

Ion Chitescu (Bucharest) - Absolute continuity and Radon-Nykodim representation

into functional frameworks.

Friday. September 28
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Colloquium schedule

Wednesday, September 26
9:30 - 11:30 Communications

Chairman : Romulus Cristescu

Romulus Cristescu (Bucharest) - On the extensions of some positive functionals and

on extensible regular operators.

Gavril Péltineanu and Dan Tudor Vuza (Bucharest) - Some approximation results for

locally convex lattices.
Nicolae Popa (Bucharest) - Some matrix Banach spaces.
Mihai Voicu (Bucharest) - Locally bounded semigroups.

Rodica - Mihaela Dinet (Bucharest) - A Hahn-Banach theorem for the extension of

Riesz homomorphisms.
Nicolae Didnet (Bucharest) - Some remarks on lattice subspaces.

Constantin Niculescu (Craiova) - Hermite - Hadamard inequality for functions of a

vector variable.
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11:30 - 12:00 Coffee break
12:00 - 14:00 Communications

Chairman : Nicolae Popa
Ioannis Polyrakis (Athens, Greece) - Geometry of cones and theory of Banach spaces.

Gilda Moldoveanu (Bucharest) - The representation of certain operators and function-

als as integrals of the functions in ordered linear spaces.
Marinicd Gavrild (Bucharest) - Fonctions vectorielles derivable (o)-convexes.

Ioan Raga (Cluj) and Tiberiu Viadislav (Bucharest) - Bernstein operators of second

B ¥

kind.

Liliana Pavel (Bucharest) - Induced representation of hypergroups and positive definite

measures.

Octav Olteanu (Bucharest) - Extension of linear operators distanced convex sets and

the moment problem.

Thursday, September 27
9:30 - 11:30 Communications

Chairman : loannis Polyrokis

Paolo Terenzi (Nfi,lano, Italy) - The basis of the general separable Banach space.
Gheorghe Bucur (Bucharest) - Transformations acting in Dirichlet spaces.
Silvia Corduneanu (Iagi) - A Cauchy problem involving almost periodic measures.

Nicolae Tita (Bragov) - On some inequalities for operators.
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V. Timofte
e An unicity theorem for a mechanical model.
M. Voicu

e Resolvents on locally convex spaces (Symposium. June 25, 1999).

e Projective limits of linear operators (Symposium. June 29, 2000).
D.T. Vuza

» Strongly modular and strongly latticial classes of regular operators (Symposium. June

25. 1999).

https://biblioteca-digitala.ro / https://unibuc.ro



Tiparul s-a executat sub cda 880/2002
la Tipografia Editurii Universitdfii din Bucuregti

https://biblioteca-digitala.ro / https://unibuc.ro



https://biblioteca-digitala.ro / https://unib\s:g O@Cj Q,Q»k



ISBN 973-575-618-8 Lei 58000

v o

https://biblioteca-digitala.ro / https://unibuc.ro



	!00000001
	!00000002
	!00000002_i0000
	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0120_i0000
	0121



