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Preface

This elementary text is an introduction to functional analysis. The book cov-
ers only a limited number of topics, but they are sufficient to lay a foundation
in functional linear analysis, which, partly because of its many applications
has become a very popular mathematical dicipline interesting for applied
mathematicians, probabilists, classical and numerical analysts. It grew out
of my attempts to present the material in a way that was interesting and un-
derstandable to second-third year graduate students who are taking a course
in this subject.

The only background material needed is what is usually covered in a one-
year graduate level course analysis and an acquittance with linear algebra.
However, to reach as large an audience as possible, the material is generally
self-contained: any lack of knowledge can be compensated for by referring to
Preliminaries, to Appendices and the references therein.

This book consists, basically of three parts. All chapters deal exclusively
with linear problems. We begin with introductory results on vector spaces
and linear operators (Chapter 1), and with basic facts from the theory of
normed spaces and bounded linear operators on Banach spaces (Chapter 2
and Chapter 3). We continue with a chapter on the geometry of Hilbert
spaces (Chapter 4), then proceed to the study of bounded linear operators
acting on these spaces (Chapter 5), and to the elementary spectral theory
of compact self-adjoint operators (Chapter 6). The last part of the text
concentrates on locally convex spaces (Chapter 7). We offer a large selection
of examples, applications and exercises (complete solutions of the exercises
could be found in [8]).

We hope that exposure to this material will stimulate the students to

https://biblioteca-digitala.ro / https://unibuc.ro



expand their knowledge of functional analysis.

I would like to take this opportunity to thank my teachers in functional
analysis of the University of Bucharest, Prof. R. Cristescu, I. Colojoara and
Gh. Grigore.
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Preliminaries

The first purpose of this introductory chapter is to establish the notation and
the terminology that will occur throughout the book. We shall also present
here some very well-known basic topology results.

0.1 Sets and functions

We assume that the reader is familiar with the basic concepts of set theory.
Besides the usual signs as apartenence, inclusion, union and intersection, we
will denote the complement of a set A (in X) with X \ A or Cx A. Usually,
the symbols R, C are used for the set of real numbers, respectively complex
numbers. N is the set of positive integers (not including zero).

A sets collection {4, };c; is said to be a partition of the set X if ‘LEJI A =
=X, A #0,Vieland AiNA; =0, Vi # j. A sets family {Z;}ic; is a
cover for X if X C Y Z;.

We will use words ' function”, ” mapping” or " application” interchange-
ably. A function from a set X to another set Y, is denoted by f: X — Y,
or z — f(z). f AC X, then f(A) = {f(z) | z € A} is a subset of Y and
S Y(B) = {z | f(z) € B} is a subset of X if B C Y. f(X) will usually
be called the range of f. X is called the domain of f. If g: X — Y and
f:Y — Z, the composition of f with g, f o g is defined from X to Z, by
(f o g)(z) = f(9(z)), for all z in X. The identity function from X to X ,
x —— z is denoted by Ix, or, when is no danger of confusion, only by I. A
function f: X — Y will be called injecti'ue (or one-one) if for each y in Y
there is at most = in X such that f(z) = y; f is called surjective (or ontoy if

11
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[(X) =Y. If fis both injective and surjective, we will say that it is bijective.
In this case, there exists a function, from Y to X, called the inverse of f,
written f~! such that fo f~! = Iy and f~!o f = Ix. The restriction of
f : X — Y to the subset A C X is denoted by f|4. The characteristic
Junction of a subset A of X, x4 is defined as follows: ya(z) = 1,ifz € A
and xa(z) =0if z ¢ A.

If {X;}ics is a family of sets, their Cartesian product IEII X; is the set

of all mappings = : [ —-*%Jl X; such that z(i) € X;, Vi € I. If i € I we
define the i-th projection or coordinate mapping pr; : II X; — X; by
i€l

pri(z) = z(i) (denoted by z;). In the particular case of two sets, X;, X5, the
Cartesian product is denoted by X;x Xs, thus it may be identified with the
set of ordered pairs (z1,;), with z; € X, 29 € X;. When X; = X, Vi€ I,
we write X! instead of .LII X; .
1

A (binary) relation in a set X is just a subset R of X x X; it is customary,
though, to use a relation sign, such as < (or as ~), to indicate the relation.
Thus, (z,y) € R is written z < y (or £ ~ y). A relation is said to be transitive
if Vz, y, 2 € X, (z,9) € R and (y,2) € R implies (y,z) € R; reflezive if
Vz € X, (z,z) € R; symmetric if Vo, y € X, (z,y) € R implies (y,z) € R
and antisymmetric if Vz, y € X, (z,y) € R and (y,z) € R implies z = y.

An equivalence relation, written ~, is a relation which is reflexive, sym-
metric and transitive. If R is an equivalence relation on X and z € X, the
set of elements of X related to a given z € X is called the equivalence class

of £ modulo R, denoted usually as z. Any equivalence relation R on X

determines a partition of the set X. The set {:/i | z € X} will be denoted
by X/R. Conversely, any partition of the set X determines an equivalence

relation on X. The mapping from X onto X/R, z 7 is called the canonical
surjection (denoted usually by ).

A partial ordering (or order) on X is a relation R, written <, < which is
transitive, reflexive, and antisymmetric. Whenever R = X x X the set X is
called totally ordered.

An (partial) ordered set is a pair (X, <), where X is a nonempty set and
“< ™ is an order on X. An ordered set is called directed (to the right) if Vz,
y € X, 3z € X such that < z and y < 2.

For example, R with its usual order is totally ordered. If A is a family
of subsets of the set X the usual order on Ais C < D & C C D; if F
is a family of real mappings on X one considers on F the partial ordering

12
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f<ge f(z) <g(z),Vz € X.

Let (X, <) be an ordered set and A C X. An element p € X is called
upper bound (or majorant) for A if y < p for all y € Y. Lower bound (or
minorant) is defined analogously. If m € X and m < = implies £ = m,(so,
m has no proper majorants) we say that m is a mazimal element of X, and
analogously, if s € X and z < s implies £ = 3, we say that s is a minimal
element of X. ’

Let us say that the ordered set (X, <) is inductively ordered if each to-
tally ordered subset if X (in the order induced from X), has a majorant in
X. Zorw's lemma states that every inductively ordered set has a maximal
element.

A subset A of the ordered set (X, <) is said to be bounded from above (or
majorized), if it has a majorant. If there exists a majorant a which belongs
to A, then a is called the greatest element of A. The notions of set bounded
from bellow (or minorized) and smallest element are appearent. The subset
Ais said to be bounded if it is bounded from above and from below. One says
that A has a least upper bound, (respectively a greatest lower bound) if it is
bounded from above and the set of its majorants has a smallest element, «
(respectively the set of its minorants has a greatest element, (). The element
a is called the least upper bound of A or supremum of A, denoted usually
by sup A; analogously the element [ is called the greatest lower bound or
infimum of A and is denoted by inf A. The least upper bound (respectively
the greatest lower bound), if it exists, is unique.

Finally, a net in a set X is a function £ : A — X where A is an ordered
set directed to the right. As usually, we denote z(a) by z, and the net by
(Za)aca. If A is the set of natural numbers, with its usual order, the net is
called sequence and is denoted by (z,),.

0.2 Topological spaces

Generalities. Usually, we will use the symbol 7 for a topology and if X is a
topological space with the topology 7, we will denote this space by (X, 7). If
Y is a subset of X, we will denote by 7|y the relativization of 7 to Y. For a
subset A of the topological space (X, 7), the closure, respectively the interior

will be denoted by A, respectively ;1 A subset A C X is said to be dense in
X if A= X. A topological vector space X is said to be separable if there is
a countable dense subset of X. A'subset A C X is called nowhere dense in

13
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X if A has an empty interior.

If (X,7) is a topological space, a family B C 7 is called a base for 7 if
VD € 7, D is the union of sets of B. A family B of sets is a base for some
topology for the set X = Jgcpg B if and only if VA, B€ Band Vz € AN B,
AC € B such that z € C and C C AN B.

A family S C 7 is a subbase for the topology 7 if the family of ﬁmte
intersections of members of S is a base for 7. Every nonempty family § is a
subbase for some topology for the set X = [Jgc5S. It is the smallest topology
containing S and it is uniquely determined by & (it is called the topology
generated by S).

If {(Xi,7)}ier is & family of topological spaces, 7; = {D®}, then, the
collection of sets of X = 1'[ X;, {pri {(D®)},c; is a subbase for some topology

for X, called the product topology, .HI T;.
1€

Let (X,7) be a topological space, R an equivalence relation on X and
m: X — X/R, the canonical surjection. The family

T= {lA)C X/R | 7r”(lA)) €7}

is a topology for X/R called the quotient topology (modulo R).

If z is a point of the topological space (X, 7), and V, is the neighbourhood
system of z, then, a family of neighbourhoods B, of x is called a base for the
neighbourhood system of = (or a fundamental system of neighbourhoods of x)
ifvweVy, dBe B, BC V.

Theorem 0.2.1 Let (X, 7) be a topological space and for each z € X let V,
be the family of all neighbourhoods of x. Then :

V1) IfV eV, thenz eV

V2)If VeV, and VCW, then W € Vy;

V3) If VW € V,, then VNW € V,;

V4) If V € V,, then there is a member W of V, such that W € V,, for each
yinV.

Conwversely, if to each x € X, there is a nonempty family V, satisfying V1)-
V4), then the family T of all sets G, such that G € V, whenever z € G is a
topology on X; T s the unique topology for X such that V, is precisely the
neghbourhood system of x relative to the topology T.

The topological space (X,7) is a Hausdorff space, if Vz,y € X, z # vy,
there are disjoint sets U € V, and V € V,. Notice that ('l'II X;, 'HI ;) is
t€ 1€

Hausdorff if and only if for all ¢ in I, (X;, 7;) is Hausdorff.

14
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Let (X, 7) and (Y, 0) be topological spaces. A function f: X - Y issaid
to be continuous if f~1(A) € 7 for every Ain 0. It is said to be continuous at
a point x in X if f~1(A) € V; for every A € Vj(;). A function is continuous
if and only if it is continuous at every point. A function f : X — Y is
open if f(A) € o for every A in 7, A homeomorphism is a bijective function
f: X — Y that is both open and continuous, equivalently, both f and f!
are continuous functions. It is clear that the composition of two continuous
or open functions produces a function of the same type.

A net {z,}aeca C (X, T) is said to be convergent to x € X (zo — z) if
for each V € V., Jay € A such that Va > ay implies z, € V. The point z
is called the limit of the net (z,)q, written,

T =li(1;n Ty
A function f: (X,0) — (Y, 0) is continuous at z € X if and only if

v{za}QGAr T —T = f(:l?a) — f(.l))

For a complex (real)-valued function on X, the support of f is the subset
of X, supp f= {z € X | f(z) #0}.

Metric spaces. A metric space is a set M and a real-valued function d(-,-)
on M x M (called metric on M) which satisfies:

i) d(z,y) 2 0;

ii) d(z,y) = 0 if and only if z = y;

iii) d(z,y) = d(y, z);

iv) d(z,z) < d(z,y) + d(y, 2) (triangle inequality).

When it is not clear from the context which metric we are talking about,
we will denote the metric space by (M,d). The set {z € X | d(z,y) < r}
is called the open ball, B(y,r) of radius r about the point y. The metric
topology on a metric space (M,d), 74 is defined as follows: a set G C X is
open if and only if Vy € G, 3r > 0 such that B(y,r) C G. The topology 74

- Hausdorff. )

A sequence (z,), of a metric space (M,d) converges to an element z if
and only if d(z,z,) — 0 as n — oo, that means, for given € > 0 there exists
n, so that n > n, implies d(z,z,,) < €; z is called the limit of the sequence
(zn)n, written,

z =lim z,,
n

15
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A sequence (zn)n of a metric space (M,d) is called a Cauchy sequence if
Ve > 0, there is n, so that n, m > n. implies d(z,,z,,) < €. Any convergent
sequence is Cauchy. A metric space in which all Cauchy sequences converge
is called complete.

Let A C X be. The distance from x € X to A is defined by

d(z, A) =3r&1£ d(z,y).

Clearly, d(z, A) = 0 if and only if  in the closure of A (in the metric topology
Td)-

An element z is in the closure of A if there exists a sequence (z,), C A
such that (z,), converges to z.

If X, Y are metric spaces and f is a function from X to Y, then f is
continuous at z € X if and only if for each sequence (z,), C X, z, — z it
results that f(z,) — f(z).

A topological space (X,7) is said to be metrizable if there is a metric d
on X such that 7 = 7,.

Compact sets. A subset K of a topological space (X, 7) is compact if and
only if each open cover has a finite subcover. Each closed subset of a compact
set is itself compact. If (X, 7) is Hausdorfl, each compact set is closed. The
topological space (X, 7) is compact if X is a compact set.

A family {F,}ac; C X of sets has the finite intersection property if the
intersection of the members of each finite subfamily of { Fiy }ac; is nonempty.
If (X,7) is Hausdorff, the set K C X is compact if and only if each family of
closed subsets of X, {F,}acs € X which has the finite intersection property
on K,

Kn (argj F,)#0, VJcCI, Jfinite

has a nonempty intersection on K, that means
Kn(n Fa)#0

ael

It is well known the next theorem:

Theorem 0.2.2 (Tychonoff’s theorem) The product space ('III X, H’ )
1€ 1€
is compact if and only if Vi € I, the space (X;,T;) is compact.
Further, the next characterization of compacity in metric spaces will be

useful.

16
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Theorem 0.2.3 Let (M,d) a metric space and 74 the metric topology on M.
A subset A of M is compact if and only if each sequence of elements in A,
has a subsequence which converges to an element of A.
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Chapter 1

Vector spaces and linear
operators

1.1 Vector spaces

In this section we will introduce some elementary notions of linear algebra.

Next, we will denote by K one of the sets of the real numbers, R, or of
the complex numbers, C. If a = a+ b € C, Rea = a and Im a = b. The
conjugate of o, is @ = a — bi.

Definition. A vector space (linear space) over K is a set X with a binary
operation (addition), (z,y) — z + y and with a mapping (scalar multipli-
cation) defined on K x X, (o, z) — ax satisfying the conditions:
z+(y+2z)=(z+y)+2 Vz, 9, z€ X,

2)z+y=y+z, Vz, y€ X,

3) 30 € X suchthat 0+ z =2 +0, Vz € X

4) Vz € X, 3(—z) € X such that z + (-z) = (—z) +z = 0;

5) (¢ + B)z = az + fz, Va, €K, z€X;

6) a(z+y) =az+ay,Va€eK, z yeX;

7) (af)z = a(fz),Va, €K, z€ X,

8) lx==z, Vz € X.

When K = R, X is called a real vector space, and, when K = C, X is said
to be a complex vector space.

Remark. We notice that K is a vector space over K, the scalar multipli-
cation being the multiplication of K.

18
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Notations. If A, BC X and A C K we will denote by
A+B={a+bla€ Abe B} and AA={aa|a €A a€ A}.

Definition. A subset Y of the vector space X is called a linear subspace of
XifY+YCYandKY CY.

Clearly, the intersection of a family of linear subspaces of X is also a
linear subspace, thus we have the following definition:

Definition. Let X be a vector space and A a subset of X. The intersection

of all linear subspaces of X containing A is called the linear subspace spanned
by A, Sp A.

Proposition 1.1.1 Let X be a vector space and A a subset of X. Then,

SpA={z€X|z=) a;z;, ;€K ,z;€ 4, neN}

Jj=1

Proof. Clearly SpAC {z€ X |2=%],0;zj,0;€K,z;€ A, neN}
since this set is a linear subspace which contains A. Conversely, if Y is
a linear subspace such that A C Y, it follows that every z = Y7, ajx;,
a; €K, x; € A, n €N, is in Y, therefore the converse inclusion holds.

Definition. A subset C of a vector space X is said to be a conver set if
for any two points z, y of C' and any real number t, 0 < t < 1, the point
tr+ (1 —t)yisin C.
Definition. For A C X, the conver hull of A, denoted by co A, is defined
by

co A= ﬂ C

CDA. C convex

Remark. The convex hull of A is the smallest convex set containing A.

Definition. Let X be a vector space. The finite set of X, {zk}1<k<n is called
linearly independent if2?=1 a;z; =0,0; € Kimpliesa; = ag = ... = a, = 0.
A subset B of X is said to be linearly independent if each finite subset of B
is linearly independent.

Definition. A subset B of X is called an algebraic basis of X if B is linearly

19
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independent and if for every x € X, there exist ), ,...,a, € K and
Ty, T3,...T, € B such that z = 37, a;z;.
By a Zorn’s lemma argument one can prove immediately:

Proposition 1.1.2 Fach vector space has an algebraic basis. Moreover, each
linearly independent set in a vector space is contained in a basis.

We have to notice that in a vector space X all bases have the same
cardinal, called the dimension of the vector space X. The space is called
finite dimensional if it has a finite dimensional basis, and otherwise it is
called infinite dimensional.

We will end this section with two useful remarks that follow immediately
by the definition of the vector spaces.

Remarks. 1. Let {X;},c; be a family of vector spaces over the same field
K. Then, X = [l;c; X; becomes a vector space over K with the following
operalions:
(zj)ies + Ws)jes = (25 + Yj)ies
o(z;)jes = (o)) jes
2. Let X be a vector space and Y a linear subspace of X. We define on
X an equivalence relation, x ~ y <= x —y € Y. The echivalence class of z,

z+Y will be denoted by T, and the set {Z | z € X} will be denoted by X/Y .
XY, endowed with the operations

o~ ~ —_—
rT+y=zr+y,
a = azx

18 a vector space.

1.2 Linear functionals and operators

Let X, Y be vector spaces over the same field K .

Definition. A mapping U from X to Y is said to be a linear operator if
it is additive, (U(z + y) = U(z) + U(y), Vz, y € X) and homogeneous
(U(az) = aU(z), Va e K, z € X).

20
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Notation. If U is a linear operator from X to Y and z € X, we shall
often write Uz instead of U(zx).

Remark. If U: X — Y is linear, then,

]

U(il ojz;) =

n
a;U(z;), Vo €K, z; € X, n€N
J =1

It is easy to see that if U, V are linear operators from X to Y and a € K,
thenU+V: X —Y,
(U+V)z)=Ulx)+V(z), VzeX
andalU : X —Y,
(aU)(z) =aU(z), Vze X

are linear operators, too. Thus, denoting by £{X,Y’) the set of all linear
operators from X to Y, the next proposition is appearent.

Proposition 1.2.1 The set L(X,Y) with the usual addition and scalar mul-
tiplication is a vector space over the field K. L£(X,Y) is called the space of
linear operators from X to Y.

Remark. If X =Y we write L(X) for L(X,Y).

Notations. 1. If U, V € L(X), we will often set UV instead of U o V
(which clearly is in £(X)) and [ instead of Ix.

2. Let U be in L(X,Y). We denote by

KerU = {z € X | U(z) = 0},
called the kernel of U.

Proposition 1.2.2 Let U be in L(X,Y). Then Ker U is a linear subspace
of X. In addition, U is injective if and only if Ker U = {0}.

The proof of this result is immediate.

Remark. We notice that if U is an invertible linear operator, U : X — Y,
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then the inverse, U ! : Y -— X is also a linear operator.

Definition. Two vector spaces X, Y are called isomorphic if there exists an
invertible linear operators from X to Y.

Remarks. 1. If B = {z,};c; is an algebraic basis of X and F' = {y;};e, a
family of elements in Y, then there exists a unique linear oper ator U: X —
—- Y such that U(z;) = y;, Vj € J. Indeed, as every 2 € X can  be uniquely
represented as £ = }_jcp a;T;, F' CJF ﬁmte we define U(z) = ¥jcp a; f;.

In particular if X and Y are two vector spaces with the same finite alge-
braic dimension, there exists an invertible linear operator from X to.Y .

2. If X is a finite dimensional vector space and B = {z),zy,...,z,}
is a basis of X, then U € L(X) is uniquely determined by the elements
y; = U(z;), 1 = 1,2,..,n. Every y;, j = 1,2,..,n can be represented as
Yj = Yop_1 0k;Zx . The matrix (ajk)1<jk<n 18 called the matrix of the operator
U in the basis B, and often we identify the operator with its matrix. Clearly,

if R
= Z(IJ.L]
j=1
and n
Ulx)=y= Zlﬂjwj)
=
we have

n

ﬂg = Zajk-’fk, 7=12,.,n
k=1

Definition. Let X be a vector space over K. A funclional on X is a
mapping from X to K. A linear functional on X is a functional which is a
linear operator from X to the vector space K.

Notation. The vector space L£(X,K ) is denoted X'.

Remark. Whenever we will need to emphasize that a functional is defined
on a real (complex) vector space we will call it a real (complex) functional.

Proposition 1.2.3 LetY be a linear subspace of the vector space X, Y G X.
The following are equivalent:

(i) Y is a mazimal subspace of X (with respect to the inclusion order);

(1) For every z, € X\Y, the linear subspace Sp (Y U {z,}) coincides to X;
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(111) dim X/Y =1;
(tv) There ezists f € X' such that Y = Ker f.

Proof. (i)=(ii) AsY C Sp (Y U{z,}) and Y is maximal, it follows that
Sp (Y U {x,}) coincides to X.

(i))=>(i) If Z is a linear subspace that contains Y, Y & Z, there exists
z € Z \'Y. Then, from (ii) Sp (Y U {z}) = X. From the inclusions

Sp Yu{z})cZcCX,

it follows that Z = X, thus, indeed Y is maximal.

(ii)=>(iii) If z, € X \ Y, we will show that X/Y = {a%; | a € K}.
Let Z, be in X/Y, 7, # 0; therefore there exists z € X \ Y, z € 7,. As
X S/_(\U{:r:o}) z =y + az, for some a € K, a # 0 and y € Y. Then,

=y + az, = aZ,.

(m):=>(1v) Since dim X/Y =1, there exists an invertible linear operator
U: XY —K.Ifr: X — X/ Y is the canonical surjection, then defining
f=Uom, clearly f is a linear functional whose kernel is Y.

(iv)=>(ii) Let , € X \ Y and z be arbitrary in X. We have to prove that
there exist y € Y and a € K such that £ =y + az,. AsY = Ker f, where
f € X', setting a = f(z) f(z,)"* and y =z — f(z) f(z,) 'z, everything is
clear.

1.3 The Hahn-Banach extension theorem

In dealing with vector spaces endowed with a topology, one often needs to
construct linear functionals with certain properties. In order to do that, first
one defines the linear functional on a subspace of the vector space where it is
easy to verify the desired properties; second, one uses an extension theorem
which ensures that any such functional can be extended to the whole space
while retaining the desired properties. One of the fundamental results about
the extension of functionals, is the Hahn-Banach extension theorem. We be-
gin with some general notions.

Definition. Let X be a vector space over the field K. A sublinear func-
tional on X is a real-valued function p on X which is subadditive (p(z+y) <
< p(z) + p(y),Vz,y € X) and positive homogeneous (p(tz) = tp(z), ¥Vt > 0,
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Vz € X).

Definition. Let X be a vector space over the field K. A real-valued subad-
ditive function p on X is said to be a seminorm if p(az) = |e|p(z), Ve € K,
Vre X.

A sublinear functional resembles a seminorm, except that the second con-
dition is only supposed to hold for positive scalars, thus a seminorm is in par-
ticular a sublinear functional. We remark, that, if p is a seminorm, p(z) > 0,
Vz € X (since for any sublinear functional p(0) =0, —p(—z) < 7'z), and
when p is seminorm p(—z) = p(x)).

Theorem 1.3.1 (The Hahn-Banach extension theorem) Let X be a real
vector space, p a sublinear functional on X. Suppose that f is a linear func-
tional defined on a subspace Y of X which satisfies f(x) < p(z),Vz € Y.
Then, there is a linear functional f : X —— R, satisfying f(z) < p(z),Vz €
€ X, such that f(z) = f(z),Vz €Y. .

Proof. The idea of the proof is the following. First we will show that
for z, € X \ Y, we can extend f to the space spanned by z, and Y, Sp(YU
U{z,}). Then, by a Zorn’s lemma argument we prove that this process can
be continued to extending f to the whole space X.

For arbitrary y', 4" in Y we have

1

fW)-f@)=fv -y") <pl(y +2.)— (¥ +1,) <

<ply +,) +p(=y" +,)),
’ I - P+ 20)) < ~ @) + By +0)

It follows that the set A = {—p(—(y+z,))— f(y) | ¥ € Y} C R has an upper
bound and the set B = {p( +z,) - f(J) |y € Y} CR has a lower bound.
Let us denote sup Aby ¢ andinf Bby ¢’. As¢ < ¢, we may consider a real
number ¢ € [¢’,¢"]. Thus,

“p(-y—2.) - f(y) Sc<ply+z,) - fly), VyeY
We now define a real functional g on Sp(Y U {z},), by
9y +2Az,) = f(y) +Ac, yeY AeR
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It can be easily verified that this functional is linear. We have to see that
(*) gly+Az,) <ply+Az,), ye€Y, AeR

If A =0, is clear. Suppose that A > 0; after a division by X, the above
inequality becomes

1 1 1 1
g(;y +z,) < p(xy +z,) <= f(;y) +c < p(sy+ 7o),

A

or equivalently,

¢ < pl3y+2.) = I3

If A <0, dividing by (—A) > 0, the inequality (*), is equivalent to

1 1 1 |
—y — S p(— =gy — — ) —e < p(—=y — :
a( Y ,) < p( Y z,) <= f( )‘y) ¢ < p( Y o)
>

and, finally, to
(~3v -z~ f(-Sy) <
P /\y o )\y <

Therefore, the functional g defined on Sp(Y U {z,}) is an extension of f to
Sp(Y U {:z:,,}) such that g(z) < p(z), Vz € Sp(Y U {z,}).

We now proceed- with the Zorn’s lemma argument. Let F be the col—
lection of extensions g of f, g : Z — R which satisfy g(z) < p(z) on
the subspace Z, where they are defined. We partially order ¥ by setting
g1 < g2 if g» is defined on a larger subspace than g;, and g2(z) = g1(2)
where they are both defined. We claim that (F, <) is inductively ordered,
i.e. each totally ordered subset of F has an upper bound. Indeed, let (gq)q
a totally ordered family in F, g, : Z, — R . Define g : U, Zo — R by
9(2) = ga(2) if z € Z,. The mapping g is well defined, since for every a;,
a3, (ga)a being a totally ordered set, we have that Z,, C Z,, (or conversely)
and go,(2) = ga,(2) on Z,,. Clearly, go < § so each totally ordered subset
has an upper bound. By Zorn’s lemma, we conclude that F has a maximal
element f, defined on some subspace X' of X, satisfying f(z) < p(z) on the
subspace X'. But X' must be all X, since if we had X' ¢ X, the first part
of the proof applied to the functional f: X' — R would give a domination
extension of [ to the space Sp(X U{xz,}), where z, € X \ X', contradicting
the maximality of /. Thus, the extension [ is defined on the whole X, which
ends the proof.
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Corollary 1.3.1 If p 15 u subliicar functional on the real veclor space X
then, for coery x, € X, there ts a lear functional o X such that f(r,) -
= p(e,) and f(r) < p(r), Ve e X

Prooft.  Let us denote by Y the subspace of X' spanned by {x,} aind detine
on it the linear functional f(Ax,) = Ap(xr,), A € R. This functional satisfies
that f(«,) = p(r,) and f(x) < p(x), Ve € Y This follows by

SAr,) = Ap(e,) — p(\r),
if A~ 0, and by

JOa) = Aple) s Apl 2 - plAc),

if A0
By the previous thevrem the functional [ can be extended to the whole
space

Theorem 1.3.2 (Complex Hahn Banach extension theorem) Lol X be a
complex vector space, p a seminorm on X Suppose that [ s u wmplu linear
functional defined on a subspace Y of A mfz»fumq [f()] < pla),Va Y.

Then there s a comples linear functional [ O m/u. b satisfies
|f( )| < plr) Vo e X, such that f(x) [(:)\/;§ Y

Proof. 'The functional [ can be represented as

[(@) = file) vafolr) Vaed,

where [, f, aie 1eal hnear functionals on Y (fi(r)  Re [(a) and fyla) =
= Im f(r)). Since

wile) vafule)) o) Sy [iGr) i)yl
it follows that f,(.r) Siar), thus |
fG)  file) ofiGee), Vo€
Now, we consider the teal hnear functionad fi on ) nod <iee
[y IO < 110 plr)

26

https://biblioteca-digitala.ro / https://unibuc.ro



f1 has a real linear extension fi to whole X obeying f; (z) < p(z) (by the
Hahn-Banach extension theorem). Setting

f(z) = fi(z) —ifiliz), VzeX,

clearly the complex functional f is an additive extension of f. For an arbitrary
complex number a + bt and z € X, we have

f(a+t)x) = fl(aa: + ibzx) — ify(aiz — bx) =

= afi(z) + bfiiz) - aifi(iz) + bifi(z) =
= (a+bi)fi(2) - (a + bi)ifi(ix),
which proves the linearity of f. To complete the proof, we need only to see

thathjf(mﬂ')l < p(z),Vz € X. If we let § = arg f(z) and use the fact that
Re f = f;, we see that

If(z)| = f(z) e ® = fle Pz) = fi(e “z) <

<ple ) = le 2| p(x) = p(x)

Similarly to the real case we have the next corollary:

Corollary 1.3.2 If p 15 a seminorm on the complex vector space X, then,
for every z, € X, there is a linear functional on X such that f(z,) = p(x.)
and |f(z)| < p(z), Vo € X.

1.4 Exercises

1. Let X be a real (respectively complex) vector space, p a sublinear func-
tional (respectively a seminorm) on X, and F the set of all real linear
(respectively complex) functionals on X dominated (respectively in absolute
value) by p. Show that p(z) = sup{f(z) | f € F} (respectively p(z) =
=sup{|f(z)| | f € F}), Vo € X.

2. Let X be a real vector space, z, € X, p a sublinear functional on X.
Show that for every A € [—p(—x,), p(z,)] there exists a real linear functional
on X such that f(z,) = A and |f(z)| < p(z), Yz € X.

3. Let X be a real vector space, p;, p sublinear functionals on X and f
a real linear functional on X such that f(r) < py(z)+ pa(x), Yo € X. Show
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that thete exist f,, fo linear functionals on X such that /() - fi(a) 1 fo(
Jile) < pile), f2(2) & pa(x), Ve e X.

4 (F.F. Bonsall) Let X be a 1eal vector space (' . X such that
CHOCCand R, CCC p: € + Rasublinear functional, ¢ €' » ¥
a functional such that g(x + y) 2 q(x) t ¢(y), Vo, y € € We Lave plc)
~ g(2), Ve € € Show that there exists a teal lineat functional f on A such
thut ¢(x) <. f(x), Vo € C and f(z) < p(x), Vo € X.

5 (H. Nakano) Let X be a ieal vectur space, Y a subspuce of X | [ a
linear functional on X and p a subadditive positive ( p(z) > 0 Vo - X)
functional un X with !\ll\f}) p(Az) — 0, Ve ¢ X such that f(z) < p(a), Vu € X

Show that there exists f a real linear functional on X which is an exiension
of f with the property f(1) < ple), Ve e X

6. Let p Le a seminorm on the linear space A

a) Show that Ker pis a luicar subspace of X

b) Show that the 1eal mupping p on X/ Ker p defined Ly p(x) — p(),
e wis anotm on X/ Ker p

¢ Show that cach non zeto sennnorm on R s a nonn

7. Let p be a setninonm on the linear space X and Y a linear subspace
of X Show that p() anf{p(a) | «e T} is a seminotin on X /)Y

28

https://biblioteca-digitala.ro / https://unibuc.ro



Chapter 2

Banach spaces

21 Normed spaces, Banacl spaces
Next X is a vector space over the field K

Definition. A norme on X is w function || || X = K satisfymg the
conditions:

i) flz)l =0 = ¢--v,

) fla 4yl < flell t llull, Ve g e A

i) Jjeer|| = |a| - ||le]l, Y€ KoV e A

Definition. A nvimed space s o pan (N || ||) whete X is « cector space
and || - || 1s 4 norm on A

Bvery normed space (X || ]]) 15 a tietne spare under the metvic d(x y)
~ 4 yll. The notm topology on X, 7 is the metric topology detined b
thus metric. Consequently, a sequence (z,,),, ¢ X is convergent to x « X

if given = > 0, thete s o so that Vo - g, e, ol < =5 (@) € N b oa
Canchiy sequeni e if tor every - 0 theie exists . such that Yo, m - n
"J'- l'u” =

Dctisition. It (N v ) complete the nonmed space (X)) = called o

‘.”, I /L s’hu'q

Hoeark, By the propecties i) and i) of the nor it tollows
Wl lll s e ol v ge A

vhch shows that the ceal iapping oo (N 7 ) 0 le]] s continuons 1 s
Ao easy tosee that the mapping (oy)r va b g trom N+ X (endowed with

29

https://biblioteca-digitala.ro / https://unibuc.ro



the product topolugy) to X is continuous and for every « # 0, the mapping
z +— ax from X to X is a homeomorphism.
Notations. For z, € X and r > 0 we denote by

Bz, r) ={ee X |||v-— =

| <r},

the ball in X with center «, and radius » and by B(ux,,r) its closure, which,
one can easily show, coincides to {x € X | ||v - x| <r}. For 2, = 0, some-
times we will write B(r) instead of B(0,1), we have Bz, ) = B(r) + {z.}.

!

Remark. Note that for any point w,, the family {B(x,,7)}, o & a funda
mental system of neighbouthoods of .

Definition. A subset A of X is said to be bownded if there exists o > U
such that || < «, Vz € A

Remaick. The closure of any Lounded set is also bounded

Definition. Two norms || - ||y and || |l on the vector space N are called
equivalent (written ||« ||, ~ || |l2) if there exist the constants o - Qand 4 -0
such that

allelly < elly < Al Voo X

Proposition 2.1.1 Let || - ||y and || - v two normes on the vector space X
The follounng are equivalent:

1) The norms || - ||y and || - |2 are equivalent;

2) The topologies 1, and iy, comcide,

The proof of this result is appearent.
Definition. Two normed spaces X, Y over the samie field K e said 1o be

isoinetrically isomorphic if there exists a linear bijection {72 X\ ) which
preserves the noim, i.e. [[7(x)] = |lr|]. Vir e N

Remark. A linear mapping ftom X to Y soch that [U o)) (i, Ve e N
will be called further a (linear) 1sometry on N

Definition. lLet (1), be asequence in the novied space (A || |]) The pan
((7a)n, (30)0), where s, = 3570 g is called the series comrespondiog to the
sequence (a,),,, denoted by Y,

The series 37,5 @, is said to be convergent, and the soquens e (o, ), swniable,

if the cequence (s,,),, 1s convergent; the lnnt of this segqucace s ealled the
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sum of the series and is denoted by Y7° | z,.
The series 3,5, 2, is said to be absolutely convergent, and the sequence (z,)n
absolutely summable, if the series 37,5 ||Zn]| is convergent.
The series 3, 5 T, is said to be unconditional convergent, if for each permu-
tation o of N, the series ¥,,5 Zo(n) is convergent.

It is important to have criteria to determine whether normed linear spaces
are complete. Such a criterion is given by the next proposition.

Proposition 2.1.2 Let (X, || - ||) be a normed space. Then, (X,| - ||) s
Banach if and only if every absolulely convergent series in X is convergent.

Proof.  Suppose first that X is complete and let 3, z,, be an absolutely
convergent series in X, Then, for Ve > 0, 3n, such that 337 |lzn|| < €.
Then, for every n > m > n. we have -

n m n n 00
Id oz = all =1 3 =l < D llawll < Y lzall <6
k=1 k=1 k=m+1 k=m+1 n=ng

We conclude that (3%, #x), is Cauchy, therefore, since X is Banach, con-
vergent.

Conversely, let (z,,), be a Cauchy sequence in X. Then, we can obtain a
subsequence (xy, ), sucl; that

”J:k“ 1 a.:k" | < —é"_'ﬁ] ) \/’l
It fullows that the series Y, . ||k, ,, -~ <1, | is convergent. Then, we know
that the series 37 . (xx,,, — «x,) is convergent, Loo. Let us denote by x the

sum
ov
o
L= L,y L(Ikuu - ;’:k..)
n=1
As fov every positive integer m > 2,

m-1

- 2: (Thpyy — Tn,) = i,
n=1

it follows that the subsequence (24, ), of the sequence (x,,), is convergent.
Taking 1o account that a Cauchy sequence which contains a convergent
subsequence is itsell convergent, the proof is finished.
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Further, we shall show that the pioduct of a fannly of noimed spaces
and the quotient of a notmed space by u closed subspace can be natmally
endowed with a structure of normed space.

Theorem 2.1.1 Let (X, || |l,), 27 = 1,2 . i be norined spaces. Then,

ey 2y Ll - max |,
7=1,2,...n

=1,4y...)

"

ts ¢ norme on X = [} |\, and the topolegy 1 comeides to the product
topology on X

If, wn additron each (X, || - ||;), 7 = 1,2, 1 ts a Banach spuce, the normed
space (X || - ||) @ also Banach.

Proof.  lt1s not difficult to show that the real-valued mapping
iy, )0+ wax |l
b k20

defined on A [y 0 X, v a noun I B(e), B)(<) ate the = balls in A
tenpectively X,y =t 200 we also have that, Ve > 0,

B() - ]| B,)
) -1

which proves that the 1 coincides to the product topology  Faither let

((J,(,"‘);:t‘g"'). ~2l)), be a Cauchy sequence in X By
(k) ) (k) (D ‘1. -
I|.r; ®5 1l §I max (|- z; |l,, Vk,le N

(114)

it follows that for every j =1 2, ... 1, the sequence (x;"),, C X, is Cauchy

As (X, 0 1) 7 1,2, nis Banach, there exisis x; € X, the limit of the
N

_ (v . :
sequence (@), Clearly, with an usual convergence argument,

”(J (Irn). J,‘4([”‘) .l'('“))

0

(g, ag, x| ()
as 1 P OX
Theorem 2.0.2 Let (XN | |]) be a normed space and Y a closed subspace of
\ . Then,
ol o

Jooor

s anormeon XY A (X || ||) es Banach, the space X /Y unth thes norm, s
also Banach
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Proof. By the properties of the norm on X, it follows immediately that
the defined mapping on X/Y is subadditive and ||az|| = || ||Z||. It remains
to show that ||Z|| = 0 involves £ = 0. If ||Z|| = 0, there exists a sequence
(zu)n C £ +Y such that z, — 0, as n — 00. As z + Y is a clused set, we
have that 0 e z + Y, s0 z = V.

Now, let (Zn)n C X/Y be a Cauchy sequence so that the series 3,5 || Z..||
converges. Accordingly to Proposition 2.1.2) in order to prove that X/Y is
Banach, we have to show that the series Y, ., 7, converges too. By the
definition of the norm on X/Y, for every n € N | there exists y, € T, such
that

. 1
lall < IZl+ o

It follows that the series 3~ ||y || is convergent. As X is Banach, the series
3 .>1Yn is also convergent. If

o0
T=3 U
n=1

by the inequality

I we -2 <Y e —
k=1 k=1

it results that the series Y, Z, ¢onverges in X/Y to Z.

2.2 Examples of Banach spaces

In this section we shall give some examples of Banach spaces, which will be
useful further.

1. Finite dimensional normed spaces. The space K" can be normed
in many ways. Of major interest are the p-norms, for p € [1,00). Let us

define on K" the real mapping (§,€2, ..., &) — [1(&1,&2, -, &),

(&1, €, oo €l = Zkklpé

This mapping is a norm. In order to prove that we need some preliminary
results.
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(1) Let p, ¢ > 1 such that 1/p+ 1/q = 1. Then,

Va,b e K

labl < |—(£|—,-‘ + M,
p q
Indeed, we have to prove that the inequality is true only when a > 0,
b > 0 (since if one of them is zero, it is obviously verified). Considering the
real mapping on (0,00), f(z) = 2?/p — x, this has its minimum —1/q (in
z = 1), thus

P —
— —xz>—, VYr>0
p
or, equivalently,
¢ 1
—+-2>z, Vr>0
p q

If in the above inequality one inserts x = ab' 9 and one multiplies by b¢, the
inequality is proven.

(2) (Holder’s inequality) Let p, ¢ > 1 such that 1/p+ 1/¢ = 1 and
&, mi (1=1,2,...,n) in K. Then,

> len < (Z |s.-|") " (Z |u.-|°)

1
q

Suppose first that

1 1

n P LA q
(Si6r)" #0na (Sir) £0
il i1
Then, in the previous result (1), we may set
A TR
(i 1&17)» (30 [l9)
and, we obtain
. ni: » 14
lét’l |7:] - & Ift' + l"”tl i 19w
(0 1&IP)P (50 Ima]9) s P IGIP) g (28 ) Imil9)
Summarizing, it follows that
n n l n l l l n 1 " 4
Sled bl < (3 1er) (i) G D = (i) (S 1)
i1 i1 i il i
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If | ,
n n Q
(3 w) ~ou () -0,
1 i=1

everything is clear, since the inequality becomes 0 < ().
(3) (Minkowski’s inequality) Let p € [1,00) and &, 1), (i = 1,2,...,n)
in K. Then,

n ,l, n ;l» n %
(Sternr) < (Ser) + (Sir)
i1 i-1 -1
The inequality is immediate if p =1 or 30 | |&P = 0 or 350, P = 0. It

1s enough to prove the inequality for §;, 7, > 0 and at least one of the &,
respectively 7, is not zero. U ing the Holder’s inequality, we have

Z &+ )P = Z(& + )P G+ D (& + )P <
i=1 =1

=1
< (Z(fa + 7].)") ’ <Z ff) (Z &+ ) ) ’ (Z 1]‘:) "
i=1 i=1 i-1 io1

thus, dividing by (0, (&, +1.)%)F " , the proof is finished.
Now, let us return to the space lK ™ and to the mapping

(€1, €20 &n) ¥ (60, €20 - &)l

I'he first two properties of the norm sre immediate, and the fact that

“(él»f);" »\n) + ("Il:“'lv--'-;nn)”p S ”(&lv{?v""v{n)“p t ”(”,lv""l)""y”,ﬂ)"p

follows from Minkowski’s inequality.

Moreover, (K" || - ||,) is a Banach space. Take an arbitrary Cauchy se-
quence (), in K", 2 = (ffl), §“, ., &), For any fixed natural k,

i
€ ~ €0 < llei — wwmlly, —> 0
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as l,m — 00, 50, (E,(:)), is a Cauchy sequence in K. Since K.is complete, for
each k there is a number &, with & =li{n 51(:')- We set z = (£,&a,...,&6,) €K

and since N

lz — zl, = (Z & - w) ’
k=1

it follows that ||z; — z||l, — 0 as | — oo.

Taking into account that any finite dimensional vector space X is isomor-
phic to K" (the isomorphism is £ +— (§,£a,....,&n), where = 37}, &ex,
and {ex }1<k<n is a fixed basis of the n-dimensional vector space X) we may
conclude that (X, || - ||,) is Banach, where

1S Eenlly = (3 l6lP)
k=1 k=1

2. Bounded numerical sequences spaces. Let I’ the set of bounded
sequences T = (£,)nen in K. With the usual sum and product for sequences,
I is a vector space over K. We define on I the mapping z +— ||z,

lzll =sup |£a|
neN

which, clearly is a norm on Ig°. Let us denote by ck the linear subspace
of I containing all convergent sequences, cg the linear subspace of I’ of
sequences coverging to zero (which is still a linear subspace of ck), 8o, the
linear subspace of I of all sequences which are zero, except a finite number
of their terms (which, clearly is a subspace of cg and ck). Then (I, | - ||),
(ex, |- 1), (¢, |l - ||) are Banach spaces (consequently, ck is a closed subspace
of I and ¢y is a closed subspace of ck ). The normed space (84, || - ||) is not
Banach, and it is dense in cg, 35, = ck.

Let us prove first that (I, ||-]|) is Banach. Let (z,)n be a Cauchy sequence
in (2,11 - 1), Zn = (€ )i>1. Fix k € N ; then

|§;(¢n) - él(:m)l < |lzn = zm]| — 0,

as n, m — 00, 80 (f,(c"))nzl is a Cauchy sequence in K. Since K is complete,
for each k € N, there is a (unique) number &, with

& = lim €M

n—00
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Denoting by x the sequence (€x)x we will show that z € IR, Clearly, as each
Cauchy sequence is bounded, there is a positive a > 0 such that ||z, || < ¢,
Vie &€ N. Then,

€M <, VneN, VkeN
Thus,

&k = th“”<ka€N
that is, £ € Ig°. It remains to show that ||z, — z|| — 0, as n — oo. Fix

e > 0, and pick n, so n,m > n, implies ||z,, — .|| < £/2. Then,

e _ WH<2 Vk € N

Fix k arbitrary and fix also n > n(g), in the above inequality. As m — oo,
we have

i £
|E(’) &kl < §,Vk eEN, Vn>n(e)
Counsequently,

l£n — || —-bllp |§(") &| < - <eg, Vn2n(e)

[Ql(\n

I order to prove that (ck, ||-||) (respectively (cg, ||-||)) is Banach we shall show
that ek, (respectively cg) is a closed subspace of (my, || - ||). Consequently,
let us start with £ = (&)x € Tk and prove that z is Cauchy in K, thus
convergent. Pick the sequence (z,), C ck, where z,, — z. It follows, given
£ > 0 there is n(¢) € N so that V n > n(c) and Vk € N

. €
Ify(c)—ﬁk|<§

As £, is Cauchy, there is k() € N as Vk, | > k(¢), |§,‘¢"(E» - {,("(s»| < e/3.
Then, for k, | > k() we have

6k — &) < [ — €2 U] 4 [l _ gD (il ) e

Similarly, we prove that cg = cg. Given z = (& )k € ck, we pick a sequence
(#n)n C cg, where z, — z. It follows, given &€ > 0 there is n(¢) € N so that
V n > n(e) and Vk € N,

n 13
|€£)—fk|<§
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As 1) is convergent to zero, there is k(¢) € N such that for each k 2 A
el <2
Then, fur k > k(e) we have
€] < |€ — 6] + €M) < =

thus, the sequence « = (€ )x converges to zero.
Further we find a Cauchy sequence in s, that does not converge in s,
Let us take the sequence z,, — (& "))x where

1
(n) _ [ o k<
kK — 3y -
l O } >un
and notice that for arbitrary i > n,
Ly — Ly = (0,0,..,0, 172" 1/2™0...), SO ||Ly — || = 17277

thus (x,), is Cauchy in s,, Suppose that ||z, — 2| — 0. for sonic o =
=(&,...,&.,0,...). Then, for each n > k

N . 1 | i
Ly, A= ( — ‘l’:zﬁ - 622] =y kv ..:2;‘,“.4..)

s |[Ly, £ 2 1/24" and as i 00, hin ||la,, - 2 2 /28 (one comtradi
1 I
e, — x| —— 0, as n - o0).
Iinally, we have to piove that «,, = ¢y Let rbe g & — (§hin- oven

= 2 0,1t is enough to pick 7 € s, s0 that |lr -0l < - Ashia £, - 0w hod
2
k(r i su that k _>_ k(c), 'ékl <+ /2. Het T = :?‘UA iki:y-“ i ithat l)t-!uu#\‘ 1o
). Then

lz— 2 = [1(0, - 0, &xeyras s bh )l = sup [&af = -
k-ok(e) 1) -

3. I spaces. let p ¢ [1,00) be. Further we will consider the et of ali
absolutely summable . merical sequences e 10 = (£, 1 O K|Y 5,000
is convergent }. Unider the usual addition and scalar multipheation /', is

i+
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vector space (the fact that the sum of two sequences in l§ is still in l§ follows
from the Minkowski’s inequality). The mapping

1

(€n)nz1 — (g:l |£n|p) ’

is a norm on lg , denoted by || - ||, . The first two properties of the norm are
immediate, and {|(§n)n>1 + (M)n>1llp < [1(€a)n21llp + [[(Mn)n21]l, results from
the Minkowski’s inequality.

Moreover, (I, | - |ly) is Banach. In order to prove that, we take an ar-
bitrary Cauchy sequence (z,), in Ik, z, = ({,(:"))k. For any fixed natural
k,

e — €™ < ||Tn — Tmlly — 0 a8 n,m — 00

s0, ( ,(c") )u is a Cauchy sequence in K. Since K is complete, for each k there
is u number £, with
—1 (n)
€k —11'1‘“ §x

We notice first that the numerical sequence £ = (£;)x belongs to l§. Indeed,
since (z,), is Cauchy, it is also bounded, thus there is a positive a > 0, such
that

m
> 1EMP < of, Vn,meN
For fixed m € N, as n — 0o, we have

m

Dkl < o,
k:ll

which proves that = € k.

Thus, if we can show that ||z, — z||, — 0 as n — 00, we can conclude
that (I, - |l,) is Banach. Given € > 0, we find n. so n,m > n, implies
|£n — zwmll, < £/2. Then, for each arbitrary natural [, we have

1
. n m £ P
S I -7 < (5)
=1 2
and, as m — 00,

S - < (5)°
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From this inequality, as I — o0, it results
00 P
> 16 - e < ()
k=1

which involves ||z, - z||, < € for each n > n,.

4. Bounded functions spaces. Given T an arbitrary nonempty set, let
Bx(T') be the bounded functions z : T' — K . Let us define on this vector
space the real-valued mapping  —— ||z||, where

[ #lleo = sup |(¢)]

a,b|

It is immediate that this mapping is a norm on Bg(T'). We claim that
(Bk(T), |l - lloo) is Banach. Indeed, let (z,), be a Cauchy sequence. Then,
for any fixed t € [a,b],

|20 (t) = Zm(t)] < [0 — Tmflc — 0
as n,Mm — 00, 80 (Z,(t))n is a Cauchy sequence in K. Since K is complete,
for each t, there is a (unique) number, z(t) with z,(t) — z(t),as n — oo.
Clearly, as each Cauchy sequence is bounded, there is a positive & > 0 such
that ||z, |l < @, Vn € N. Then,
|z(t)] =lim |xa(t)| < @, VLCT,
thus the function z on [a, b] defined by

z(t) lim z,(t)

is bounded.
Let us prove that, given £ > 0, we find n, son > n, implies ||z, —z| . < €,
that is (z,), converges to z in (Bk(T),| - |w)- Fix € > 0, and pick n, so

n,m > n, implies |z, — Zm|lo < £/3. Then,

Iz — Zn, loo = sup lim |z,(t) — zs, ) <
tefa,b] "

3
< sup sup |rn(t) — zn,(t)] =sup [|Tn — Tn, |l < 3
tela,b) n>n, n>ne
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and, consequently, if n > n.,

e €
Iz = Zallo < 12 = Za,lloo + 20 — Zn, I < 3 + 3 <€
We notice that (Bg(N), || - [lo) = (i&, || - |I) (Example 2).
5. Continuous functions spaces. Let Ck|[a, b] be the continuous func-
tions on [a,b] (to K) with the norm

lzllo = sup |a(t)|
t€(a,b]

Then, (Ck[a,b],|| - |lo) is Banach. In order to prove that, it is enough to
show that the subspace Ck|a, b] of (Bk[a,b], || - |l«) is closed. Then let (zy),
be a sequence in Ck[a,b] which converges to z. If we can show that the
function z is continuous on [a,b], we can conclude that.(z,), converges to
z in (Ck[a,b], || - |lo). We are thus left proving that z is continuous at each
fixed t € [a,b]. Given € > 0 we want to find § > 0 so |s — t|] < 6 implies
|z(8) — z(t)| < €. Pick n, so that ||z,, — z|lw < €/3. Since z,, is continuous
at t, there is § > 0 so that |s — t| < & implies |z, (8) — z,,(t)] < €/3. Then
|s — t| < 6 implies

[2(5)=2(0)] < [2(5) ~Tn, (8)|+2n,(5) T, (O +[2n, () —z(t)] < S+5+5 = ¢
thus z is continuous. Usually the norm on Ck|a, b], will be denoted by || - ||
instead of | - ||co-

6. L} spaces. Let (X,X',m) be a measure space and p € [1,00). (For
more about measure spaces one can see Appendix C.) The space Lg(X)
consists of all m-equivalence classes of X-measurable K -functions z for which
|z|? is integrable (has finite integral with respect to m over X). Two functions
are m-equivalent if they are equal m-almost everywhere (we will denote the
equivalence class of by the same symbol, z). We set

1

Ity = ( 1af am)’

We shall show that (L§(X), || - ||ec) is @ Banach space. It is understood that
the vector operations between the elements of L (X) are defined pointwise:
the sum of the equivalence classes containing £ and y is the equivalence
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class containing z + y and similarly for the product az. The fact that if
z,y € L (X) the sum is still in L" k(X) follows from

|z + y|* < [2 sup{|z], [y|}}* < 2° (|=” + |y/”)

We have to notice that in the particular case where m is the counting measure
on all subsets of N , the L -spaces can be identified with the sequence spaces
Ik (Example 3). In this case each equivalence class contains one element.

In order to establish that || - || yields a norm on Li we shall need the
Holder and Minkowski inequalities for functions. Recall us, that for p, q >1
such that 1/p+1/q = 1 we have

P |ple
jabf < 0 B e e
p q

(Example 1(1)). Suppose that z € L§ and y € L{, and that ||z], # 0
and ||y|l, # 0. The product zy is measurable, and the above inequality with
a = [2(t)l/llll, and b = [y(®)]/llyl, implies that

lz(®y(0)] _ [=@F |0l
lelolivlle = plalls * allll

Moreover, on integrating we obtain the Holder’s inequality:
[1aulam < ([1al am)s([ 1yl am)s
which, in the particular case of p = ¢ = 1/2, involves the Cauchy-Schwarz
inequality:
|/xydm| < ([ kel am)(f vl am)?
Now, we will obtain the Minkowski’s inequality,
([ 12+ P am)? < ([ ol am)s + ([ Iy dm)?

(that is ||z + yll, < llzll, + lyllp)-
We have already seen that z + y € L. Moreover,

lz+ylP =|z+y| |lz+yf ' <|z| |z +yf '+l |z +ylP !
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Since z +y € Lk, then z + y € Lg; since p = (p — 1)q it follows that
|z + y|P~! € Lk. Hence we can apply Holder’s inequality to infer that

1 p 3
[l 4y am < el [ [ 12+ P am]* = el + ol

If we treat the second term on the right similarly, we have

B
/|yl e+ ylP dm < [lyllplle + yll

thus, finally

/’“”“L?A’deﬁ/I%I-IchryI”"dm+/|y|.;ag+yl;»—ndmS

4 E B
< llzllpllz -+ yllz + lyllpliz + ylls = (=l + lyll) = + ylls

If |z + y||, = 0, Minkowski’s inequality is trivial. If ||z + y|l, # 0, we
can divide the above inequality by ||z + y|[#/%; since p — p/g = 1 we obtain
Minkowski’s inequality.

Next, we shall prove that the normed space (L§(X),| - |le) is Banach.
This result is known as Riesz- Fisher theorem. We will show that each
absolutely convergent series of elements in Lk (X) is convergent to an element
in Lx(X) (Proposition 2.1.2). Let (z,), be a sequence in L%(X) such that
Yol llznllp = @ < oo . We define the sequence of functions (yn)n by

bn(t) = 3" 2 (1)

k=1

By Minkowski’s inequality, we have

n
lynlly < Z lzn I

80, it follows that
/ ()P dm < o”

Given t € X, the increasing sequence (yn(t))n C Ry U {oo} has a limit in
R, U {oo}, denoted further by y(t). Since

2 lza(t)] = ()
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the function on X to R} U{oo}, t — y(t) is measurable. By Fatou’s lemma,

we obtain
/ ¥dm <o

so yP is m-integrable, and consequently y is m-finite almost everywhere. Since
the functions series Y 0> | Z(t) is m-almost everywhere absolutely convergent,
it results that the series Y2, z,(t) is mn-almost everywhere convergent; de-
nute its sum (when the series is convergent) by s(t). Let us denote by A the
set of all t € X with y(t) = oo and define a function on X as follows: s(t) =0
if t € A, and, otherwise s(t) = 3.2° | z,(t). Hence we obtain a function s from
X to R with the property that m-almost everywhere, s(t) =lim 37}, xi(t).

Clearly, since s is p-almost everywhere the limit of a sequence of measurable
functions is itself measurable. By the inequality

lgummmn

as n - » 0o, we obtain that |s(¢)| < y(t), so we can conclude s € L (X).
By taking into account that

|3 n(0) = a(0)] < Zlg(0)P

the function 2P[g(t)]? is integrable and that | Y%, zx(t) — s(t)] — 0 m-
almost everywhere, one can use the Dominated convergence theorem to infer

J132(8) = s am — o0,
k=1

s0, equivalently, || >-¢ _, zx — s||, — 0, as n — oo. This proves that the series
Y n>1Zn converges to s in the norm of Ly (X).

2.3 Finite dimensional normed spaces

2.3.1 The equivalence of the norms

The next result shows that all notms on a finite dimensional vector space are
equivalent, consequently, the norm topologies coincide.
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Theorem 2.3.1 Let X be a vector space over the field K of finite dimension,
dimg X =n < 00 and {ex}i1<k<n an algebraic basis of X. Then,
1) The real-valued mapping on X, x — ||z||,, where for z = 3°%_, €;e;,

n 2 %
lzll = { o1&l
i=1
s a norm on X.
2) Any other norm on X is equivalent to || - ||

Proof. 1) It follows immediately from Minkowski’s inequality, (2.2, Ex-
ample 1, (3)).

2) Let || - || be an other nc.m on X. Then, for an arbitrary z = Y77, {je;,
we have with the properties of the norm and Holder’ s inequality,

]l = |l 25151" < Z |§J lleill <

1 1 1
< (}: Iéjl") ~(Z ||61||2) = (Z IIbJ‘II”) llzl2
j=1 j=1 j=1

‘Thus, we have only to see that there exists 3 > 0 such that ||z|l; < Bz,
Vr € X. Suppose otherwise, so, for each 8 > 0, there exists gy € X, with
lzsll2 > Bllzsll; in particular, for every positive integer m, 3z, € X, with
lzmll2 > m||zm]||. Let us consider the sequence (Ym)m>1, where

1
= — Z
Ym ” . I I 2 m

We remark that ||y,.]l. = 1 and |lym|| < 1/m, Vin > 1. Every y, can be
written as

Y = Zl}f )cJ, Vm €N

i1
For an arbitrary fixed j € {1,2,.....,n}, from

}
™) < ().,l?i,"')l") = [lymll2 = 1,Ym e N
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it follows that the numerical sequence (71§~"')),,C)1 is bounded. As every boun-
ded numerical sequence has a convergent subsequence, we may conclude, by a

diagonal procedure, that for Vj € {1,2,....,n}, there exists a convergent sub-

sequence of (nﬁ"‘))mzl, denoted for simplicity, (qj( ™) Vs '71('") — ;. Further,

we define in K the sequence (zp,)m>1,

10 ( )
m
m=2% €
g=1

and the element .
z = Z Y5€j
j=1

Clearly, ||z||2 = 1, since (zm)m>1 is a subsequence of (Ym)m>1, thus

1

n 2
_n ., T (m)2 .
1 =lim ||zl =lim (J};: 1™ ) =

1 1
7 2 n 2
=(Zli,s,n Iv,‘-'"’P) =(ZI%|2) SR
Jj=1 j=1

On the other hand, for an arbitrary m € N |

Izl < 2 = 2l + Nzl = uL =9™)esl + lzmll <
n
< 3= ™ Nl + lzll < 3 b = " llesl 1o
3= j=1
As m — 00, one obtains that ||z|| = 0, so 2 = 0, which contradicts |z|; = 1.
It follows that there exists 3 > 0 such that |z|s < |z, Vo € X,
therefore every norm on X is equivalent to || - |[».

Corollary 2.8.1 FEvery finite dimensional normed space (X, | - ||) is a Ba-
nach space.
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Proof.  Let {ex}i<k<n an algebraic basis of X. Since the norm | - | is
equivalent to || - ||, it is enough to prove that the space is complete under the
metric defined by the norm |- ||;. Take an arbitrary Cauchy sequence, (Z.,)m;
each z,, is written uniquely as 37, {;m)ej. For every j € {1,2,....,n}, the

sequence (£§m) )m is Cauchy, as it results from
k
1657 ~ &1 < ok — 2l

Then, as (K, |- |) is complete, there exists §; € K, §; —hm f(m) Let us

define z = 377, €;e; and prove that z,, — z. Since (:z:,,.)m is Cauchy, it
results for any € > 0, dmn, € N, such that Vk,m > m,, lzk — Zmll2 =

= (T, Iﬁ(k) ('")|2)1/2 < /2. If we fix an arbitrary m > m, and we pass
to the limit with respect to k in the previous inequality, we get that

(Z |f(m) &; %) 1/2 <eg/2<e, VYm2>m,

80, ||Zm — z||2 < €, Vin > m,. We have shown that (z,,)m is convergent.

Corollary 2.3.2 Fach finite dimensional subspace Y of a normed space
(X, |- 1) s closed.

Proof. By Corollary 2.3.1, the normed space (Y, | - ||) is Banach. Let y
be in the closure of Y, so there exists a sequence (y,), C Y, converging to
y. The sequence (y,,), is Cauchy in the complete space Y, thus there exists
z € Y, the limit of the sequence (y,),. By the uniqueness of the limit (in
Hausdorff spaces) it results that z =y € Y.

2.3.2 Compact sets in finite dimensional normed
spaces

Here we will see that in finite dimensional vector spaces the compact sets are
exactly the bounded closed sets.

Lemma 2.83.1 Let (X, ||-||) be a normed space andY a closed proper subspac.
of X (Y G X). Then, for every e > 0 there is an element z. in X \ 'Y such
that ||ze|| = 1 and ||z, — y|| > 1 —¢,Vy €Y.
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Proof. Takeane > 0, (¢ < 1). Since Y ¢ X, there exists z € X \ )

Denote by d the distance fiom z to Y, which, since Y is closed, is strictly

positive, thus, d ;in‘f | —y|| > 0. As d < d(1 + €), there 15 an elem-nt
ey '

¥e € Y such that d < ||z — y.|j < d(1 + €). Defining z, as

1
Le= - (z—y,
e D)

we claim that z. ¢ X \ Y . Otherwise, if z. € X \ Y, 1t follows that
T=zellr- gl +y €Y,

which contradicts the choice of z € X \ Y.

In additior ||z, || = 1, and, for an arbitrary y € Y we have
oo -yl === (o) ~ ol
2. -yl =+ (T —ye) —y|| =
Il — vl :
1 1 1 1
=z (Yetyllr—yl)| > —sd> < d=—— -1 ¢
P R AL LR P g (R R e

‘Theorem 2.3.2 (The Riesz theorem) Let (X, ||-||) be a normed space over
the field K. The followiiy are equivalent:

(1) X 1s fimte dimensrional;

(2) Every bounded closed subset of X 1s compact.

Proof. (1) == (21 Supj.ose that the dimensiu: of X is 1o and consider
{ex}1<k<n an arbitiary basis of X Let A be a L.unded closed subset of X
and (im)m « sequence of elements in A. Since || - || ~ || - ||z, it follows that

14 C ("1) 5

there exists » > 0 such that ||z,]l2 < @ Vm € N. Each z,, = Y & ey,
and, from

1
n 2
R (Zne""lﬁ) = llemlls < @, ¥m €N
i=1

it results that the sequence ({fm))m is bounded for every i = 1,2, ..., n, there-
fore it has a convergent subsequence (i = 1,2,...,n). Then, by a diagonal

procedure we obtain a subsequence (zm)m of (Zm)m , where zm =37, ”/,(m)ei
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and ’7,"") — 7, a8 m — 00, ¢ = 1,2, ..., n. Setting z = Y1 | :e;, we have
that z,, — 2. Indeed,

1

2
“Zm - 2"2 = (Z |7(m) Y% 2) = O)

as m — 00. Moreover, because A is closed, 2 € A. Therefore we have proven
that A is compact, since we have shown that every sequence of elements of
A contains a convergent subsequence.

(2) = (1) Suppose that X is not finite dimensional. Take an arbitrary
)y € X, z; # 0 and let Y; denote the linear subspace spanned by ;. The
subspace Y] is finite dimensional; by the Corollary 2.3.2 it results that Y; is
closed. As X is not finite dimensional, Y} ;Ct X. Then, by the previous lemma
dzy, ¢ Y1, |lz2|l = 1, ||z2 — y|| > 1/2, Vy € Yj; in particular, ||z — z,] >
> 1/2. Further, let Y the linear subspace spanned by {z;,z,}. With similar
arguments as above, Jz3 € Y, |lz3|| = 1, |lzz — y|| > 1/2, Vy € Ys; in
particular, ||z3 — z;|| > 1/2, ¢ = 1, 2. Continuing this process, by induction,
we obtain a sequence (Z,,),, in X such that ||z,,|| =1 and ||z, — zx|| > 1/2,
Vm, k € N. It follows that the closed unit ball B(1) contains a sequence
which has no convergent subsequences, so there exists a bounded closed set
(B(1)) which is not compact (one contradicts 2)).

Corollary 2.3.3 Let (X, | - ||) be a normed space over the field K such that
the closed unit ball of X is compact. Then, X is finite dimensional.

Proof. Let A be a bounded closed subset of X. Then, da > 0 such that
lz|| < @, Vx € A, or, equivalently, 1/a A C B(1). It results that 1/a A is
compact, since it is a closed subset of the compact set B(1). As the mapping
z +—— 1/a - z is an homeomorphism on X, we have that A is compact too.
By the Riesz theorem, it results that X is finite dimensional.

We will end this section with an application, an approximation result in
normed space.

Proposition 2.3.1 Let (X, || - |) be a normed space over the field K and Y
a finite dimensional subspace of X. Then, for every x € X, there exists an
element y, € Y such that

d(z,Y) = ||z - v,

(yz s called the closest element to x inY).
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Proof. Let us denote by d = d(z,Y) (which is 1{1)f, [lz — y||). Then, for
-

every n € N, there exists y, € Y such that d < ||z — y,|| < d + 1/n. Then,
as Y is closed in X (Corollary 2.3.2), it follows that A, the closure of the
set {y, | n € N} is still in Y. In addition, A is bounded. Since Y is finite
dimensional, by the Riesz theorem, it follows that A is compact, thus each
sequence in A has a convergent subsequence, in particular (y,),. Then, there
exists a convergent subsequence (yy,, ), of (yn)n. Let us denote its limit by y,;
clearly, since A is closed y, € A C Y. By

1
d< ”z"yﬂk” <d+ —
Ng

it follows, as k — oo, that d = ||z — y||.

Example. Consider the normed space (Cx|a,b], || - ||«) and the subspace of
Ck|a, b] of all polynomials of degree less than n, P, [a,b]. Clearly, P,[a,b] is
finite dimensional (a basis for it is {1,¢,¢%,...,t"}). By the above proposition,
for every continuous function z € Cg|a, ], there exists a polynomial

n
p(t) = 3" AP,
k=1

where /\ff) €K, k=1,2,...,n, such that

n

n
. . k _ _ (z),k
1= SN = e 32

k=1

2.4 Exercises

1. Prove that the closure of every bounded set in a normed space is still
bounded.
2. Let X be a normed space and (z,,), a sequence in X converging to zero.
Then, there is a sequence (yt,,),, in K such that |p,,| — oo and p,z, — 0.
3. Let (X,,[l-ll;), 5 = 1,2,...,m be normed spaces and X = [[}", X;
their normed product space (||(z;,z3, ..., Zm)|| =, max lz;]|;). Show that

=12,...,

the norm of X, is equivalent to

1

(@1, 72, )l = (2 Ile”)
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where p € |1, 00).
4. A normed space X admits a topological (Schauder) basis if there is

a sequence (z,), C X (called topological basis of X or Schauder basis) such
that each £ € X can be written uniquely as £ = Y7 | a,Zn, where a, € K.
Show that (e,), (where e, = (6);,) is a topological basis in 1%, p € [1,00).

5. Show that cg and ckx admit topological bases.

6. Show that Ck([0, 1]) admnits a topological basis.

7. Each normed space admitting a topological basis is separable.

8. Show that Bg(1') is separable if and only if T' is finite. In particular,
g’ 1s not separable.

9. Prove that each linear subspace of a separable normed space is sepa-
rable.

10. a) Show that the rea! valued mapping

({l){'l;"‘ inn)} = |I(£]7€2)"‘)£")“\XJ)

Wll\"lc

“(él;g‘z)--wgn)"oo 212?5)51 |€-|

1
is & norm on K",
b) The real-valued mapping

P “(61)62: "')f")"?

is decreasing on [1,00) and

6 €l = i N6l = (s s o)l
11. Show that Iy is a linear subspace of I§ which is not closed; its closure
s ok
12, Let | < p < q < oo be. Show that & C If ,||-|l, = || -l and the
subspace ly is not closed in .
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Chapter 3

Bounded operators on Banach
spaces

3.1 The normed space B(X,Y)
Next, X and Y are two normed spaces, over the same field K . We use the

same symbol, || - ||, for the norm of X and of Y.

Definition. Let (X, | - ||) and (Y, ] - ||) be two normed spaces. A mapping
T: X — Y is said to be bounded if and only if there is M > 0 so that

IT(@)ll < M|jzl|, VzeX

Proposition 3.1.1 Let T' be a linear operator between two normed spaces
(X, |1 - 1) and (Y, || - |I). The follouring are equivalent:

(1) The mapping T is continuous on X;

(2) The mapping T s continuous at zero;

(8) The mapping T is bounded.

Proof. As (1) = (2) is clear, let us begin with the converse implication
Take an arbitrary =, € X. Given € > 0 there is §; > 0 such that |Ju| < é,
implies ||T'(u)|| < €. Setting here u = = — z, and using the linearity of 7" one
obtains that for given £ > 0 there is 6. > 0 such that |z — z,|| < é. implies
T (xz) — T'(z,)|| <e€,soT is continuous at z,.

Suppose further that 7' is continuous at zero ((2)) and that it is not
bounded. Then, for each positive integer m there is z,, € X so that
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I'1'(zn) || > m||zm||. The sequence (Yum)m defined by

1
Yn = 575 Z
" m"xm” "

converges clearly to zero and ||7'(9y,)|| > 1, which contradicts the continuity
of T' at zero. Thus we have seen that (2) = (3). The implication (3) = (1)
is obvious.

Notation. The set of all bounded linear operator between two normed
spaces (X,| - ||) and (Y, - ||) will be denoted by B(X,Y), and if X =Y,
B(X). In the particular case of (Y,| - ||) = (K, |- |), so the bounded linear
operators are bounded linear functionals, the space B(X,Y') will be denoted
by X* (X* is called the dual of the normed spac= (X, || - ||)).

Remark. The set B(X,Y') is cleatly a subspace of L(X,Y).
Proposition 3.1.2 The real mapping on B(X,Y), i'+— |

Il = sup [T ()]
l=l<1

111

|, defined by

is a norm on B(XY).

Proof. Since 1' is bounded, we have that the set (of positive reals)
{NT()|l | llz|l < 1} is upper bounded, so the mapping is well defined. If
T|| = 0, then, for every z # 0, T'((1/|z|]) x) = 0. thus T'(z) = 0. It follows
T=0.IfT),T,€ B(X,Y) and ||z|| < 1, we have

1Ty + 1) (@)l = 1Ti(@) + Ta(z) | < ITa() | + 1 T2(e) i < I Thl + |72
thus,
W1+ el < TG+ T2
For arbitrary « € K and 1' € B(X,Y'), by
o'l = sup [[(@T) ()| = sup |a|- || T(z)|| = |a| sup [T ()
[l <1 [lzll<1 llzll<1

it follows that
laT|| = |a| - ||T'|
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Remarks. 1. Next, always the vector space B(X,Y) will be endowed with
the above norm, called the cperator norm.
2. By the definition of the norm on B(X,Y), it results that for 7' €
€ B(X,Y),
1T < ITH - llzll, VY2zeX

Proposition 3.1.3 Let I" be in B(X,Y). Then

IT)) = inf {M >0||T(z)| < M||zl|, Vz € X} =

= oup [17(@)] = sup. 1)} <sup 1]
llzll=1 llzll< =20 |z

Proof. Let us denote by

1Tl = sup (T(x)ll, IT'll2 = sup |T(=)ll,
lall=1 lall<

T(x
[T = inf {M >0 [T()] < Mial, Vo € X} and [} sup 1]

Clearly, || T||y < ||T|| and [|T]j2 < |IT]].
Let = be arbitrary in X with ||z|| < 1. Since ||n/(n + 1)z|| < 1 we have

that
< ||\l

1’[’||2, Vn e N

It follows that

which implies ||T'|| = ||T||2
Now we check that | T'||s < ||T||;. For every z # 0, since the norm of

z/|iz|| is 1, we have

thus || T'z|| < ||T|l||z||, so |T]ls < ||T||1 Further, if z is in X, with ||z|| =1,
ITz|| < M, thus ||T||; < ||T|ls- We have proven that || T'||3 = ||T']]:.
If |z|| < 1, we can conclude similarly that ||T|| < ||T'|ls = ||T'||:.

54

https://biblioteca-digitala.ro / https://unibuc.ro



In addition, by ||T'z| < ||T'||4]lz|), it follows that ||T'||s <
ously || 7|4 < ||T’||1, we have checked all the equalities.

Examples. 1. Let M, be the operator on Ck([0,1]) defined by
My (z) = a(t) - z(t),

4. AB obvi-

where a € Ck([0,1]). Clearly, M, is linear and, since for every z € Cx([0,1]),
[Ma(2)|| = sup |a(t) - z(t)] < llel - |l],
te(0,1]

bounded. Thus, M, € B(C([0,1])). Moreover, |M,| < ||a|. On the other
hand, as the norm of the functlon T, on [0 1] defined by z,(t) = 1, Vt € [0,1]
is equal to one, we have

[ Ml = sup IIM (@)l 2 | Ma(2,)l = up la(t)] = lle|

It follows that ||M,|| = ||a||
2. Suppose that (\,), is in I and define the mapping T on lf by

T((fn)n) = (’\n‘fn)ﬂ

We notice that for each z = (£,), € lk, the sequence (A.£,)n is also p-
summable, since

(Z |Ans..|P) <(oup Al €0 )ol

It follows that the operator T € B(lk) and ||T|| Ss?‘p |An]. Moreover, for

every n, pick in [% the sequence e, = (8");, which, obviously has [|en|| = 1.
Then,
= sup [T()]| 2 [T(ea)ll = [Anl,
z<1

therefore ||T']] <sup |A,|. We have shown that
n

T

Il =sup An]
3. On Ck(|0,1]) define the mapping z — T'z, with
i
Ta(s) = / k(s,O)z(t)dt, Vs € [0,1],
0
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where k € Ck([0,1] x [0,1]). It is easy to see that
Tx € CK(IO, 1]), V € CK([O, 1])
We shall show that T' € B(Cy([0,1])) and

1
I = sup [ k(s,0)l e
s€(0,1) JO

(The operator T is called the integral operator of kernel k).

As the linearity of 7' is immediate, let us check its continuity. For each
z € Cx([0,1]),

1 1
ITz|| = sup |T'z(s)| <sup [ [k(s,t)|-|x(t)|dt < [[z]|- sup [ |k(s,¢)|dt,
s€(0,1] s€(0,1) O s€(0,1) O

thus T' € B(Cx([0,1])) and

1
IT|| < sup [ [k(s,¢t)|dt
s€(0,1) /O
In order to compute the norm of the operator T', we notice that the function
t — [y |k(s,t)| dt is continue on [0, 1], so there exists s, € [0, 1] such that

1 1
sup [ |k(s,t)|dt = / Ik (30, ¢)] dt
s€(0,1) JO 0

Let f, be the function on [0, 1] defined by f,(t) = sign k(s,,t) (where, as
usually, for a real number a, sign a = 1,0, respectively —1 if a > 0, = 0,
respectively < 0). This function is measurable, thus, by Luzin’s Theorem
(Appendix C), for every € > 0, there is a continuous real function, g, on [0, 1]
such that the measure of the set {t € [0,1] | f,(t) # gc(t)} is less than ¢ ;
moreover g. can be chosen such that

lgell < sup |fo(t)] =1
te(0,1]

It follows that we can obtain a sequence (g, ), C Cx ([0, 1]) such that for each
n, the measure of the set A, = {t € [0,1] | f,(t) # gn(t)} is less than 1/n
and ||g,|| < 1. We claim

A' [k (3o, t)] dt =lim /0' k(o) t)gn () dt
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as 1t results from

/ k(50,8 fo(8) dt / (50, () dm| </ (50, 6)] - l9n () — fo(®)] dt <

1
< [ o0 (9001 + 1£o(0)]) dt <2 sup k(so,8)] - = — 0
An n

te[0,1)
Then, since
T

Tgu(s0) < [T'9n(30)] < | Tgnll < | r

Ngall <171,

we have

1 rl
/ [k (50, )] dt =lim [ k(50 t)gn(t) dt =lim Tga(s,) < [T
0 n ) n

Theorem 3.1.1 IfY is a Banach space, B(X,Y) is a Banach space.

Proof. Let (1,,), C B(X,Y) be a Cauchy sequence. We must prove that
there is a bounded linear operator 1" so that ||T,, — T'|| — 0. Since for each
arbitrary = € X,

|Thz — Tzl < |10 — Twll - llzll, Vn,meN
it results that (7,,z), is a Cauchy sequence in Y, Vo € X. As Y is complete,

(T.x), converges to a (unique) element y € Y. Define Tz = y. It is easy to
check that T is a linear operator:

T(azx + By) :"lil_rhl“ Tu(ex + By) :nlil:r(;lo (aThz + PToy) =
=« nlii:gs Thx + 3 nli{u‘ Ty =aolz+ [Ty, Vo,feK,z,ye X

Since (1},), is a Cauchy sequence in B(X,Y), it is bounded, thus, there is
M > 0 so that ||1,,]] < M, V. As, for each z € X, ||Thz|| < |Tull - llz|l, we

have

17wl = Jim [Tzl < M,

so I" € B(X,Y). We must still show that T,, —- T' in the operator norm.
Given £ > 0, there is n, so that n,m > n, implies |1, — I,|| < €. As for
arbitrary =z in X we have

[Thx = Tzl < 15 = Twll - 2|l
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it follows that n,m > n, implies

For fixed n > n,, as n — oo the previous inequality becomes

Lz =Tzl <e-|lefl, VoeX

|Thzx —Tz|| <e-|z|, Ve X

which implies
T, —T| <e, Vn>mn,
therefore T,, — 7" in B(X,Y).
In addition, as the norm mapping is continuous on B(X,Y'), we have that

IZall — Il

Remark. One can show whenever B(X,Y') is a Banach space, Y is a Banach
space (Exercise 3).

Corollary 3.1.1 The dual space of a normed space is a Banach space.

Proof. It follows from the previous theorem since (K| - |) is Banach and
X* =B(X,K)

Further, we shall state and prove the theorem concerning the extension
by continuity.

Theorem 3.1.2 (Eztension by continuity) Let (X,|| - ||) be a normed
space and X, a dense subspace of X. Suppose that T' is a bounded linear
operator from the normed space X, to a Banach space (Y, ||-||). Then, T' can
be uniquely ertended to a bounded linear operator T : X — Y. Moreover

17| = 7.

Proof. For each 2 € X, there is a sequence of elements (z,), in X, with
Zn, — T as n — 00. Since (z,), converges, it js Cauchy, so given € > 0, we
can find 7, so that n,m > n. implies ||z, — &,/ < €/|IT||. Then,

| Tzn — Tzl = ||T (20 - -'Em)” <|\T) - Jen — Tl <e

which proves that (T'z,), is a Cauchy sequence in Y. Since Y is Banach,
Tz, — y for some y. Set T’z = y. We must first show that this definition is
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independent of the chosen sequence z,, — z. Let (y,), be an other sequence
which converges to z. Then

0= T(lign (0 — yn)) =li'r‘n T(Zy — Yn) =li'rln Tz,— li’rln Ty,
therefore
liyx.n Tz, =li'r‘n Ty,

We show first that 7' so defined is linear. Indeed for z,y € X, there are
some sequences (Z,)n, (Yn)n in X, with z, — 2, y,, — = as n — 00. Since
Ty + Yo — T + Yy, we have

T(z +y) =lim Tz + ya) =lim Ten+ lim Ty, =1, ) + T(y)
It is also easy to check that
T(az) = aT(z), VaeK, zeX

Next, we shall prove that T is bounded. For arbitrary x € X, z =li'r‘n T,
(zn)n C X,, we have

|1 Tz|| = || lim T(2n)|| =lim | T(z,) || <lim |T]| - lzall = 171 - Iz

Thus T is bounded and 1T < T
Clearly, T is an extension of T', because, for z € X,, =li'r.n T,, where

z, = &, Vn. Then,

Tx :li'r‘n T, =Tx

Now, we have to prove that T defined above is the unique bounded linear
extension of 7' to X. Suppose that there is an other linear operator T on
X enjoying the same properties like T. For each z € X, let (Zn)n be in X,
z, — ©. Then, as T' € B(X,Y), we have

T(x) =lim T(z,) =lim T(z,) =Tz

so T coincides to T'.

In order to prove that ||T']| = [T']|, since we have already seen that IT|| <
< ||T'||, it is enough to check that ||T'|| > ||T’||. As
T|= sup |Tz|> sup |Tz|= sup |Tz||=|T|
ze X, ||z||<1 z€ Xo, ||z||<1 ze Xo, ||z|I<1

everything is proven.
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3.2 Bounded linear functionals

3.2.1 Hahn-Banach extension theorem in normed
spaces and its consequences

Theorem 3.2.1 (The Hahn-Banach extension theorem in normed spaces)
Let (X, |- ||) be a normed space and X, a subspace of X. Suppose that f is a
continuous linear functional on X;. Then, [ can be ertended to a conlinuous
linear functional f on X. Moreover || f|| = || f]|.

Proof.  As [f(z)| < IfIl- Isll, Vo € X,, and p(z) = IS - =l is a
seminorm on X, by Hahn-Banach extension theorem, we conclude that there
is an extension f of f to the whole space so that |f (:c)l <N fl- Nzl vz € X.
It follows that ||f]| < [|f|l. On the other hand

Ifll = sup lIlf(-’lc)IIZ sup [|If(z)ll = sup s@@i= 11

ze X, ||z||< z€eX,, ||z|<1 z€ X,, ||z||<

thus ||f]l = /]l

Corollary 3.2.1 For every z, € X, there is a continuous linear functional
on X such that f(z,) = ||z,| and ||f]] = 1.

Proof. The existence of f € X* such that f(z,) = ||z,|| and ||f|| < 1is
proven, by Corollary 1.3.1 and Corollary 1.3.2, where p(z) = ||z||. If we recall
that f is the extension of the bounded linear functional f, defined on the
subspace of X spanned by {z,} by f,(Az,) = A||z,||, which whenever z, # 0
has its norm one, it follows that |f|| = 1. If z, = 0, everything is clear.

The next results are immediate consequences of the above corollary.

Corollary 3.2.2 Let x, be in the normed space X (X # {0}) such that
f(z,) =0 for every f € X*. Then z, = 0.

Corollary 3.2.3 Let X be a normed space, X # {0}. Then, X* # {0}.

Corollary 3.2.4 Let X be a normed space, let Y be a closed, linear subspace
of X, and let =, be a point in X that is not in Y. Let § = dist(z,,Y). Then,
there i3 an element f € X* such that

Ifl= . f(z) =1, and f@w) =0, Vy €Y.
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Proof. Set Z = Sp Y U {xz,}, and define f, on Z by f,(y + Az,) = A
Once we have shown that f, has norm 1/6 on Z then we can take f to be
any element of X* whose restriction to Z is f, and whose norm is 1/6 (such
extension exists by Hahn-Banach theorem). Now,

-1
ly + Azoll = [Al - 2o = =yl 2 [Al- 6 = 8- |foy + Azo)|
A

thus, || f,|| < 1/8. On the other hand, there is a sequence (y,), C Y so that
lzo — Y|l — 6. Then,

1

. T, —y)|| =1 Vn,
10— wnl (zo = vl

1
(zo —yn) € Z, and | -———
lzo — yall
50

1

Sy = G| =i b
2o =3l R

[

I £oll = sup |f(2)] = 1/(

||:L',,

It follows that ||f,|| = 1/6.
Next we describe the duals of the Banach spaces l§, p > 1.

Example. If p > 1 the space (lk)* is isometrically isumorphic to lg (where
q is the conjugate of p, 1/p+1/q = 1). The dual space of lg is isometrically
isomorphic to I

In order to prove the above assertions, we first remark that for each
r = (&) € I% (p > 1), the series 3,5, £ne, is convergent in l§ and its
sum is r (where, for each n, ¢, is the eleinent in Ik defined by e, = (6,(‘"’),;,
6™ =0, if k #n and 8 = 1 if k = n). Now, if f € (&%)*, we have

k) = ifnf(en)

Let us denote by y; the numerical sequence (1), where 7, = f(en), Vn and
to show that if p > 1, y, € lf and if p=1, y; € IY.
Take first the case p > 1. For each n, let x,, be the numerical sequence

Zp = (|m]? 2, [72]9 219, . [ |* 21,,0,0,...,0, ...)

Clearly, ,, € I} and

mn 1 P n %
ol = (Z e ’") = (Z |nk|f')
k=1 k=1
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so, it follows that

n 1

3 bl = 1) < U1l = 11 (zw)

and, finally, after a division,

(z |nk|")° < 71

Hence, we can conclude that y, € I§ and |ys|| < | f||. We also notice that,
by the Holder’s inequality it follows

@) =13l < (f: ln,.v')% (i w)é = llysl- el

n=] n=1

thus [yl = | ]l

If p=1, let z, be the numerical sequence

= (6I(¢") sign 7y ),

(where sign 7 = 1,0, respectively —1 if 7y > 0, = 0, respectively < 0).
Clearly, z, € I@ and |z,|| < 1. Taking into account that f € (lx)*, we

obtain
Inal = f(@a) <IN - llzall < 11
so y; € I¥ and |lys|| < ||f]l. In addition,

2] < Z (€l < 1/ ()] = (z: I&.) lull = sl -l

thus ||| = [ly/|l-
We have proven that the mapping ¥ from (l§)* onto lg, (respectively

from (lk)* onto I) defined by ¥(f) = y; is an isometric isomorphism.

3.2.2 The canonical embedding of a normed space into
its bidual. Reflexive Banach spaces

Given a normed space (X, || - ||) we form the Banach dual space X* and,
by iteration, we obtain the bidual space X**. It consists, of course, of all
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bounded linear functionals on X*. For each fixed £ € X define Z(f) to be
f(z) for all f € X*. It is clear that Z is a linear functional on X*, and since

1Z(N)] = 1@ < If1- ll=l
we see that Z € X**. Hence we can define a map ¢ : X — X** by letting
$(a) = &.
Proposition 3.2.1 The mapping ¢ : X — X** defined by ¢(z) = T is an

isometric isomorphism from X onto a linear subspace of X**.

Proof. It is enough to check that |Z|| = ||z||. We have already seen that
IZ]l < ||z||- On the other hand, by Corollary 3.2.1, there is f, € X* so that
Ilfoll =1 and f,(z) = ||z||. It follows that

] = o 1Z()] 2 12(fo)] = |Fo(2)| = |||

thus we conclude that ||Z| = ||z|.

Definition. The isometric isomorphism ¢ from X onto a linear subspace
X** defined by ¢(z) = Z is called the canonical embedding of X into X**.

Remark. We often identify X with its image in X**, ¢(X) = {Z | € X}.

Definition. A normed space is said to be a reflerive normed space if the
canonical embedding maps the space onto its bidual.

Example. The spaces lf, p > 1 are reflexive. Indeed, let ¥ be the canonical
isometric isomorphism from (I§)* onto I§ and ® be the canonical isometric
isomorphism from (lg)* onto Iy (see Example in 3.2.1). It follows that, for
x = (&)x € Ik and y = (nk)x € Ig,

w%wm=®%wm=i&m

Let z** € (I&)**; we have to prove that there is an element z € I so that
Z(f) =z**, Vf € (I§)". We set
z=>&(z* o)
It follows that
* N (2)(y) = =" (W), Yy € Ik,
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thus, for each f € (I§)*,
2 () = 2" (¥ W) = @ (W)(@) = Y. € = S(4) = 2()).

The next proposition, will enable us to prove that l§ is not a reflexive
Banach space.

Proposition 3.2.2 Let (X, || - ||) be a normed space.

1) If X* is separable, then X is separable;

2) If X is separable and reflerive, then X* is separable.

Proof. 1) Let (fy)n be a countable dense subset of X. Since
Il /=l =”51”1£)1 | fu()],

we can pick z, € X with ||z, =1 and

@)l 2 l1ful

Set X the closure of the linear space spanned by the set {z,| n € N}. By

X1={ipj-"«‘j|/’j€Q, n € N}

i=1

(where Q is the set of the rationals), it follows that X, is separable. Let us
prove that X; = X. Suppacse that there is ©, € X \ X,. By Corollary 3.2.4,
there exists f, € X* so that its restriction at X, is zero and f,(z,) = 1.
Then, for each n we have

Sl < Vo)l = 1 = 2@ < Mo~ L]

thus,
I foll < lfn = Soll + I fnll < 3llfn = Lol
Taking into account that f, € {f,| n € N}, it follows that f, = 0, which
contradicts f,(z,) = 1.
2) Since X is reflexive and separable, we infer that X** is separable. As
X** = (X*)*, applying 1) we obtain that X* is separable.
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The next example shows that there exists Banach spaces which are not *
reflexive.

Example. The spaces [} and I are not reflexive.

Suppose that I} is reflexive. Since it is also separable (a countable dense
subset of Iy is the set {3_7_, pje; | p; € Q, n € N}), it follows by the pre-
vious proposition that (lk)* is a separable space. As (lf)* is isometrically
isomorphic to [, it results that If° is separable too. But this contradicts
the non-separability of I (see Exercise 8, Ch. 3). The fact that Ig° is not
separable can be shown directly as follows. Fist, we remark that the subset
E of I, consisting of sequences (£,)n, with &, € {0,1} is not countable.
Suppose that A is a dense subset of I°. Then, for each z € F, we can pick
Y, in AN B(z,1/2). The mapping  — y, from F to A is injective, since, if
T, # 5, we have that |z, — zy|| = 1, thus y,, # ys,. Consequently, the set
A can not be countable.

As an immediate application to the embedding of a normed space into
its bidual one can establish the existence of a completion for each normed
space.

Definition. Let (X, | - ||) be a normed space. A Banach space that has

a dense, linear subspace isometrically isomorphic to (X, || - ||) is called a
completion of (X, || - ||).
The existence of a completion of a normed space (X, || - ||) can be esta-

blished in several ways. The most pedestrian is to imitate the construction
of the real numbers from the rationals, and define the completion to be the
space of Cauchy sequences in X modulo the space of null sequences. We
choose instead to let the completion be the closure of X embedded in its
bidual (Banach) space X**.

Theorem 3.2.2 To each normed space(X, || - ||) there is a completion of
(X, 11, (X0 |) uniquely determined up to isometric isomorphism.

Proof.  Let ¢ be the canonical embedding of (X, || - ||) into X**. Clearly,
(X, Il - |I) and ¢(X) are isometrically isomorphic and ¢(X) is a dense linear
subspace of its closure in (X**,|| «|[). But (X**,| - ) is a Banach space.
Hence, the closure of ¢(X) is also a Banach space. It follows that ¢(X) is a
completion of (X, ||« ||).

65

https://biblioteca-digitala.ro / https://unibuc.ro



Next we prove the uniqueness of the completion up to an isometrics iso-
morphism. If X, and X, are two Banach spaces for which we have isome-
tric embeddings T, : X — Xj, 3 = 1,2, of X as a dense subspace, then
T =TT, ' is an isometry of T}(X) onto T2(X )- By Theorem 3.1.2, T' can be
extended by continuity to X 1; consequently we obtain an isometry T of X,
onto X, (because T(X,) is both closed and dense in X»).

Example. Let us consider on s,, the norm |[(&)k]| =sup |&|. We have
k

already proven that (8, || - ||) is not a Banach space and that s,, is a dense
linear subspace of ¢, (2.2, Example 2). It follows that the completion of

(800 I - 11) 1s co.

3.3 The Baire category theorem and its
consequences

3.3.1 The Baire category theorem

In Banach space theory it is of great interest to know when sets have nonemp-
ty interiors, as we shall see by proving some of the most important theorems
about bounded operators on normed spaces.

Theorem 3.3.1 (The Baire category theorem) A complete metric space
(X,d) (in particular a Banach space) is never the union of a countable num-
ber of nowhere dense sets.

Proof. The idea of the proof is as follows: suppose that the complete
metric space X = |J;°, A,, with each A, nowhere dense. We will construct
a Cauchy sequence (z,,),» which stays away from each A,., so, its limit (which
exists in X by completeness) is in no A,,, thereby contradicting the statement
X =B, A

Since A, is nowhere dense, the closure of the set Cx A, is X, so we can
find z; ¢ A,. Then, there exists an open ball B; about z; with radius smaller
than 1/2 so that BN A; = 0.

Since A, is nowhere dense, and £, € X = CxA,, it follows that B;N
NCx Ay # 0, so we can find 7y € B; \ A,. Pick an open ball B, about x,
with radius smaller than 1/22 so that By N Ay = 0§, B, C B,. Progeeding
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inductively, we find z, € B, ; \ A,, and choose an open ball B,, about z,,,
with radius smaller than 1/2" satisfying B, N A, =0, B, C B, .

The sequence (z,,), is a Cauchy sequence. Indeed, given € > 0, we pick
ne so that 2"~ ! < &. Then, m,n > n. implies that z,,, , € B,, and we
have

d(@m, Tn) < d(Tm — Tn,) + (@0 —20,) $2-2 ™ =2 1<k

Now, taking into account that X is complete, the sequence (z,), converges
in X; let
z =lim z,
n

Since X = |J°, A,, there exists n, so that © € A,,. By B,, N A,, = 0, it
follows that = ¢ By, . On the other hand, for n > n, + 1, , € By, 41, s0,

z =limz, € B,,1 C B.,,
n

which contradicts z ¢ B,,,.

The above theorem has an immediate application.

Application. Let X be a vector space that has an infinite countable
algebraic basis. Then, equipped with any norm, X can not be a Banach
space. Suppose that there is a norm on X, || - || so that (X, || - ||) is Banach.
Take B = {e, | n € N} a countable algebraic basis of X and set

X, =Sp {e1,€,..e,}, Vn

Clearly, each X, is a closed, proper, linear subspace of X (since it is finite
dimensional), and X = ;" X,,. By the Baire category theorem, it follows
that we can pick n, so that the interior of X,,, is nonempty. So, in X we
have a proper linear subspace X,, such that X,, # 0. But, this is not possible

because, if X,,, + ¥, there is z, € X,,, and r > 0 so that B(z,,r) C X,,; it
follows that each = in X is in X,,, (since z, + (r/2||z|)z € X,,), hence
X,., = X. Sou, once we obtained that the interior of a proper linear subspace
of a normed space is nonempty, we reach a contradiction. The statement is
proven.

Hence we can infer that there is no norm on s,, or on the vector space of
all polynomials on [0, 1], P([0, 1]), so that 8, or P([0,1]) be Banach spaces.
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3.3.2 Principle of uniform boundedness

Theorem 3.3.2 (Principle of uniform boundedness) Let (X, | - ||) be a
Banach space. Let {T.},c; be a family of bounded linear operators from X to

some normed linear space (Y, ||-||) such that for each z € X, the subset of Y,
{T.(z) | « € I} is bounded. Then, the family {T.}.c1 1s bounded in B(X,Y).

Proof. Foreachné€ Nlet A, ={z € X | |T.(z)| < n, Ve € I}. By the
hypothesis each z is in some A,, that is X = |J;° , A,. Moreover each A, is

closed since
=g, ([0,n)),
el
where g, is the continuous real-valued mapping on X, g, = |- || o7,. B

the Balre category theorem, some A,, has a nonempty interior, i.e. 31),0 50

that A,ﬁé 0. It follows that A,, contains the ball B(z,,r). Given an arbitrary
z # 0, the element

Yz o+—'—-
2||]

is in the ball B(z,,r). Thus, for all z € X and ¢ € I,
2||x 2||z|| .
i = it (A - ) 1 = 2y ) - 1o <

2)\z| ., , 4n,
< 22 gy -+ ) < 22
and we can conclude that

4no

7| < Viel

Remark. The proof of the above theorem strongly uses that X is Banach.
The following example shows that the uniform boundedness principle does
not work when X is not complete.

Example. Let (fy)n be the sequence of linear functionals on 8,, C (I, |- |)
defined by
Sal((€k)x) =
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Clearly, each f, is in s}, because of

I/ ((E))Il < nll (€r)el
and for each z = (&x)x, the set {fa( (€x)x) | n € N} is bounded in K (since if
& =0, Vk > k, it follows that f,((éx)x) =0, Vn > k,). On the other hand,
as fn((6M)x) = n, it follows that, ||f,|| = n, so the set {f, | n € N} is not
bounded in 8},. This occurs since s,, is not Banach.

Definition. A sequence (T},), in B(X,Y) is said to be pointwise convergent
if for each £ € X the sequence (1,,z), is convergent in Y.

Remarks. 1. If (1,), is a pointwise convergent sequence in B(X,Y), then,
the mapping T' from X to Y defined by
T(z) =lim T, (z),

is clearly well defined (by the uniqueness of the limit) and also linear (by the
linearity of each T,, and by the continuity of the sum and the multiplication on
normed spaces). The linear operator T' from X to Y 1is called the pointwise
limit of the sequence (T,),.

2. Let (T,), be a convergent sequence in the normed space B(X,Y) and
let T' be its norm limit. Then, since for each z in X,

ITa(z) = T(@)|| < | To =T}l - lill

it follows that the sequence (7},), converges pointwise to 7. The converse is
not generally true, as it results from the following example.

Example. Let (7,,), be the sequence in B(lk) defined by

Tﬂ((fk)k) = (070) w0 0, 5m£ﬂ+l) )

Each T, is defined by the bounded numerical sequence (Ax)x. where Ay = 0
if kK < n and Ay =1if k > n (Example 2 in 3.1), thus |T,|| = 1, Vn. For any
z = (&)x € Ik we have that lim T;,(z) = 0, since

1T ()11 = 2_: |&m|® — 0,

as n — o0o. It follows that (7}), converges pointwise to the null operator.
Suppose that there is T" in B(lg) so that (T,,), converges in norm to T. By
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the previous remark, necessarily, 7' = 0, thus ||1,|| — 0, as n — oo, which
contradicts ||1,,|| = 1, Vn.

The next theorem makes clear the fact that the pointwise limit of se-
quences in B(X,Y) (X Banach) is also in B(X,Y’). As we have pointed out
(see the above remark and example), that does not mean that the pointwise
convergence implies the convergence in B(X,Y).

Theorem 3.3.3 (The Banach-Steinhauss theorem) Let (X, ||-||) be a Ba-
nach space, Y be some normed linear space and (1,,),, C B(X,Y) be a point-
wise convergent sequence of bounded linear operulors from X to Y. Then,
T, the pointwise limit of the sequence (T,,)n is a bounded linear operator
from X to Y. In addition the numerical sequence (||Tn||)n is bounded and
7] <sup T ).

Proof. Let (1,), bea pointwise convergent sequence in the space B(X,Y)
and let T' be its pointwise limit. We have already noticed that 1" is linear.
As for each z the sequence (T,(z)), is convergent, it follows that the set
{Tw(z) | n € N} is bounded in Y, so by the principle of uniform boundedness,
there is M > 0, so that ||7,|| < M, Vn. Then, for each z and n,

ITa(@)Il < NTull - llell < Mz

and we have
1T ()|l =lim |To(z)|| < Mllz||, Vz € X

It follows in addition that

I} <sup IIT.]

» We give next a typical application of the Banach-Steinhauss theorem.

First, let us notice that, generally a mapping f(z,y) on the product X xY
of two topological spaces, separately continuous (that is, for each x, f(z,-) is
continuous on Y, and for each y, f(-,y) is continuous on X') is not necessarily
jointly continuous (continuous on'X X Y with the product topology). Even
on R? we have the standard example,

[(z,y) = { x? +y?
0

RN

b

if (z,y) = (0,0)
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In the particular case of the linear mappings on the product of two Banach
spaces (called bilinear mappings), the separate continuity implies the joint
continuity. More precisely we have the next proposition:

Proposition 3.3.1 Let X and Y be Banach spaces and let B a separately
bilinear mapping from X x Y to K. Then, B is jointly continuous.

Proof.  Let (Zn,yn)n be a sequence in X x Y which converges to zero.
Define on Y the (countable) family of bounded linear functionals,

fa(y) = B(zn,y)

Since B(+,y) is continuous on X, it follows that (f,(y))» converges pointwise
to zero for each y, so, by Banach-Steinhauss theorem, there exists M > 0 so
that |fu(y)| < Mllyll, Vn. Then,

|B(-'Emyn)| = 'fn(yn)l < M”yn” e d

3.3.3 The open mapping theorem

An other consequence of the Baire category theorem is the next fundamental
theorem.

Theorem 3.3.4 (Open mapping theorem) Let X, Y be Banach spaces.
Suppose that T is a bounded linear operator from X onto Y. Then, if A
is an open set in X, T'(A) is open inY (T is an open mapping from X onto
Y).

Proof.  We shall proceed in 3 steps.

1) Let T be a bounded linear operator from the normed space X onto the
Banach space Y. Then, for each positive r > 0, there is o, > 0 so that
B(a,) Cc T(B(r)).

We notice first that for each arbitrary r > 0, X can be written as
Un_, nB(r/2). Then, T'(X) = Us>,nT(B(r/2)), and, since T is onto, we
have Y = |y, nT(B(r/2)). As Y is complete, by the Baire category theo-
rem, it follows that there is a natural n, so that the closure of n,T(B(r/2))
has a nonempty interior, so, taking into account that the mapping on Y,

Y — n,Y is a homeomorphism, it follows that T'(B( r/2) # (). Let us denote
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this open nonempty set by U. Then, U -- U is an open neighbourhood of zero
(since U — U = Uyepy(u — U) and y — u - y is a homeomorphism of Y): It
results that there is o, > 0 so that B(e,) C U — U. Using the continuity of
the mapping from Y x Y to Y, (y,z) — y — 2, and the linearity of T', we
have the next inclusions

B(a,) C U - U =T(B(r]3) - T(B(r/D)c T(BG/2) - T(B(/2) C
 cT(B(r/2)) - T(B(r/2)) = T(B(r/2) - B(r/2)) = T(B(r))

which end the proof of the first step.

Using 1), we shall establish, the most difficult part of the proof:

2) Let X, Y be Banach spaces and T' a bounded lincar operator from X
onto Y. Then, for each positive r > 0, there is 6, > 0 so that

B(s,) cT(B(r))

Let 7 > 0 be. For each positive integer k, denote by 7y the positive
number /2542, By 1), Vk, there is a,, > 0 so that B(a,,) C T(B(rt)). Since
T(B(rx)) C B(||T||rx),we may suppose that the sequence (a,, )x converges to
zero.

We will show that B(a,,) C T(B(r)), consequently, the desired ¢, is e,
Let y be arbitrary in B(a,,) C T'(B(r,)). Then, since B(y,a,,) NT(B(r,)) is
nonempty, we can pick z, € B(r,) so that T'(z,) € B(y, «,,). It follows that
the element z, has the properties

lzoll < 7o and y — T(x,) € B(aw,) C T(B(r))

Then, since B(y--T'(z,), ar,)NT(B(r1)) is nonempty, we can pick z; € B(r))
so that T'(z,) € B(y — T(,), a,). Then, z; has the properties

||| < 71 and y — T'(z,) — T(z1) € B(ay,) C T(B(r2))
By induction, we choose a sequence (z,,),, so that

n
lzall <7y and |ly = Y T'(ax)| < ar,,,
k=0

Further, define for each n natural
n
n= 3o
k0
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and let us check that the sequence (25), is Cauchy. This follows from

n+p ' nt+p ntp
lzaip = 2all = I 30 @l < 30 Nzl < ) 2,,“
k=n+1 k=n+1 k=n+1
r X 1 T 1
= - — = l1-—=)<—,Vn,peN
1,20 % 2n+2( 2;:) 2n+2 P

Since X is Banach, there exists the limit of the sequence (2,)n; denote it by
z. By

g
llzll = || limn Zm" <lim Z llzx || <lim 2 2k+2 =lim —(1 — En—ﬁ =5

it results that © € B(r). Further, since
ly = 3 T(e)ll < ar,,,, Y,
k=0

we have that ||y — T'(z,)| < ar,,,, Vn, and using the continuity of T', that
implies

ly — T(lim z)|| <lim a,,,,
which shows that y = T'(z), thus, y € T(B(r)).

3) The proof follows immediately from the above statement, 2). Let D
be an open set in X. We have to show that T°(D) is open in Y. Let y be
arbitrary in T'(D), so y = T'(z) with z in D. Since D is open, it contains a
ball with center z and radius r > 0, B(z,r) = z + B(r). By the second step
2), there exists 6 = 6, > 0 so that B(6) C T'(B(r). It follows that

T(z)+ B(8) c T(z) + T(B(r)) = T(z + B(r)) = T(B(z,r)) = T(D)-

In practice, one rarely uses the open mapping theorem directly but rather
its consequences. One of them is the next theorem.

Theorem 3.3.5 (Inverse mapping theorem) A continuous linear bijection
of one Banach space onto another has a continuous inverse.

Proof. If T is defined from X to Y, we have to show that (T!)"!(D)
is open in Y for each arbitrary open set D C X. This follows by the Open
mapping theorem, since for each D C X, (T')"}(D) = T(D).
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3.3.4 Closed graph theorem

Definition. Let T' be a mapping of a subset ) of a normed linear space X
into a normed linear space Y. The gruph of 1", denoted by G is defined as

Gr={(z,y)|(z,y) e DxY, y="Tx}

The mapping 1" is said to be closed if its graph is closed in the normed space
X xY.

Remark. The graph of the mapping 1' : Dy C X — Y s closed if and only
if for each arbilrary sequence (z,), C Dy so that x,, — x and T'(z,) — y,
as n — 00, it follows that x € Dy and y = T'(x).

Theorem 3.3.6 (Closed graph theorem) Let X and Y be Banach spaces
and I" a linear operator from X into Y. Then T s bounded if and only if
the graph of T is closed.

Proof. Suppose that G is closed. Then, since 1" is linear, Gr is a
subspace of the Banach space X x Y. By assumption (7 is closed and thus
is a Banach space in the norm induced by the norm of X x Y, Consider the
continuous linear maps P, : X XY — X and P : X x Y — Y defined by
Py(z,y) = z, respectively Py(z,y) = y. By

122 @z, y)l| = [lell < max ([l [lyl]) and [|Pa(z, y)I| = lyll < max([l<]], [ly]])

it follows that the mappings P, P, are bounded. The restriction of P, to

G'7 is a bounded linear operator from the Banach space () yito the Banach
space Y, thus, by the Theorem 3.3.5, P, ' : Y — (77 is a bounded linear
operator. But, 1'= P o [’l’l, so T' is continuous. The converse is trivial.

Remark. To avoid the confusions, we emphasize that the mapping 7" in the
previous theorem is implicitly assumed to be defined on the Banach space
X. There are examples of linear operators with closed graph which are not
continuous (thus, their domain is not Banach).

Example. Let X be the linear subspace of 12 of all sequences (£,)n € lf
satisfying ¥,>, n?|&,|* < 0o and T': X — [} the linear operator defined
by T'((£4)n) = (n€,),. The graph of T' is closed. Indeed let (z,), C X,

£y = | ,(:"))k so that z, — z, z = (&), and T(z,) — y, as Since the
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sequence (T(z,)), is convergent in [} , it is also bounded, thus there is a
positive « such that ;

]
SR < a?, VneN, VLeN.

Let I € N be arbitrary fixed. Since for each k € N,
lim & = &
it follows that

lim Zk‘ 1EM)2 < o2, thus Z K2|€k)? < o?

k=1

We have proved that z € X.
Further, since (T'(zy))n is Cauchy, for each € > 0, we can pick n. such
that m, n > n, implies ||T'(z,) — T'(zm)|| < €/2, s0

kz (ﬂ) (m)2 _5_

SR - <
For fixed arbitrary ! and n > n. we have

1 2

> REM - e < S

k=1 4

and passing here to the limit with respect to m — oo,
0o 62
YR -6l <
k=1 4

Thus, | T(z,)—T(z)|| < €, Vn > n.. By the uniqueness of the limit, it results
that 1'(x) = y. This ends the proof of the fact that 7" is a closed operator.
The linear operator 7' is not bounded since the sequence (e,)n, C X, €, =
= (5;(:'))1:, has |le,,|| = 1, Vn and, on the other hand ||T'e,|| = n, Vn.
This is happening since the space X is not Banach.
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3.4 Fixed point theorems

Definition. Let V be a map on a set X. A peint 2 € X for which Vz =2
is called a fired point of V.

Definition. Let (X,d) be a metric space. A map V : X — X for which
d(Vz,Vy) < d(z,y) is called a contraction. If there is @ < 1 for which
d(Vz,Vy) < a-d(z,y), V is called a strict contraction.

The next result is valid in complete metric spaces, with the same proof.
In order to simplify the notations and since the examples will be connected
to normed spaces, we will state and prove it in Banach spaces.

Theorem 3.4.1 (Contraction mapping principle) A strict contraction
V on a Banach space (X, | - ||) has a unique fized point.

Proof. We first notice that a contraction is automatically continuous,
since for each € > 0, there is 6, = a 'c so that ||z — y|| < é. implies
[[Vz—Vy| < e. Now, let z, be arbitrary and let define the sequence (z,), by
z, = V"(z,) (where V! = V and V"*! = V"oV, Vn). We will prove that
(zn)n is Cauchy. For each n, we have

“‘En — Tn-1 " = "V.’E"_l = Vxn-—2 " < a"xn—l —Tn-2 ” <

S 02"117"‘2 — Iy-3 ” S S a™ l”$l - zo"

Thus if n > m,

n . am
o0 = 2ml < 3 lox = 2 | < Tl — o

k=m+1
Given € > 0, since @ — 0, there is n, so that a”™ < (1 — a)e. Then,

n > m > n. implies that ||z, — z,,|| < €, so (z,), is Cauchy. Thus, z,, —» T,
for some z. Since V is continuous,

Vz =li£n Vz, =li'{n Tpsl ==

8o z is a fixed point of V.
Let us prove the uniqueness of the fixed point of V. If Vz = r and
Vy =y, then
lz—yll = [Vz - Vyl| < allz -y
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Since a < 1 and ||z — y|| > 0, we conclude that ||z — y|| = 0, consequently,
z=y.

Theorem 3.4.2 Let (X, |-||) be a Banach space, T' a bounded linear operator
on X and y, arbitrary in X. Suppose that |T|| < 1. Then, the equation

z=Tzx+y,

has a unique solution in X.

Proof. The operator V : X — X, defined by Vx = T'z + y, is a strict
contraction, since

Ve —Vy| = Tz +yo — Ty — vl =

and ||T'|| < 1. By the Contraction mapping principle, it follows that V has a
unique fixed point, thus there is a unique z* € X so that T'z* + y, = z*.

Application. Consider an infinite system of linear equations

[e o}

Zajka:k =1y, ] €N

k=1
We are interested in solving it, so to find a sequence (&), such that for each
j € N the series Y ;5 a;x§; be convergent with the sum 7);. We will discuss
how the above theorem can be applied to prove the existence of the solutions
of an infinite system of linear equations, under certain conditions. First,
notice that the system can be written

[e ¢}
;= Z’ijfﬂk +7;, JEN
k=1
where

o — Qg J#k
’m_{ l—ay j=k

We suppose that there exists p € (0, 1) such that

I’YJ’Cl pr VJEN
k=1
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and that the sequence (7);); is bounded, (1;); € . Consider in the Banach
space lg° the equation x = T'z + y,, where T is the linear operator on I’

defined by
T(fj )i = Z Vik€r);

and y, = (n;);. Since for each j € N

|2~mek|<z|m| 6l < (z Iml) Jell < o€l

it follows that T' is well defined, is bounded and its norm is less than p, thus
7|l < 1. By the Theorem 3.4.2, we can infer that the equation z = Tz + y,
(so, the infinite system of linear equations z; = Y_3° | 1,kZx + 7, J € N) has
a unique solution in I§°. '

Next we prove a version of the Leray-Schauder-Tychonoff theorem (which
states that each continuous map on a nonempty compact convex subset of
a locally convex space (Chapter 7) has a fixed point). First, we make a
definition.

Definition. Let X and Y be vector spaces, A a convex subset of X. A map
T:A—Y is called an affine linear map on A if

Titz+(1—-t)y) =tT(z)+ (1 —-t)T(y), Vz,y € A, V¢, 0<t<1

Theorem 3.4.3 Let A be a nonempty compact conver subset of a normed
space X. Let T be a continuous affine map of A into itself. Then, T has a

fized point.
Proof. We pick an arbitrary z, in A and define the sequence (z,,), by
1n 1

- Z T] (%)

Since A is convex, each z, € A. As A is compact, some subsequence (z,),
of (z,)n converges to a limit z. We wish to show that « is a fixed point of
T. Suppose that T'z — z # 0. By Corollary 3.2.1, there exists f € X* such
that f(T'z — z) # 0. Since A is compact and f is continuous on X,

sup |f(z)]| =M < o0
TEA
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Thus,

1 1 2
Tz, — x,)| = - o = =Ep)| & =
(a0 2] = [f 172~ )| < 2

and we conclude that

im |f(Tzn — z4)| =0

As aresult f(Tz—x) =lim |f(T'z,—z,)| = 0, which contradicts f(T'z—z) #
0.

The last fixed-point theorem that we consider deals with a whole family
of maps.

Theorem 3.4.4 (The Markov-Kakutani theorem) Let (X, ||-||) be a normed
space and A a nonemptly compact convezr subset of X. Let U be a family of
commuting affine maps of A into itself; that isUVx = VUzx forallU,V €U
and z € A. Then, U has a common fized point ( there ezists an x € A so
that Uz =z, VU € U).

Proof.  For each finite subset F C U, let

Ar={s € A|Ur=zforallUe F}= (| (U-1)"{0}

UeF

(where I is the identity operator). Since the U are all continuous, each Ar
is closed, and clearly Ay, N Ax, = Ax,ux,. Thus, if we can show each Ay is
nonempty, Ny Ar # 0, by the finite intersection property, so there is an z
with Uz = z for all U € U.

We have only to prove that Ax # 0, VF C U , F finite. We proceed by
induction with respect to the number of sets in F. If ¥ = {U},

A{U}= {:L‘GAIU:E=:I:},

which is nonempty, by the previous theorem. Suppose that Ay # @ and
let V€ U. Since the U € F are affine linear Ar is convex. In addition
V(Az) C Ay, because U € F implies U(Vz) = V(Uz) = Vz when Uz = z.
Since Ay is nonempty, convex, compact, and V : Ay — Ay , there is an
z € Ay with Vz = z, that is Ax,(vy # 0 . The theorem is proved.

Remark. The both above theorems are valid in a larger context, such as

locally convex spaces (Chapter 7), with the same proof.
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3.5 Compact operators

In this section we exhibit an important class of linear operators which espe-
cially arise in the study of integral equations. Let X, Y be normed spaces.

Definition. A linear operator T' from X to Y is said to be compact if T'
takes bounded sets in X into relative compact sets in Y.

Remark. By the characterization of the compact sets in metric spaces, one
may say that a linear operator T from X to Y is compact if and only if for
each bounded sequence (z,), in X, the sequence (T'z,), has a subsequence
which converges in Y. So, in order to prove that T is compact we have to
see that for each sequence (z,), in X, with |z,|| = 1 the sequence(Tzy),
has a subsequence which converges in Y .

Examples. 1. Let T be in B(X,Y), of finite rank (that means, the sub-
space T'(X) of Y is finite dimensional), then 7" is compact. (In particular,
each bounded linear operator from X to a finite dimensional space is com-
pact.) Indeed, let (z,)n be in X, with ||z, || = 1. Then, the sequence (T'z,),
is a bounded sequence in a finite dimensional space, hence, by Theorem 2.3.2,
it has a convergent subsequence.

2. The integral operator, T : Cx ([0, 1]) — Cx([0, 1]),

(Tz)(s) = /O'k(s;t)z(t) dt, zeCx((0,1]),

where k € Ck([0, 1] x [0, 1]), is compact.

Let A be a bounded set in Cx ([0, 1]), so there is @ > 0 such that ||z|| < a,
Vz € A. We have to prove that T'(A) is relative compact in Cx([0,1]). By
Ascoli’s theorem (Appendix A), it is enough to check that T'(A) is uniformly
bounded and equicontinuous. We have,

(Ta(s)] < [ ko, 0] (O] dt < Jal - [ Ir(s, )]

thus, since A is bounded and

1
sup |k(s,t)|dt < oo,
s€(0,1) JO

T'(A) is bounded.
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We now prove that T'(A) is equicontinuous at an arbitrary s, € [0,1]. As
k : [0,1] %[0, 1] is uniformly continuous, it follows that for given € > 0, there is
8 > 0 such that |s—s'| < 8, and |t—t'| < &, implies |k(s,t)—k(s',t)| < €/2a.
Then, if |8 — 8,| < &, ’

|Tz(s) — Tx(s,)| < ,[,l |k(s,t) — k(s0,8)] - |z(t)| dt < e % <€

3. The identity operator I on an infinite normed space is not compact.
Indeed, if one suppose that I is compact, it results that the unit ball in X is
relative compact, which contradicts the Riesz theorem (2.3.2).

Notation. Further, the set of all compact operators from X to Y is de-
noted by K(X,Y). For K(X, X) we use the shorthand K(X).

Proposition 3.5.1 1) K(X,Y) ts a linear subspace of the space B(X,Y).
2) If S € K(X) and T € B(X), the operators ST and T'S are compact.

Proof. 1) By the definition, obviously, each compact operator is bounded.
Let S, T € K(X,Y), and (z,), a sequence in X, ||z,|| = 1. Then, (Szs)n
has a subsequence convergent (Sz,:), . Since, T' is compact (Tz,), has
a convergent subsequence (T'z») Thus ((S + T)z,"),» converges and
S+TeK(X,)Y).

2) Given (z,), a sequence in X, |z,|| = 1, the sequence (T'z,), is
bounded. It follows, from the compacity of S that (STz,), has a subse-
quence convergent, i.e. ST' is compact.

Given (z,), a sequence in X, ||z,]| = 1, the sequence (Sz,), has a sub-
sequence convergent (Sz,), . Therefore, by the continuity of T, (T'Sz, ),
converges.

",
n

Theorem 3.5.1 Suppose Y is a Banach space. Then, K(X,Y) is a closed
subspace of (B(X,Y), || - [|)-

Proof.  Let (7)), be a sequence of compact operators which converges
in B(X,Y) to T and (z,), a sequence in X, ||z,|| = 1. In order to show
that (T'z,,), has a subsequence convergent, we employ a diagonalization pro-
cedure, as follows. Since, T} is compact, there exists a subsequence (Z1n)n
of (zn)n such that (T1zy,)n converges. Since, T3 is compact, there exists a
subsequence (Zy,)n of (Z1n)n such that (T223,)n converges. Continuing in
this manner, we obtain, for each integer k > 2, a subsequence (Zkn)n of
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(Z®-1)n)n such that (TiTin)n converges. We claim that , the "diagonal” se-
quence (T'z,,), converges, so T is compact. Let us simplify the notations,
by setting v, = Zu,.

Now, for arbitrary, j, I, n € N we have:

ITv; — Tui|| < [|Tv; — Tavjll + |Tav; — Tavill + | Tavi — Tui|

Given ¢ > 0, since (Tp), — T, ||’1",., —T| < &/3, for some n,. Now, (T,,v;);
is convergent, thus there exists j. € N such that

“Tﬂcvj - Tﬂcv‘" < 6/3’ VJ)I Z jt
Since, for Vj, I > je,
ITv; — Tull < 2T - Ty, || + |To,v; — To,uill <,

it follows, from the completeness of Y that (T'v,)n converges, i.e. T is com-
pact.

3.6 Exercises

1. Let X, Y be normed space and T : X — Y a linear operator. The
following are equivalent:

(i) T € B(X,Y);

(i) 3G C X, G # 0, G open such that the set T'(G) is bounded;

(i11) V(zn)n — 0, the sequence (T'(z,))n is bounded.

2 Let T be a linear operator from the Banach space X to some normed
space Y. Show that T' € B(X,Y) if and only if Vx € X if (zn)n — z,then

IT(z)|l <lim_inf |T'(zn)||
3. Let X, Y be normed space such that B(X,Y) is a Banach space.

Then, Y is Banach.
4. Show that the operator 7" defined on Ck([0,1]) by

(T2)(s) = [ Lerta(t) dt
is in B(Ck([0, 1])) and find its norm.

82

https://biblioteca-digitala.ro / https://unibuc.ro



5. The same problem as 4. if the operator T' is defined on Ck([0,1]) by

(T2)(s) = [ " nma(t) dt
or by .
(Tz)(s) = /0 z(t) sinm(s — t)dt

6. Let T be the operator defined on L%([0,1]) by Tz(t) = tz(t).
a) Show that T' € B(L%([0,1]))and find ||T;

b) Show that the operator T" is not compact.

7. Let T' be the operator defined on L%([0,1]) by

(T2)(s) = | " k(s, t)a(t) dt

where k € L%([0,1] x [0,1]). Show that:
a) T € B(L([0,1])) and

1
1 1 ]
171 < ([ [ ks, 0 s’
n Jo
b) T is compact.

8. Let T' be the operator defined on Ig, p € [1,00) by

T((En)n) = (Anen)m
where (A;)n C K is an arbitrary bounded numerical sequence. Show that:
a) T € B(Ig) and ||T|| =sup |An;
n

b) T is compact if and only if A\, — 0, as n — o0;
9. Let T be the operator from IR to l} defined by

T((n) = ((36)

Show that 7" is a bounded linear well defined operator and find its norm. Is
T injective? Is T surjective?
10. &) Show that the operator 7" : (C%([0,1]), || - |I) — (Cx([0,2]), 1l - II)
(where the norm is the same on the both spaces, namely ||z|| = sup |z(t)|),
te(0,1)

defined by ,
(Tz)(t) = z" (t) + (sin wt)z (t) + tz(t)
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is a linear operator that is not bounded

b) Show that the operator T' from (CZ([0,1]), || - |I~) to (Ck([0,1]), ]| - |l
(where [|z||~ = ||z|| + [|l='l| + l|lz"[|, V= € C%([0,1])) defined by the sam
formula is bounded.

11. Let T be a linear operator from the Banach space (X, || - ||) to th
normed space (Y, | - ||). Set p(z) = ||lz|| + || Tz| (clearly p defines a norm o
X). The following are equivalent:

(i) T € B(X,Y);

(ii) The initial norm on X, || - ||, and the norm p are equivalent;

(iii) (X,p) is Banach. !

12. If X = C}([0,1]) (the space of all differentiable real-valued function:
with the first derivative continuous with the norm inherited from Cx([0, 1])
and Y = Cg([0,1]), let D be the linear mapping from X to Y defined b
Dz = z' (where z' is the derivative of ). Show that D is closed and it i
not bounded. Does this example contradict the closed graph theorem?

13. Let T be a linear operator from the Banach space X to the Banac
space Y such that for every f € Y*, the functional foT isin X*. Show tha
T € B(X,Y).

14. Prove that a Banach space is reflexive if and only if its dual i
reflexive. Show that I is not reflexive.

15. Prove that Ck([0,1]), || - ||) is not reflexive.

16. Let p € [1,00) be. Show that (Ck([0,1]), ]| - |lp) is not complete and
its completion is L§ ([0, 1]). '

17. Let (X, || - ||) be a normed space such that there exists T' a compact
operator on X invertible in B(X). Show that X is finite dimensional.

18. Let (X, || - ||) be a normed space. Show that X is finite dimension
if and only if X* is finite dimensional.

19. Let (X, | - ||) be a normed space and z in X arbitrary. Show that

el = sup |f(z)|

rexslsi<1

20. Let f be the functional on ck defined by f((§n)n) =lim &». Show that

f € cx and || f|| = 1. Infer from here that c§ is Banach.
21. Let (X,| -||) be a normed space and f in X*, f # 0. Show that, for
each z € X,

d(z,Ker f) = I-{T%—?-l
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22. Let f be the functional on cg defined by

2 1
f((€n)n) = ...Z=1 P
Show that

a) f € (ck)* and ||f|| = 2;
b) Vz € Ker f, d(z,Ker f)# |z —y|, Vy € Ker f.
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Chapter 4
Hilbert Spaces

4.1 Definition of Hilbert space and elemen-
tary properties

Definition. A vector space X over the field K is called an inner product
space if there is a K-valued function < -,- > on X x X such that:
i)<az+Py,z>=a<z,z>+A<y,z> Vz,y,2€ X, a, fEK,
i) <z,y>=<y,z>,Vz,yeX;
iil) <z,z>>0, Vze X, z #0.

The function < -,- > is called an inner product.

Remark. We note that the previous properties of < -, - > imply
) <zoy+Pz>=a<zy>+B<z,2> Vz,9,2€X,0, f€EK;
2) <z,z>>0, Vz € X;
3) <z,0>=0, Vz € X.
We introduce the shorthand ||z| = /< z,;z>. We will shortly see that
| - || is in fact a norm.

Examples. 1. For z = (§,&,....,&,) and y = (91,72, ..., 7a) in K" define

n

<z,y>=) &M

i=1

Then, < -, > is an inner product on K".
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2. The K-valued function < -, > defined on l% x l% by

<z,y>=) &M
=1
where £ = (£,)n, ¥ = (7)n)n is an inner product.
3. Let us define for arbitrary elements z, y € L%([a, b))

b
< &, Y o= / z(t)y(t) dt
Then, (L%([a,b]), < -,- >) is an inper product space.
K

Proposition 4.1.1 Let X be an inner product space and z, y in X. Then:
1) Iz +yl*+ lz — yll* = 2( l=l*+ llyll*) (Parallelogram law).
2) When K =R

1
<z,y>= 7=+l - llo — ol
and when K = C s
1 & .
<zy>=7 o llz +ity)?

=0
(Polarization identities).

Proof. The equalities are immediate from the properties of inner product.

We now develop those geometrical notions that extend from finite dimen-
sional spaces to arbitrary inner product spaces.

Definition. Two vectors, z and y, in an inner product space X are called
orthogonal, written z Ly, if < z,y >= 0. The vector z is said to be orthogo-
nal to a set A C X if z.Ly for all y in A; we denote by A* the set of vectors
in X which are orthogonal to A. A family {z, | ¢« € I} of vectors in X is
called orthogonal if z, Lz, ¢ # 7. If in addition, ||z,|| = 1, V¢, then the family
is called orthonormal.

Remark. An orthonormal family {z, | ¢ € I} of vectors in X is linearly
independent since 0 = 3_}'_, axxy implies 0 =< Y 3_; ax Ty, T >= ay.

Proposition 4.1.2 (Pythagoras identity) Let X be an inner product
space and =, y in X. If x 1y, then

Iz +wl* = ll=I* + llyll®
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Proof. Forz,yin X, zly, we have
lz+yl* =<z+yz+y>=
= lzI*+ < z,y > + <y, 2 > +lyl* = l=* + lly)|?

Theorem 4.1.1 Let {zi},<x<n be an orthonormal family in an inner prod-
uct space X. Then for allz € X,

n n
Izl =Y | <2z > P+ llz— Y <,z > |2
k=1 k=1

Proof. We write z as
n n
x=z<x,mk>xk+(x—z<z,xk>zk)
k=1 k=1

A short computation based on the properties of the inner product shows that
T—Yp, <,z >z and Y p_, <z, T > xx are orthogonal. Thus, by the
Pythagoras identity,

n v
l2l? = 1) < 2,2 > 2ll® + Iz = 3 < 2,2 > @
k=1 k=1

n

Taking into account that the family {z;}}_, is orthonormal, we have

n n

1Y <zop >zl =) | <z,3 > |*
k=1 =y

which proves the equality.
Next result follows evidently by the above theorem:

Corollary 4.1.1 (Bessel’s inequality) Let {zx}1<k<n be an orthonormal
family in an inner product space X. Then for allz € X,

n
Iz1* > > | <2,z > *
k=1

Corollary 4.1.2 (The Cauchy Schwarz inequality) If z and y are vectors
in an inner product space X, then

| <z,y>| <zl Iyl
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Proof.  The case y = 0 is trivial, so suppose y # 0. The vector y/|y|| by
itself forms an orthogonal set, so applying Bessel’s inequality to any x € X
we get
l<zy>]

lyli?

Theorem 4.1.2 FEvery @ inner product space X is a normed linear space with
the norm ||z|| =< z,z >7 .

Iz > | <z, 7= > | =
HH

Proof.  All the properties of the norm, except the triangle inequality, for
| - || follow immediately from the properties of inner products. Suppose z,
y € X. Then,

lz+yl* =<z,2>+<z,y>+<y,2>+<y,y>=
=<z, > +2Re <z,y>+<y,y><
<<z, z>+2|<z,y> |+ <y,y><
<Lz, z>+4+2<z2,2 >ic Y,y >3 + <y,y>
by the Cauchy-Schwarz inequality. Thus,

lz +ylI* < ll=I* + llyll*

This theorem shows that we have a natural metric,
d(.’E,y) =<Tr—-y,r—-Y >%

in X. We thus have the notions of convergence, completeness and density
defined for metric spaces.

Definition. A complete inner product space is called a Hilbert space.

Remark. We note that an inner product space is a Hilbert space if (X, |- |)
is a Banach space.

Remark. In a Hilbert space the application (z,y) —< z,y > from X x X
to K is continuous. Indeed, let (z,), and (yn)n be such that z =lim z, and

Y =li'x‘n Yn. By the Cauchy-Schwarz inequality
|<zmy>-<zy>|=|<z—z,y>| < |lzn—2| -yl
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thus, (< 25,y >)n converges to < z,y > . By
| <Zn—2,00 =y > | < |lzn — 2|l -l — vll

it results that < z, — z,y, — y >— 0, as n — o0o. Everything is clear now
by the next equality
< Tp,Yn > — < T,y >=

=< Ty — T, Yn —Y> + < T,y >+ < T,y > —2< T,y >

Examples. 1. K" is a n-dimensional Hilbert space.

2. I} is an infinite dimensional Hilbert space.

8. L{([a,b]) is an infinite dimensional Hilbert space, since the functions
j P o are linearly independent.

4. The inner product space P of all polynomials with

b S
<:1:,y>=/a:t
. a

is not complete. To see this, let

n 1 .

P"(t) = —TtJ
Then, (P,)n converges in L ([a, b]) to y(t) = 1/(1—3t). So, (Pn)n is & Cauchy
sequence in P which does not converge to a vector in P since y ¢ 'P C

Li([0, 1))

The next two theorems will be useful in the Gram-Schmidt ortogonaliza-
tion procedure (see Theorem 4.3.3).

Theorem 4.1.3 Let {zx}1<k<n be an orthonormal family in an inner prod-
uct space X and Y the linear space spanned by the set {zy}1<x<n. Then, for
each z € X, the vector y, = Y p_, < z,zx > xx is the unique vector in 'Y
with the property d(z,Y) = ||z — yaz|| (the closest element to z). In addition
d(z,Y) = (J|lz||? - Iz - &P, < 2,z > ||?)? and z — y, LY

Proof. Take an arbitrary element in Y, 2 = Y_p_, oxzy, {ax}i<ken C K
Then

n n n
Iz -z’ = |z — Y axzel* =< z - Y apzmi, = Y e >=
k=1 k=1 k=1

90

https://biblioteca-digitala.ro / https://unibuc.ro



n n n n
= "16"2— <z, }:akzk > —-< Zakzk,z >+ < Zakmk,Zakzk >=
k=1 k=1 k=1 k=1

n n
=||:t||2 Zak<z zk>+2 <:c,a:k>+z:a,,?ﬂ=
k=1 k=1 k=1

: n
= ||lz||* - Z<z x> 3T, T > + Y (ak— <, 3% >)(ak——<1:z,,>)—
k=1 k=1

= ||lz||* - Z|<x zx >|2+Z|ak—<m T > 2=
k=1 k=1

= |l=II* - Zl <z,z > [+ |l - 2l
k=1

Thus,
=:' — 2 —_— 2 %
d(z,Y) zlrelf lz = 2|l = (Jlz| kz l| <z,zp > |*)

and, the equality holds if and only if z = y,.
A short computation based on the properties of inner products shows
that £ — Y7, < z,xzx > x4 is orthogonal to Y.

Theorem 4.1.4 Let Y be a subspace of X. Suppos- x € X andy € Y. Then
z—ylY if and only if ||z — y|| = d(z,Y).

Proof. Let z be arbitrary in Y, 2 # y. If z — y 1Y, by the Pythagoras
identity,
lo— 22 = flo - y+y— 2l = 1z — yl* + 1y — 21 > }z = yI”

80, ".’E - y" = d(.’L‘,Y)
Conversely, suppose ||[z—y|| < ||z—z|| for all z € Y. Since Y is a subspace,
y+Azisin Y for all z € Y and X € K. Therefore,

le—yl* < llz— (y+ A =<z -y - Az,z -y — Az >=
= |lz — y||* — 2Re A < z,z — y > +|A?| 2|)?
Hence,
2Re A< z,x —y >< |AP||2)?
Set A =r<z,z — y >, where r is a real number. We get
or| <z, z—y> P < <z,z -y > P2

and, since r is arbitrary, it follows that < z,z —y >= 0.
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4.2 Projections onto subspaces

Proposition 4.2.1 For every subset A in X, A' is a closed subspace of X
and A+ = SpA". L

Proof. The fact that A' is a subspace of X follows from the linearity of
the inner product. Let z € AL, so z, — , for some sequence (Zn)n in AL
For arbitrary y € A, < z,,y >—< z,¥y > . As < x,,,7 >= 0 it results that
< z,y >= 0, therefore z € A'. The equality A* = ml can be immediately
proven by the same kind of arguments.

Next, let Y be a closed subspace of X. The closed subspace Y is called
the orthogonal complement of Y. The following theorem shows that there are
vectors orthogonal to any closed proper subspace, indeed there are enough
such that X = {y+z |y € Y, z € Y*}. This important geometric property is
one of the main reasons that Hilbert spaces are easier to handle than Banach
spaces.

Lemma 4.2.1 Let X be a Hilbert space and Y a closed subspace of X. Then
Jor each x € X there is in'Y a unique element closest to x.

Proof. Let us denote by d = d(z,Y). Choose a sequence (yn)n C Y, so
that

1
d<|lz—yull <d+ =
n
Then for n, p € N,

“yﬂ+P —Yn "2 = ||(z —- yn+p) — [z~ '.’/n)“2 =

=2l|z = ynspll* + 20z — gul® — & — sy + 2~ ul” =

2
<
e <

= 2l|2 = ynspl® + 2llz — yul® — 4llz -

S4(d+;11-)2-4d’——b0, as n — 00.

The second equality follows from the parallelogram law; the inequality follows
from the fact that (yn4p + yn)/2 € Y. Thus (y,), is Cauchy and since Y is
closed, (yn)n converges to an element y, of Y. It results immediately that
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||z — yz|| = d. Suppose z is an other element in Y such that ||z — z|| = d.
Then

Iz = =l = l(z — 2) = (=~ %)|I” =
=2z — 2" + 2z - gl - e - ZELE|? < ad® — 4 =,
which proves the uniqueness.

Remark. It is clear from the proof that the previous result holds in a more
general situation, namely when Y is a closed convex subset of X.

Theorem 4.2.1 (Projection theorem) Let X bc a Hilbert space andY a
closed subspace of X. Then every x € X can be uniquely written x =y + z,
wherey €Y and z € Y*.

Proof. Let zbein X. Then, by the above lemma there is a unique element
Yz € Y closest to z. Define z = z — y,, then we clearly have z = y + z. We
shall check that 21Y , equivalently < z,v >= 0, Vv € Y. For arbitrary t € Y
and A € K.

2 < _ 2 = _ A 2 -
el < ot = lz =l
=|2)? - AT Z,05 =X < z,v > +A)||v|?
Setting A =< z,v > /||v||?, it follows
|<z,v>2 |<z,o>] |<z,u>)?
lloll? l[oli? 1]

thus | < z,v > |2 < 0 which implies that < z,v >= 0, Vv € Y.
Uniqueness is left as exercise.
As an immediate consequence of this theorem we have:

lz1* < llzlI* -

Corollary 4.2.1 Let X be a Hilbert space and Y a closed proper subs;;ace
of X. Then Y+ # {0}.

Theorem 4.2.2 (The Riess lemma) Let X be a Hilbert space and f a con-
tinuous linear functional on X (f € X*).Then

1) There exists an element a; in X such that f(z) =< z,a; >, Vz € X;

2) The element a; is unique with the property 1);

9 111 = layll
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Proof. For f € X* Ker f1sa closed subspace of X. The case Ker f = X
is trivial since f = 0 and we set a; = 0. So suppose there exists z # 0,
z € Ker f'. For arbitrary £ € X, the element

J(z)
r——F= 2€ Ke
1) 2K S
therefore f(2)
T
KT—=—52,2>=0
f(z)
It results that
f(®) o o o | [()
< &2 > - =0, or equivalently f(z) =<z, z >
“fiey 1l @) =<0
Setting
| f(z)
a <
NPT

1) is proved. The uniqueness 1s obvious (2)). 3) follows by

[f (@) =| <z a; > | <zl - llas| = (]l < llas|

and, on the other hand, by

I/l = e, |f (z)] = J( ay) = llal|

1
llarl

Remark. We note that the Cauchy-Schwarz inequality shows that the con-
verse of the Riesz lemma is tiue. Namely, each y € X defines a continuous
linear functional f, on X by f (z) =< z,y > .

4.3 Orthonormal bases

We shall begin with some pieliminaries facte.

Lemma 4.3.1 Let X be a Hilbeit space and (z,), an orthogonal sequence
in X such that the series ¥ p>, ||w.||* converges. Then, the series 3,5, 2, 18
unconditional convergent. Moreover, the sum of the seiies 3, 5, €, does not
depend of the order of the terms.

94

https://biblioteca-digitala.ro / https://unibuc.ro



Proof. If s, =Y}_, = and t, = ¥}_, [|lz«||?, by the Pythagoras identity,
Isn+p = 8all* = tatp —ta, Vn, peN "

which shows that (s,), is a Cauchy sequence, and since X is a Hilbert space,
the series }_,>; Zn converges. Take, o a permutation on N. Because the
numerical series 3,5, [|Za||* is unconditional convergent, we have, as before
that 3,5 Z,(n) converges. We only must verify that x = y, where

oo oo
z = Zz,, and y = Zfl)a(n)
n=1

n=1

Clearly, z — y € Sp{z, | n € N}. On the other hand, for each m € N,

. n n
<z —y,z >=lim < kzl:ck - kzlxa(k),l'm >=0,

therefore, z — y € Sp{z, | n € N}J} It follows that

z —y € Sp{z, | neN]l N Sp{z, | n € N},
80 T = y.

Lemma 4.3.2 Let X be a Hilbert space and {z, | « € I} an orthonormal
family in X. Then, for each x € X, the subset of I,

L ={tel| <z,z; ># 0}

is at most countable.

Proof. Take € > 0, and denote by I®) = {v € [ | | < z,z, > | > €}
Suppose that I{*) is an infinite set. Then, for Vn € N, 3uy,2,...,tn € I,
that means | < z,z,, > | > ¢, Vk = 1,...,n. By Bessel’s inequality it results
that Yp_,| < z,z,, > |* < ||z||* which implies that n €2 < ||z||?, Vn € N
(contradiction). It follows for each ¢ > 0, I®) is empty or finite, and, as
I; = U,»1 IY™, the lemma is proven.

Remark. If {z, | ¢ € I} is an orthonormal family in X, for each x € X we
can consider the numerical family {< z,z, > | + € I}, called the family of
Fourier coefficients of x with respect to the orthonormal family {z, | ¢ € I}.
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Notations. Let X be a Hilbert space, {z, | ¢ € I} an orthonormal family
inX,z€Xand I, ={t€l| <z z;>#0}. If 1, is finite we dencte by
E <T, T >T, ,(respectivelyZ] <z, r, >),
el el

the sum

Y. <z,x, >z, ,(respectively Y | < z,z, > |?)
el ely

If I, is not finite, then, by Lemma 4.3.2 there is a bijection 0 : N — I,. The
sequence (< Z,Ty(n) > To(n))n satisfies the hypothesis of Lemrna 4.3.1, since

2N <2, 20m) > Towll* = 3 | < 2,20 >
n>1 n>1

and this series is (unconditional) convergent as it follows by Bessel’inequality,

n
tw=_| <2,Zo(r) > [* < l2]|*
k=1

It results that the series 3°,5, < Z, To(n) > Zs(n) converges in X and its sum
does not depend of the choice of 0. Recall that the sum of the numerical
series 3,51 | < &, Zo(n) > |? is also independent of the choice of the bijection
o, because this series converges absolutely, so unconditionally. Therefore we
may denote by

Y <=z, >z, (respectively Y | < z,z, > |*)
el el

the sum of the series

Z < I, Tg(n) > To(n), (respectively Z | < 2, Zo(m) > |?)
n>1 n>1

since it does not depend of the chvice of 0. Finally we have to notice that
dol<z,z > < el
el
(the Bessel’s inequality for an arbitrary orthonormal family).
Definition. An orthonormal subset B = {z, | ¢« € I} of X is said to be an
orthonormal basis (or a complete orthonormal system) if there is no other

orthonormal subset of X which contains B as a proper subset (that means
B is a maximal orthonormal set of X with respect to the inclusion order).

Theorem 4.3.1 Fvery Hilbert space X # {0} has an orthonormal basis.
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Proof. Let C be the collection of all orthonormal sets of X. C is nonempty
(since X # {0} implies {(1/||z||)x} € C). We order C by inclusion: B, < B,
if and only if B, C B,. That is a partial order relation on C. We observe
that (C,<) is inductively ordered (since if (B,)q is a totally ordered family,
Bo = U, Ba is an upper bound of it). By Zorn’s lemma we conclude that
there exists B a maximal element of (C,<), so an orthonormal basis for X.

Definition. A subset A of X is called a total set of X ifz 1L A=z =0.

Theorem 4.3.2 Suppose B = {z, | « € I} is an orthonormal set in the
Hilbert space X. The following statements are equivalent:

(1) B is an orthonormal basis;

(2) B is a total set;

(3)Sp B = X;

(4) For eachz € X,z =Y ,¢; < z,z, > z, (Fourier’s development of x with
respect to the basis B);

* (5) Foreachz € X, || z||> = £,cs | < 7,2, > |* (Parseval’s equality).

Proof. By the Theorem 4.1.1, for arbitrary n € N, we have

n
| < 2,Zep) > |* =z — Y < 2,20y > Towyll’
1 k=1

ll=|* -

n
k=

(where o is a bijection of N onto I;). It follows that z = ¥",¢; < z,z, > x, if
and only if || z||2 = S.cs | < z, 2. > |2, thus (4)&(5).

The fact that (4)= (3) is obvious. Suppose now z L B, therefore z €
€EB'= ml. It results that (3)=(2).

We show that (2)=> (4). Let z € X, and z = ¥ ; < z,z, > z,. In order
to see that z = z we check that z — z L B ={z, |t € 1}. If ¢, € I,

<zT-2,%,>=<I,T,,>— <Y <IL,T,>I,T, >=
el

=<z, >-<z5,>=0
If o, ¢ I,

<z-z2,>=0-<) <z,z,>,r,>=0-0=0
el
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Further, if (1) is valid, and z € X, x # 0, then

1

= {0

Tz zyU{z, | e}
is an orthonormal set which contains B (one contradicts the maximality of
B). 1t results £ = 0. Thus, (1)=> (2). The converse implication is immediate
since if B is an orthonormal set such that B G B', there exists z € B'\B.
It follows = # 0 and z | B (contradiction with (1)).

Examples. 1. In K", the canonical algebraic basis B = {ex}1<k<n, €x =
= (67,889, ...,6®)) (where, for j, k € N, 6% = 1if j # k and 6& =0
otherwise) is obviously an orthonormal set and also a total set of the Hilbert
space K". Thus, it is an orthonormal basis, too. _

2. In [} the set B = {e,| n € N} where ¢, = (6,(‘")),;, is an orthonormal
set. B is also a total set, since if £ = () € [ is orthogonal to B, it results
that < z,e, >=0, Vn € N. As < z,¢e,, >=§,, it follows £, = 0, Vn € N,
so = 0. By the previous theorem, we conclude that B = {e,| n € N} is an
orthonormal basis in f .

3. In Li([-m,n)) the countable set B = {ey, €11, €12, €21, €22,....} Where

1 1 1
eo(t) = o eni(t) = ﬁcos nt, ens(t) = ﬁsin nt, n €N,

is an orthonormal basis. The fact that B is an orthogonal set can be easily
checked. In order to prove that B is an orthonormal basis we have to see
that Sp B = L([—m, n]) (Theorem 4.3.2), or equivalently, to show that for
each z € L&([~m,7]) and € > 0, there exists a trigonometric polynomial,
p: [~m m] — K such that ||p — a:||2 <e.

First, take an arbitrary z in Li([—m,7]) and € > 0. As Cy([-m,a]) is
dense in Lg([—, 7], Jy € Cg([—m,x]) such that ||z — yl2 < e/3. We show
now that there exists z € Cx([—7, 7)) with z(—7) = z(7) and |y — z||2 < £/3.
If y = 0 if we take z = 0 everything is clear. Suppose further that y # 0; thus
sup {|y(t)| | t € [--7, 7]} # 0. Let z be the real mapping on [—7, 7| defined
as follows :

at+p ifte[-m,—m+96)
2{f) = { y(t) ifte|—-n+ 6,7

where 6 € (0,27), o, # € R will be determined such that the next three
conditions hold: ||y — z||2 < £/3, the mapping 2 continuous, z(—7) = z(m).
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It follows that for t € [—m, 7] and «, B3, 6 like we have just said, we have
|2(t)| < sup {|y(t)| | t € [-7, ]} # O (since the linear map u : [—m, —7 + 6],
u(t) = at + £ is monotone and u(—n) = y(—n), u(—n + 6) = y(—= + 9)).

Thus, let us find @, B, § satisfying the above mentioned conditions. We
notice that

Iy =2l = [ lu) - 2@ de = [ lyte) - 20 a <

&[—m,x]

—x+6
< /_ (@) + |20 dt <46 sup @),

80, [ly — zlla < 2v8 sup |y(t)|. Taking

l_'-'

2

sup |y(t)[?

te[—n,x]

6 < min

and a, (3 the solutions of the next system

{ a(-m) + B =y(-n)
a(-m+6)+ B =y(-m+6)

we have ||ly — z|ls < &/3.
From the Weierstrass second approximation theorem (Appendix B), there
exists p a trigonometric polynomial such that

o150 = 0] < 37
Then, *
Iy =2 < ([ 1at)) - plo)ae) " < 5

Finally, it results
lz—plla=llz-y+y—2+2-pl2 <
E € € '
Slz=ylla+lly—zlla+ [z —plla < gtztz=e¢

If £ is complex-valued, it follows applying the above approach to Re f
and Im f that Sp B = L}([-m, 7).
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It results that the series

a, + Z(a,. cos nt + Oy sin nt)

n>1

where

1 1 1 .
a, = 2—7r/:x(t)dt, ap = ;/_::r(t)cos nt dt, fn = ;[:x(t)sm nt dt,

converges in L ([~, 7)) to z,
lim f |2(t) — a0 — 3 (a cos kt + Bysin kt)[dt =0
i k=1

In addition,
[ 12Ot = 2manf + 73 faul* + AP
- n=1

(Parceval’s equality).
4. Since

e‘ﬂt + e—iﬂt int —e el
cos nt = — and sin nt = —

it follows that Sp {e™ | n € Z} = L&i([~n,7]) (where Z is the set of all
integers). Hence {1/y/2me'™ | 5 € Z}is an orthonormal basis in LE([—n, 7)),
the Fourier series is Y.z cne™, where

Cp = 2—;/; z(t)e ™ dt, neZ

converges in L%([—m, 7)) to z and by Parceval’s equality

s o)

/_'; lz)Pdt =21 3 el

n=-o0o

Theorem 4.3.3 Let (uy,), be an arbitrary sequence of linearly independent
vectors in the inner product space X. Then, there exists an orthonormal se-
quence (v, )n such that for each m € N, the linear space spanned by {u;} < j<m
coincides to the one spanned by {vj}i<j<m.
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Proof. Let us construct the sequence (v,), as follows: take v; = wy,
where w; = (1/|lw||) u;, and for arbitrary n € N, n > 2,

n-1
U, = ——W,, where w,, = u,, — < Uy, Vg > U
llwnll k=1

Applying Theorem 4.1.3 and Theorem 4.1.4, we notice that for each n € N,

the vector
n-1

Z < Up, Vg > Vg,

k=1
is the closest element to u, in the linear space spanned by {vk}1<x<n-1 and
therefore w,, is orthogonal to this subspace of X. It is now clear that the
sequence (vp)n constructed above satisfies the requirements of the theorem.

Remark. The process used in the proof of the previous theorem for con-
structing an orthonormal sequence (vy,), from an arbitrary sequence of in-
dependent vectors (u,), is known as the Gram-Schmidt orthogonalization
procedure.

Definition. Two Hilbert spaces ‘X, and X, are called isomorphic if there
exists a linear mapping U from X, onto X3 such that

<U(z),U(y) >=<z,y>, Vr,y€ X,.

The following theorem allows us to characterizes separable Hilbert spaces
(which frequently arise in practice) up to isomorphism.

Theorem 4.3.4 A Hilbert space X is separable if and only if X has a count-
able orthonormal basis B. If there are n elements in B, then X is isomorphic
to K" and if there are countably many elements in B, then X is isomorphic
to 1% .

Proof. Suppose first that X is separable and let (y,), a countable dense
subset of X. By throwing out some of the y, 's we can get a subset of
independent vectors (z,), which spans the same subspace as (yn)n,

Sp{zn | n € N} = Sp{yn» | n € N},

80 Sp{z, | n € N} is dense in X. Further, by applying the Gram-Schmidt
orthogonalization procedure to the sequence (z,), one obtains a countable
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orthonormal set B which spans the same subspace as (z,,),. Thus Sp B = X,
and by Theorem 4.3.2, it results that B is an orthonormal basis of X.

Conversely, if B = {z, | n € N} is a countable orthonormal basis of X,
then the set

n
A={Y pzi | n €N, px =rx +isk, 7%, 8 € Q)
k=1

(of all finite linear combinations of the z,, with rational coefficients) is dense
in X. Since this set is countable, X is separable.
If B= {zx}1<k<n,each z € X is Yp_, <,z > x, so taking U : X —
— K",
Ulx) =(<z,z; >, <z,82>,...,< T,Tn >)

everything is clear. Similarly, if B = {z,, | n € N}, using the Parseval identity
it results that (< z,z, >), € l?(, Vz € X, therefore U : X — 12,

/

U(z) = (< Z,2Zp >)n

is well defined. We have to check that U preserves the inner product. Let
z,y € X, s0

<U@@),U(y)>=) <z,2:><y, 2z > =

n=1

n n
="ll_r&kz:l <z, ><Y,Tf > ='}Lr{.10< x,kz:l <Y, xp >z >=<LIT,Y >,

and the proof is finished.

Example. Using this theorem it is clear that all the spaces in the previous
examples are separable Hilbert spaces. Here we have got an example of non
separable inner-product space, the space of almost periodic functions. Recall
that a complex valued function which is continuous on K is almost periodic
if it is the uniform limit on R of a sequence of trigonometric polynomials of
the form Y k., axe***, \; real. Denote by A the set of all almost periodic
functions. A endowed with the usual operations of addition and scalar mul-
tiplication becomes a vector space over C. It can be shown that the mapping

on A X A,
R Y
<zy >=Th_{r;o T/o z(t)y(t) dt
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is well defined and it is an inner product on A. Since {¢"** | A € R} is an
uncountable orthonormal set, thus A is not separable.

We conclude this section by exhibiting how Hilbert spaces arose naturally
from problems in classical analysis. If z : [-m, 7] — R is an mtegrable
function on [—, 7| we can define the numbers

1 1/~
ap = 27r[' z(t)dt, a,= ;/_Iz(t)cos nt dt, n €N,

1
B = —f z(t)sin nt dt, n € N.

™

The formal series ag+ 3,51 (n cos nt+ B, sin nt) is called the Fourier series
of the function z.

The classical problem is: for which z and in what sense does the Fourier
series of = converge to £?7 This problem, originated with Fourier (1811) has
had a rich history, being the point of depart for an entire branch of analysis,
the abstract harmonic analysis. The most known answer to this question is
the next theorem.

Theorem 4.3.5 Suppose that x : R — R 1is periodic of period 27 and is
continuously differentiable. Then, the Fourier series of x converges uniformly
tox.

This theorem gives sufficient conditions for the Fourier series of a function
to converge uniformly. But, finding the exact class of functions whose Fourier
series converge uniformly or converge pointwise has proven to be a hard
problem. We can, however, get a nice answer to this question if we change
our notion of ”convergence” and this is just where Hilbert spaces come in.

Theorem 4.3.6 For any x € Li([—m, ] the series

ap + Z(a,. sin nt + [, cos nt)
n>1

converges to x in (LE([—m,n),|| - |l2)- In addition

/_7r |z(t)|2dt = 27rag +7 Z(a?‘ + ﬂ,’,)

n=1
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Proof. We have proven (Example 3, 4.3) that B = {eo, €11, €12, €21, €2,....}
where

1 1 1
eo(t) = W eni(t) = 77—'“)8 nt, ena(t) = —\/—7:rsin nt, ne€N,

is an orthonormal basis in L&([—,n]. By Theorem 4.3.2 it results for each
z € Li([—m,n] that

[o o]
r=<z,6, >+ E(< T,en1 > €n1t+ < T,€n2 > €n2)
n=1
(the convergence of the series is in L&([—, 7). By the definition of the inner
product in L}([-m, 7],
< z,e > - z(t)dt, <z, e, > ! /« (t) t dt €N
= —= 2, =—[ =z(t)cos nt dt, n €N,
€0 ) nl ﬁ %

Ve )

1 n
< T, Cqq >= 7—7—;/_,1(t)6in nt dt, n € N.

If we denote
< ze > _ < zT,en > _ < I eny >

ao=“'7—é;'—, an—Ty P = \/77

the theorem is proven. In addition, the Parseval’s equality gives

|l = 2%([_: z(t) dt)? + i %[(/_: z(t) cos nt dt)’+(/:r z(t)sin nt dt)?,

thus,

[ Is()P dt = 2mad + 7Y (o + 42).
=W n=1

4.4 Exercises

1. Let X be an inner product space. Show that | < z,y > | = |z - ||y if
and only if z and y are linearly dependent.

2. (Theorem Banach-Saks) Let X be a Hilbert space and (z,,)» a bounded
sequence in X. Prove that there exist z € X and a subsequence (zy, )x such

that Ty + Ty + 0T
i (2t St ooy

k—o00
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3. Let X be a Hilbert space and A C X. Prove that:
a) AC At

b) AL = 5p %

C) AJ.LL — Al;

d) If A is a closed linear subspace of X, then At! = A.
4. Let (X, | - ||) be a normed space such that

Iz +yl* + llz = ylI* = 2(l=|* + lylI*), Vz,y€ X
Show that there exists an inner product < -,- > on X such that
lz|| =< =,z >'2, Vze X

(the norm is generated by an inner product).

5. Prove that I[§ (p € [1,00)) is a Hilbert space if and only if p = 2.

6. Prove that Lg([0,1]) (p € [1,00)) is a Hilbert space if and only if
p=2

7. Show that each Hilbert space is reflexive.

8. (The Gram determinant) Let {y1,¥2,....,yn} be a basis for the sub-
space Y C X. Prove that for z € E,

d(z,Y) = (g(yn,yz, ....,y’y))%

91,92, -, Yn)
and
0 < g1, vz, -y ¥n) < lwall® - N2l Mynll?,
where
<yl)yl> . . . <yn)yl> <y)yl>
9(y1,92, ., Yn, y) = det . _
<ylyyn> . . . <ymyn> <yvyﬂ>
<yny> . . . <Yyn¥y> <YyY>

and g(y1,¥2, .., Yn) = det(< ¥;,y;>) (the Gram determinant corresponding

to {yl;y?; yyn})
In addition, the closest element to z in Y, y; is given by

1
g(yl,yﬂv "-"ynv)

Yz = X
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<Y,n> <ypn> . . . <Yny1> <Yy >

x det

<YLUn> <y, > . . . <YnYn> <Y Yn >
yl y2 s . ¢ yn 0
9. (Hadamard’s inequality for a determinant) Let A = (a;);; be
an n X n matrix of complex (real) numbers. Show that

n n
Idet AP S H Z |a,'j|2.
i=1j=1
10. Write the Fourier series of the function z(t) = t? and using the
Parceval’s equality in L} ([—7, 7] find the sum of the numerical series 3,5, 7.
11. Show that the Legendre polynomial, (¢p)n,

1 4, -
%(t)—ﬁaﬁ(t -1)

are obtained by applying the Gram-Schmidt ortogonalization procedure to
the sequence (un)n, un(t) =t", n € NU{0} in the Hilbert space Lg([—1,1]).

12. Let ¢, ;... an orthonormal basis for L§([a,d]). Then ¢;;(t,s) =
= 0i(t)P;(s), 1,7 = 1,2, ... is an orthonormal basis for L%([a,b] x [a, b]).
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Chapter 5

Linear operators on Hilbert
spaces

5.1 The correspondence between sesquilinear
forms and operators. The adjoint and its
properties

Definition. A sesquilinear form on a vector space X over the field K is a
map B : X x X — K that is linear in the first variable and conjugate linear
in the second, i.e.

i) B(az + By, z) = aB(z,2) + fB(y,2),Vz,y,2€ X, a, B €K

ii) B(z,ay + Bz) = aB(z,y) + BB(z,2), Vz,y,2€ X, o, BEK..
A sesquilinear form B is said to be self-adjoint (or hermitian) if B(z,y) =
= B(y,z), Vz,y € X, and positive if B(z,z) > 0, Vz € X.

Remark. An inner product on X is a positive, self-adjoint sesquilinear form
such that B(z,z) = 0 implies z = 0 (z € X).

Remark. If B is a positive, self-adjoint sesquilinear form on X, then
0 < B(Az+y, Ar+y) = |\*B(z, )+ 2Re)\ B(z,y)+B(y,y),Vz,y € X, €K
thus, if B(z,z) # 0 (or B(y,y) # 0) setting here

_ B(z,y)
AR B(z,z)’
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one obtains the generalized Cauchy-Schwarz inequality,
|B(z,9)| < B(z,2) B(y,y)%, Va,y € X

When both B(z,z) and B(y,y) are zero, the above inequality results setting
A = —B(z,y).

Further, suppose that (X, < -,- >) is a Hilbert space.

Definition. A sesquilinear form on the Hilbert space X is said to be bounded
if there exists a positive constant M > 0 such that

|B(z,9)| < M |lz|| lvll, Vz,y€e X

Notation. Note that the set of all bounded sesquilinear forms on X
equipped with the usual functions addition and scalar multiplication is a
vector space, denoted here by SB(X). The real map on SB(X),

B +— ||B|| = inf {M >0 | |B(z,y)| < M ||z |lyll,Vz,y € X},

is & norm on SB(X). An easy computation leads to

B(z,y
IBl= sup [Bey)= swp |Bay)l= sp oWl
llll<1,lpll<1 lzll=1,lyl|=1 Iziizo,yhz0 1zl - ¥l

Next theorem is of historical interest (apart from being quite a useful
result). It should be recalled that the spectral theory was developed by
Hilbert (the beginning of our century) as a theory for quadratic and bilinear
forms, but even the simplest computation with the expression of the forms
as infinite matrices had the tendency to be very complicated. One of the
reasons (but not only) to von Neumann’s success was his consistent use of
the operator concept to tackle problems in Hilbert spaces.

Proposition 5.1.1 There is a bijective, isometric corrvespondence between
operators in B(X) and forms in SB(X), given by T —— By, where

Br(z,y) =< z,Ty >, Vr,yeX
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Proof. If T € B(X), then clearly Br is a sesquilinear form on X. The
boundedness of B results from

|Br(z,y)| = | <2, Ty > [ <|T| - =l - lyll , V=z,y€ X,

thus |Br|| < ||IT|| . On the other hand, inserting £ ~» T'y in the definition
of By we obtain

ITyl* = 1Br(Ty, )| < |1 Brll - ITyll - Iyl

which implies that || Br| < ||T|. It follows |Br| = ||T|
We have only to see that the mapping T' — Br is onto. For B in SB(X)
and y € X let us consider the functional on X, defined by

f/(z)=B(zy), z€X,

which, evidently is in X*. Applying to it the Riesz lemma, we obtain a unique
element in X, Ty, such that

[ (@) =<=z,Ty >, Vz € X and || f7| = Tyl
The map y — Ty is linear, as it results by

< Z,T(CKL' + ﬂy) >= aB:c+ﬂy(z) = B(a:,a:t: +ﬂy)

=aB(z,z) +PBB(z,y) =a < z,Tz > +B < z,Ty >

=<z, Tz +pTy> Vz, y, z€ X, a, €K

Moreover,
1Tyl = 1£71 = gup |B(z, )| < [IBl - llyll,

therefore T is bounded. As B(z,y) =< z,Ty >, Vz,y € X, the proposition
is proven.

Corollary 5.1.1 Let T be a linear operator on X. Then, T is bounded if
and only if there erists a constant M > 0 such that

| <z,Ty>|< M |z|| |lyll, Vz,ye X

In addition,

IT|= sup |<z,Ty>|=
2l <1, lyli<1
<zTy>
= sup ‘<:L‘,Ty>|= sup I____y__l___
llzll=1,llyll=1 lzii#o,wlzo NIzl - 1yl

=inf {M>0][|<z,Ty>|<M |z| |lyl, VYz,ye€ X}
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Proof. It follows by the equivalence, T' € B(X) < Br € SB(X).

Remark. Since | < y,Tz > | = |<Tz,y >| = | < Tz,y > | the statement
of the previous corollary can be rewritten: T' € B(X) < 3M > 0 such that
| <Tz,y>| <M |z |lyll, Vz,y € X.

Theorem 5.1.1 (The Hellinger-Toeplitz theorem) Each linear operator

T on a Hilbert space (X, < -,- >) satisfying < z,Ty >=< Tz,y > for all z,
y in X, s bounded.

Proof. We will prove that the graph of T is closed. Suppose that
(zn)n — z and (Tz,), — y. For any z € X,

<zvY >=li'r‘n< z, Tz, >=1i'r.n< Tz, x, >=<Tzz>=<z2,Tx >

Thus, y = Tz and the graph of T is closed. By the Closed graph theorem it
follows that T' € B(X).

Theorem 5.1.2 To each T € B(X) there is a unique T* € B(X) such that
<Tz,y>=<z,T'y> VzyeX

In addition |T|| = |

T
Proof.  For arbitrary 7' in B(X) we consider the sesquilinear form

(z,y) —< Tz,y >

which clearly is in SB(X). By Proposition 5.1.1, it follows that there exists
an operator, T* € B(X) such that By. = B, i.e.

<Tz,y>=<z,T'y> VryelX
Moreover, ||Br-|| = ||T*||, and on the other hand
| Br+|| = inf {M >0 | |Br-(z,y)| < M ||z|| |lyll,Vz,y € X} =

=inf {M > 0| |(Tz,y)| < M |z|| |lyll.Vz,y € X} =
=inf {M > 0| |(z,Ty)| < M |z|| llyll,Vz,y € X} = |T|
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Definition. The operator T* € B(X) enjoying the property
<Tz,y>=<z,T'y> Vzye€lX,

is called the adjoint of the operator T. We say that the operator T is self-
adjoint if T = T*.

The set of all self-adjoint operators on the Hilbert space X will be denoted
further by A(X).

Remark. If A is a self-adjoint operator, it is easy to see that for each z € X,
< Az,z >€ R. Moreover < Az, z >€ [—| A, |All], Vz € X with ||z| < 1.

Notations. For A a self-a.djomt; operator, denote

my = inf <Azm> and My =sup < Az, x >
[lzll< lz|i<1

Exa.mples. 1. IfT e B(K"), T~ (a,'j)]sg"jsn, then, T ~ (a:j)ISi’an, where
aj; = @j;, thus the matrix of 7™ is the adjoint of the matrix of T.

We remark that the terminology introduced in the above definition is
the same terminology as the one developed in linear algebra. Thus, T is
self-adjoint if its matrix is an hermitian matrix.

2. Let T be the opeiator on % defined by T'((£4)n) = (Ann)n, (€n)n € &,
(where (M) € IF).

By Example 2 in the section 3.1, T' is well defined and T € B(l%). The
adjoint of T is defined by T*((£n)n) = (Aaén)n-

Indeed, we have for e, = (8);,

< Tepn,en >=< Anbn,€n >=< €n, Abn >,

thus 7"*(e,) = Anén. Then,

II“((gn)n) = T‘(io: Enen) = i&nT.en = io:x;ﬁnen = (X&n)n
n=1 n=1 n=1

The operator T is self-adjoint if and only if (As), C R.
3. Given the infinite matrix (a;;){5.,,where 332, 332, |ay;|* < oo, define
the operator A on [ by

fx)z = Za’$]£,1 (&)i € llz(
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Since
13" a5l < 3 lasil - 1651 < (X lag )3 (X 1€, 3,
j=1 j=1 j=1 j=1
it results that
TAE)l? = D13 aiiés)® < (EZ |0u|2) I1(&)sll?,
i=1 j=1 i=1j=1
so A € B(l}) and

) .
lA|* < ZZ |as; *
i=1j=1

Note that the condition 332, 33, |a;;|* < 0o is not a necessary condition
for A to be bounded (since, for example the identity matrix, does not satisfy
this condition and gives rise to A = I).

Taking in [ the standard basis, {e, | n € N},

a;; =< Ae,-,ei >

since
< A‘ej,e,- >=< Cj,Ae.' >= ajs,

and

o0 0o oo 00

2

Z Z | Z Z a"jl )

i=1;j=1 i=1j=1
it results that the adjoint of A, is the operator defined by the infinite matrix
(@5)75=1-

We have to notice that this operator is compact. To show that , let us
consider for each n € N, the operator A, on l% , defined by

6 )l = (Z aljgj)zaajé.j; -'-)Zanj£j10)0~---x0) “))
j=1 j=1 =1

where a = (§;); € l§. Since A, is of finite rank, it is compact. In addition,

|4 — Anll* < E Zla.,|’+ }: Zlaul’—*ﬂ

t=n+lj= j=n+li=1

Thus, by Theorem 3.5.1, A € K(I%).
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4. Let k € L%([a,b] x [a,b]) and define the operator T on L% ([a,b]) b;

(Tz)(t) = /abk(t,s)x(s)ds, z € L2([a, b))

The integral exists since for each ¢, k(t, s)z(s) is Lebesgue measurable on
[a,b] and by, Cauchy-Schwarz inequality,

[ ueore) ([ mors)

Thus,

I1Tz|? </ (/ Ik(t, )z |db> dt<(/ / Ik(t, s)[* ds dt)||:c||2

Hence T € B(L%([a,b])) and

b b
712 < [ [ k(o) s de = i)

By Fubini’s theorem,

<Tz,y>= /ab (/:k(t,s)x(s)ds>@ dt =
_/ (/ k(t, s)y ()dt>ds=<x,y‘>’

y*(s) ='/ab k(t, s)y(t) dt

where

It follows, that

b
(T*z)(t) = / k(t,s)z(s)ds, =z € Lk([a,b])
Notice that this operator is compact too.

Theorem 5.1.3 (Properties of the adjoint) ForT,V € B(X) anda,} €
€ K, we have B
1) (T + pV)* =aT* + pV*,
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2) (T V) =V'T

3)T** =T;

4T = |T|*

5) T is invertible in B(X) if and only if T* is invertible in B(X); in addition
(T*) =(T7)%

6) Ker T* = (T(X))* and (Ker T)* = T*(X);

7)T € K(X) if and only if T* € K(X).

Proof. In order to prove the first three properties, we shall use the corre-
spondence between sesquilinear forms and bounded linear operators on X.

Bripvy (z,y) =< z,(aT + fV)'y >=
=< (aT+ pBV)z,y>=a < Tz,y > +f < Vz,y >=
=< z,aT*y > + < z,BV*y >= Bizr. 5y (2,y), VYz,y€ X,
thus 1) holds. For 2), we have
Barvy(z,y) =< z,(TV)*y >=< (TV)y,z >=
=< V(z), Ty >=< z,V*T*y >= By.7:(y), Vr,ye X
The third property results from
Br.(z,y) =< z,((T)")'y >=<T*z,y >= <y,T'z > =
=<Ty,z>=<zTy>= Br(z,y), Vz,ye X
Further, we prove 4). Clearly,
7T < NT*) - T = 1T
On the other hand, for each y € Y,

ITyll? =< Ty, Ty >=<y, T"Ty >< |y|*|7°1

)

therefore ||T|| < || T*T||.

T is invertible in B(X) if there exists in B(X) an operator, (denoted by
T-') such that T 7! = I, T"IT = I, (where I is the identity operator);
hence, using 2), it follows ( T-)*T* = I, T*(T')* = I. These equalities are
equivalent to the existence of the inverse of the mapping 7™, the inverse of
it being ( 7'°!)*. As T~! € B(X), we have also that (7" ')* € B(X).
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For 5), from the defining identity < Tz,y >=< z,T*y > we see that if
y € Ker T*, then y € (T(X))*. Conversely, if y € (T'(X))*, then Ty €
€ X'+ = {0}. The other relation can be proven similarly.

7) Suppose T' is compact and let (z,,), a sequence in X, ||z,|| = 1. Since,

TT* is compact (Proposition 3.5.1), there exists a subsequence (z,),’ of

'\' )n
(Zn)n such that (T'T*z,),  converges. Then, for arbitrary n',m’ € N,

n
"T.zn' - T.zm' " =< TT‘(:L‘”' - zm')’ Ly! = gt X

SITT (20 = 2 )l - 20 = el < 20 TT 2 — TT T I,

which means that (7"*z, ), is Cauchy, thus, by the completeness of X, con-
vergent.

5.2 The numerical radius

Definition. For each T' € B(X) we define the numerical radius of T by

W[l = sup | <Tz,z>|
Jell=1

Remark. It is obvious to show that the numerical radius can be calculated
with T
71l = sup | < Tz, > | =sup LT

Theorem 5.2.1 Let X be a complez Hilbert space. Then,
1) The real mapping T — |||T||| on B(X) is a norm;
2) For each T € B(X),

1
ST < TN < IT

3) For each T € B(X), |T?|| < |IT%.
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Proof. First we will prove the second assertion. By the Cauchy-Schwarz
inequality we have
| <Tz,z>|<|Tz| - =,
thus | < Tz,z > | < ||T - ||=|%, T|.
In order to obtain that ||| is dominated by 2- |||T’|||, we consider at the
beginning the identity

<T(z+y),z+y>—-<T(r—y),z—y>=

=2<Tr,y>+2<Ty,z>, =z,yeX

If z and y are unit vectors, using the above identity and the Parallelogram
law, one obtain

2| <Tzy >+ <Ty,z>|<|ITIll (l= +yl* + = - yl*) =

=2[|ITIll (= + llyl*) = 4 ||

Therefore, Re(< Tz,y > + < Ty,z >) < 2|||T|||. If one inserts here y ~~
~ (1/||ITz||)Tz, we have

(*) |ITz| + Re <T?z,x ><2||[T||l, Vze€X, ||z| =1

IIT I

Further, if | < T%z,z > | = €¥ < T?z,z >, 3y € C such that v2 = §. As the
previous inequality holds for each T' € B(X), it is valid also for T ~» ~T':

|ITz|| + Re —— < ¥z, z >< 2 |||T

: Vo€ X, |zl =1
||7 1

Thus we have obtained that

ITz)| + 7| < T2,z > | < 2|||T|ll, VzeX, |z =1,

1
IT=]]
which implies ||T'z|| < 2 [[|T]]], Vz € X, ||lz|| =1, so |T|| < 2 [[|T]|]-

Now, 1) is clear because evidently, T' — [||T||| is a seminorm and if
[IT]] = 0, by 2), ||T"|| = 0, therefore T' = 0.
In order to prove 3) we observe that

ITz| + ||<T"':::ar:>|<2|||T|||¢>

IT=|
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= 0 2||T)|| - Tz|| - |T2lf* - | < T2,z > |
So, if we continue to calculate in the right-hand side, we have
0< =(NTN = IT=l)* + TN = | < T*z,2 > | <
<|ITI? - | < T*z,z > |, Yz € X, ||zl = 1

which implies
| <T?z,z> | <||IT||?, Vz € X, |lz]| =1
and ends the proof.

Corollary 5.2.1 Let X be a Hilbert space over the field K (K =R, C ) and
A a self-adjoint operator on X. Then, ||A| = |||A]||-
Moreover || A|| = max{|ma|, |Mal}.

Proof.  The equality (*) in the proof of the previous theorem holds for
each T' € B(X). If we set here T ~ A, since A = A* we have,

|| Az || + ||<A2:1::r>|<2|||A||| vz e X, |z|| =1,

Il Az|

whence |Az| + [|Az|| < 2 |||A]||- Consequently, ||A| < |||A4]||, which com-
bined with 2) of the Theorem 5.2.1 shows that | A|| = ||| A|||.

Corollary 5.2.2 Let X be a Hilbert space over the field K (K =R, C ) and A
a self-adjoint operator on X such that < Az,xz >=0,Vz € X. Then A= 0.

Proof. If < Ar,z >=0, Vz € X it follows that |||A4]|| = 0, so ||A]| = 0.
5.3 Some special classes of operators on
Hilbert spaces

5.3.1 Normal operators, unitary operators

Definition. T € B(X) is said to be normal if TT* = T*T.
Remark. Obviously, each self-adjoint operator is normal.

Proposition 5.3.1 Let X be a complex Hilbert space and T € B(X) a nor-
mal operator. Then, |||T||| = |T|-
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Proof. Since T' is normal, for each n € N, (T'T*)" = T"(T*)". Then,
ITI* = (ITT*||5)* = (ITT*|*")* = |(TT*)*"||? =
= |T"(T*)* ||} = |77 (T7)|)} = | T

By the Theorem 5.2.1, it follows that ||7%"| < 2|||T%"|||, and applying the
same result, 3) we have finally that

ITI™ < 2T <= ITI < 2*||IT]lI, VneN,
whence ||T’|| < |||T'|||- As we have also |||T||| < ||T'||, the proposition is proven.

Proposition 5.3.2 Let T be in B(X ). Then, the following statements are
equivalent:

1) T is normal;
2) |Tz|| = |IT*z|, Vz € X.

Proof. 1)= 2) results by

ITz||? =< Tz, Tz >=< z,T*Tz >=

=< z,TT’z >=< T*z, T’z >= ||Tz|?

In order to prove the converse, we recall that it is enough to show that
< (TT* — T*T)z,z >= 0, Vx € X , because TT* — T*T is self-adjoint
(Corollary 5.2.2). By 2), we have
<(TT*-T°'T)z,z >=< TT*z,z > — < T*Tz,z >= ||Tz|* - |T*z|*> = 0,
Definition. A unitary operator is a map of X onto itself such that

<Uz,Uy>=<z,y>, VzyeX

Remark. Fach unitary operator U on X is linear and continuous, so U is
in B(X). First we check the linearity of U. Let t be arbitrary in X, since
U is onto, there ezists 2 € X such that U(z) =t. Then, everything is clear
from the next computation.

<U(ax + Py),t >=<U(az + fy),Uz >=< az + fy,z >=
=a<z,z>4+0<y,z>=a<Uz,Uz>+p < Uy, Uz >=
=< alz,t > + < fUy,t >=<aUz + BUy,t >, Vr,y€ X,a,f €K

Continuity of U obviously results from the definition if in the equality
<Uz,Uy >=<z,y>,Vzr,y € X, we set T =y. Moreover, Ul = 1.
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Proposition 5.3.3 Let U be in B(X). The following are equivalent:
(1) U is a unitary operator; .

(2) U is onto and ||Uz| = ||z|, Vz € X;

(8) UU* =UU = I

(4) U* is a unitary operator.

Proof. Clearly (1) = (2). It follows from the Polarization identities that
an isometric map preserves the inner product, because

3 3
4<Uz,Uy>=) *|UE+y)* =Y e +FylP =4 <z,y> -
k=0 k=0

(and similarly in the real case), so (2) = (1).
From (1) U is onto and injective, so 3U ! such that UU! =U"'U = I.
On the other hand

<Uz, Uy >=<z,y > = <z,UVy >=<z,y>, Vzye€lX,

therefore, U*U = I. As U is onto, it follows that U~! = U*, so (1) = (3).
The converse is clear, since (3) means in particular that U is onto and, in
addition .

< Uz, Uy >=<z,U'Uy >=< z,y >

Now, if U* is unitary, then, taking into account that (1) < (3),
U‘(U‘)‘ = (U.).U‘ p— ]’
i.e. U'U =UU* =1 ¢ U unitary.

Remark. Note that the product (composition) of unitary operators is again
unitary, so that the set U(X) of unitary operators on X is a group (a sub-
group of the general linear group GL(X) of invertible operators in B(X)).

5.3.2 Positive operators, the square root of a positive
operator

Definition. An operator A € A(X) is said to be positive (written A > 0) if
< Az,z >> 0, Vz € X.
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The set of all positive operators is denoted by A, (X).

Remarks. 1. If T' € B(X), then the operators TT* and T*T are clearly
positive.

2. For A, B in A;(X), their sum, A+ B is also in A, (X).

3. If Aec A (X) and t > 0, the operator tA € A,(X).

4. If both A and —A are in A;(X), then A = 0. Indeed, If A and —A
are in A,(X), then < Az,z >=0,Vz € X, s0 z = 0.

5. We will order A(X) by

Al < A2 e Ag — Al € .A+(X)

(A(X), <) is a partial ordered set. We note that, if A4;, A3 € A,(X), and
A, < A, then ||A,| < ||Az||. This follows from

A <A =< Az, ><< Awzyz >V € X <= |||Ail]]] < ||| A2]ll-

6. For each A € A(X) , the sesquilinear form corresponding to it
(Proposition 5.1.1) is positive self-adjoint, so we have the generalized Cauchyq
Schwarz inequality,

| < Az,y > | << Az, x >ic Ay, y >1 Vz,y € X.

(Let us make the convention to call this inequality the Cauchy-Schwarz in-
equality corresponding to the positive operator A).
We add that, if we set in the above inequality y = Az, it results

|Az|| < || A} < Az,z >3, Vze X.

Theorem 5.3.1 Let (A,), be a sequence in A(X) with the following pro+
perties:

1) An < Anyy, Vi

2) 3B € A(X) satisfying A, < B, Vn.

Then, there ezists A € A(X) such that for each z € X, A,(z) — A(zx), ag
n — 00, (the sequence (A,), converges pointwise to A).

Moreover, A =sup A,.
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Proof. @ We may evidently assume that (A,), C A4(X) (otherwise, we
replace in the next arguments A, by A, — A,). For arbitrary fixed z € X,
consider the real numerical sequence (< A,z,z >), and notice that it is
upper bounded (by < Bz,z >) and increasing. It results that this sequence is
convergent, fact which enables us to show that (A,z), is a Cauchy sequence in
X. Consequently, for m,n € N, m > n, using the Cauchy-Schwarz inequality
corresponding to the positive operator A,, — A,,, we derive

1Az — Azl =< (Am — An)3, (Au — An)z >?<

<< (Am — Ap)Z,2 > - < (Am — An)?z, (A — An)z ><
<< (Am = A0z, 2 > - A — An*- (A — Ad)o|®
It follows,
lAmz — Anz|® < 2|B|| < (Am — An)z,z >,
therefore (A,z), is a Cauchy sequence in the Hilbert space X. Then, there
exists A(z) = Jim A, (X); clearly, as the pointwise limit of a sequence of
self-adjoint operators is itself in A(X) and as

< Apz,xz ><< Apymz,z >, Vn,m

it results that A is an upper bound of (4,), in A(X). If C is an other upper
bound of this sequence, we have < A,z,z ><< Cz,z >, whence, as n — oo,
A < C; this means that A =sup A,.

Theorem 5.3.2 Let A, B be in A, (X) such that AB = BA. Then AB €
€ Ay (X).

Proof. Take A € A;(X), A # 0 (if A = 0 everything is clear). Let us
define inductively the sequence of operators (4,), by

1

Ay = —A,
LAl

An-ll:Aﬂ_Afn Vn22

The sequence of continuous operators (A, ), has the following properties:
1)0< A, <1, Vn;

9) A,B = BA,,Vn; .
3) Ajx =30, Az, Vz € X.
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Let us suppose that we have already proven that the sequence (A,),
enjoys the above properties. Then, Vz € X

[o'e)

< ABz,z >= || Al < 3 A(Ba),x > A < Y ABA.z,z >=
n=1

n=1

= || Al Z < BA,r. A,z >>0
n=]1 .

and the proposition is proven.

Now, we show that (A,), has the properties 1)-3). We prove 1) by induc-
tion (with respect to n). If n = 1. by the previous remarks 3), 0 < A;. Since
WAl = |l|4ll], < Az,z >< ||A|| < z,z >, Vz € X, thus A; < I. Further, we
suppose that 0 < A, < I, and we have to obtain 0 < A, ,; < I. This follows
from

I—A=1-A, +A =(1-A,)+ A2
and
Anr = Ay — A2 = Ay(I = A + (1 — A,) 42
taking into account that the sum of two positive operators is also a positive
operator and that the operators I — A,,, A%, A,(I — A,)?, (I— A,)A? are

positive. An easy computation shows that indeed, A,(I — A,)?%, (I — 4,)A?
are in A (X):

< An(I = Ap) %z, z >=< (I — Ay)An(l — Ap)z, 7 >=
=< Ap(I — An)z, (I — An)z >>0
and '
<(I=A)Az,z >=< A, (I — Ay)Apz, T >=< (I — Ay)Asz,Apz >>0)

The property 2) can be easy checked also by induction, using the assump-
tion AB = BA. For 3), we have, inductively,

A=A+ A=A+ AJ+ A} =Y Al + Anyy, VneN,
k=1

Then,
ZA:=A]‘“A'H,ISA1, Vn € N.
k=1
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Thus the sequence (3"p_; A?), is increasing and bounded, so by the Theorem
5.3.1, for each z € X, the series ¥";>, A}z converges in X.
On the other hand, from the above inequality, we also have for each z € X

n n n
Z | Az|? = E < Az, gz >= Y < Alz,z >=
k=1 k=1

k=1

n
=< Z Alz, z ><< Az,2 >,
k=1
80, it results that the numerical series 33, | Axz||? is convergent. Therefore,
for each z € X,

Jirg, Avz =0
But,
Az =Y Ajz+ Anpiz, VneN.
k=1
As n — o0, it follows that A;z = 32 | A2z, and 3) is proven.

Theorem 5.3.3 (Square root theorem) To each positive operator A €
€ A (X) there is a unigue positive operator B € A,(X), (called the square
root of A) satisfying B> = A. Moreover, B commutes with every bounded
operator commuting with A.

Proof. If A =0, we can evidently take B = 0. We assume further that
A # 0. Then, there is no loss of generality assuming that ||A|| = 1 (since,
otherwise, we may consider the operator (1/||A||)A and if its square root is
B', the one of A is obviously /||A|l - B).

We define inductively a sequence of operators by

Bl =0, Bn+l =B"+';-(A—B:), nZ 1

and we proceed by induction with respect to n in order to establish that
(Ba)n is & bounded increasing sequence of self-adjoint operators. Indeed,
clearly B, = 0 € A(X), and, assuming that B, € A(X), B, is also in
A(X) because it is sum of two self-adjoint operators. Now, we see that
B, < I, Vn. This results from '

1, 1 1 1
,I—B,.+,-I-B,.-§A+§B:-§(1-B..)’+§(1—A)
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since I — A > 0. Suppose that B, ; < B, (n > 2) and compare B, with
Bn+l-

Buyi— By = B, +2(A B2) - 13,.4—%(14—13;{,,,):
' 1
=Bn_Bn I—Q(Bl' Brf l):
1 i
= (Bu— Bo)3[(l = Ba) + (I = Bu1)) 20,
(we have used Theorem 5.3.2 since the operators

(Bp — By-1) and [({ — + ({ — Bn-1)]

evidently commute, so satisfy its hypothesis).
It follows, by Theorem 5.3.1, that there exists B € A (X) the pointwise
limit of the sequence (B,,),. For arbitrary fixed z € X we have

|Biz — B*|| < || Bn(Bnz) — B(Bz)|| =
= ||Ba(Bnz) — Ba(Bz) + Ba(Bz) — B(Bz)|| <
< ||Ball - [|Baz — Bz|| + || B.(Bz) — B(Bz)|| — 0

which shows that B2z — B2z, as n — oo. Then, passing to the limit with
respect to n in

Bn+l—‘B + 5 (A_ )

it follows that B? = A.

We prove further that the operator B constructed above is the unique with
the property B2 = A. If C is an other operator in A, (X) satisfying C* = A,
we claim that it commutes with B. This can be proven by induction, as it
results from the next computation (because AC = CA) :

. _
CBny1 =CB, + 5(CA - CB}) = B.C + (AC B3C) = B,y C

Now, in order to show that Cz = Bz, Vx € X, because of

|Cz — Bz||? =< (C — B)z,(C — B)x >=< z,(C — B)*z >
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it is enough to establish that (C' — B)(C — B)z = 0. Taking into account that
C and B are in A, (X) and commute each other, and denoting (C — B)z by
y, we have

0<<Cy,y>+<By,y>=<(B+Cy,y>=

=< (B+C)(B-C)z,(B-C)z >=< (B* - C*z,2>=0

Therefore < Cy,y >= 0 and < By,y >= 0. But, by the Cauchy-Schwarz
inequality corresponding to the positive operator C, and similarly to B, it
results

ICy|I? =< Cy,Cy ><< Cy,y >< C?%y,Cy >i=0,

that implies Cy = By = 0, and, finally (C — B)y = 0 (the desired equality).
In order to end the proof, we have to notice that if T' is a bounded

operator which commutes with A, then, clearly, by the defining relation of

the sequence (By)y, it follows that T'B,, = B,,T, so for n — oo, TB = BT.

5.3.3 Projections, partial isometries. The polar
decomposition of a bounded opcrator

Definition. A bounded operator P on X is said to be a projection if P? = P.
An orthogonal projection is a projection satisfying P* = P. -
Convention. Since orthogonal projections arise more frequently than non-
orthogonal ones, we normally use the word projection to mean orthogonal
projection. So, further, P € B(X) is a projection if P2 = P and P* = P.

Remark. Each projection is a positive operator. This results from
< Pz,x >=< P?1,x >=< Pz, Pz >= | Pz|?® Vz € X

Notation. Let Y be a closed subspace of X. By the projection theorem,
each £ € X can be uniquely written z = z; + x,, with z; € Y and 2, € YL.
Let Py be the operator on X defined by Py (z) = ;.

The next theorem sets up a one to one correspondence between projec-
tions and closed subspaces.

Theorem 5.3.4 For any closed subspace Y of X, the operator Py is a pro-
jection. Conversely, for each projection P there is a closed subspace Y of X
such that Py = P.
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Proof.  We see first that Py € B(X). Let z,y be in X, so £ = x; + 9,
y=wy+ywithz, y €Y, 13, 3 € Y and o, B € K. Since Y and Y+ ar
subspaces, azx, + fy; € Y and az; + By, € Y. Then,

Py (az + By) = az, + Py = aFy (z) + Py (y)
which means that Py is linear. The continuity results from
1B @)1* = llzall® < llall® + ll2all® = |l=)?
In addition we have

P} (z) = By (Pr(z)) = P (z1) = 21 = Py (x)
and
< B (2),y >=<z1,0 + 42 >=
=< Ly + Zg, Y > + < Ty,Y2 >=< 1z, Py (y) >

Therefore, Py is a projection.

Conversely, for P € A(X), satisfying P? = P, let us denote by Y the
subspace P(X). Notice that Y is closed. Indeed, let y € Y be, thus there
exists (zn)n C X such that Pz, — y. Then,

y =lim Pz, =lim P(Ps,) = P(lim Pxz,) = P(y),

so, clearly, y € Y. We conclude that Y =Y .
Further, we show that P = B . For an arbitrary z in X, z = z; + z,,
z, € P(X), (z; = Pz, z € X), 73 € P(X)! = Ker P we have

P(z) = P(Pz+z;) = Pz + Pzg = Pz =z, = Bz

Remark. For each closed subspace Y, the operator Py defined above i
called the projection onto the subspace Y, so any projection is the pmjectio'zl
ontn its own image.

Definition. An operator V € B(X) is said to be a partial isometry if
IVall = llzll, Yz € (Ker V)*

(Ker V))! is called the initial subspace of V and V(X), the final subspace of
V.
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A partial isometry whose initial subspace coincides to X is an isometry of

X.

Remark. If V is a partial isometry, the operator V : (Ker V) — V(X)
is an unitary operator.

Examples. 1. Clearly, each projection is a partial isometry. More generally,
if V € B(X) such that V*V = P for some projection P, then we see from
the relation |Vz|? =< P(z),z >= ||z||?, that V is isometric onto P(X) and
0 on P(X)*, so V is a partial isometry with the initial subspace P(X)! and
final subspace P(X).

2. If X is a separable Hilbert space with orthonormal basis {e, | n € N},
the unilateral shift operator,

S(Z {ne") = Z Eneni 1
n=1 n=1

is an isometry of X onto the subspace (Sp €;)', and its kernel is Sp e;. Con-
sequently, S is a partial isometry. We see from this example that, contrary to
the case of finite-dimensional Hilbert spaces, in infinite-dimensional Hilbert
spaces one may have isometries that are not unitaries (because they are not
surjective).

Next theorem will make clear the relationship between projections and
partial isometries. Moreover, it shows that the set of partial isometries on
a Hilbert space has a particular algebraic structure under the multiplication
(composition) of operators.

Theorem 5.3.5 For V € B(X), the following are equivalent:
(1) V is a partial isometry;

(2) V*V is a projection;

(8) VV* is a projection;

(4)VVV =V,

(5) V*VV* =V*,

(6) V* is a partial isometry.

Proof. If V is a partial isometry, then we show that V*V is the projection
onto the subspace (Ker V)!. First, if z is arbitrary in X, ¢ = z; + z,,
where z;, € Ker V and z, € (Ker V)*, s0 (V*V)z = (V*'V)(z; + ) =
= (V*V)zy. We have only to see that the restriction of V*V to (Ker V)*
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is the identity opeiator un (Ker V)', or equivalently, since V*V — [ is self-
adjoint, < (V*V  l)u,z >= 0, Ve € (Ker V)' which is clear since V
is a partial 1sumetiy. Conversely, if V*V is a projection, then V*V is the
projection onto the subspace V*V (X ). By

V*V(X) = V*V(X) = (Ker V'V)! = (Ker V)!
it results that for each x € (Ker V)!,
V| =< Vz,Vz >=< 2, V'V >=< z,1 >,

so. indeed V' is a partial isometry. We have seen that (1) < (2).
Suppuse now that V*V is a projection, and prove that VV* is also a
projection. This means, since VV* is clearly self-adjoint tu verify that

(VV* )2 =VV* ie
V(V'V - 1)V'2 =0, VzelX,

or, equivalently, (V*V —[)V*z € Kei V,Vz e X. AsKer V = Ket VV* to
check the above inequality means to check

VV(V'V - 1)V*'2 =0, VeelX,
or, equivalently

VVVevVVre = VV* Ve, Ve X
This is true, since V*V is a projection; thus, (2) = (3). Similarly, (3) = (2).

Now, we prove that (2) = (4). For arbitrary z in X, z == x, + 1y, where
z) € Ker V = Ker V*V and r; € (Ker V) = V*V(X),

VV*Ve=VV*Vz, =Vzy, =Va
Conversely, we have
(V*V)2 = (V*V)(V'V) =V (VVV) = VV*,

therefore VV'* is a projection.

Similarly, (3) ¢ (5). Intertwining the role of V' with V*, it is clear that
the statement (6) is equivalent to the others.

Next, we will prove the polar decomposition theorem which i1s an ana-
logues for operators on Hilbert spaces to the decomposition cf each complex
number z as z = |z| ¢* 28 7,
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Theorem 5.3.6 (Polar decomposition theorem) To each operator T in
B(X), there exist the operutors A, V in B(X) with the following properties:
1) T=VA4

2) Ae AL (X)

3) V is a partial isometry;

4) Ker A= Ker V;

5) A, V are unique satisfying 1) — 4).

Moreover, V(X) = T(X).

Proof. AsT*T € A,(X), one may consider its square root, A € A, (X).
Clearly, |Az|| = ||Tz||, Vz € X and Ker A = Ker 7. On the subspace of X,
A(X), we define the map V, : A(X) — T(X), by

Vo(Az) =Tz, z€ X,

(which is well defined because Ker A = Ker T'). Since V, is linear and bounded
we may extend it by continuity to A(X), so let us denote by V; this extension,
Wi A(X) — T(X). It results that for y € A(X), y =lim Az,

Vi(y) =lim Vo(Az,) =lim T'z,

Next, we define on X a linear operator, V such that

Vy:{Vx(y) if ye A(X)

0 if yeA(X) =Ker A

which is bounded since, for each z € X, z =y + 2z, y € A(X), z € A(X) =
= Ker A,

IVl = IV(y+ 2)ll = Vi)l < [IVall - llyll
In addition, V(X) = T(X).

We will show that Ker A = Ker V. By the definition of V, Ker A C Ker V.
For the converse inclusion, let z € Ker V,z =y+2z,y€ A(X),z€ A(X) =
= Ker A,soVy = 0.As Ar = Ay, we have only to see that, to eachy € A(X)
with Vy = 0 it results Ay = 0. Thus, consider y =li'r‘n Az,. We have

0= Vy = Vi(y) =lim Vo(Az,) =lim Tz,

therefore (1'z, ), converges to 0. On the other hand, ||Az,| = ||Tzal|l, which
combined with T'z,, — 0 and Ax,, — y, proves that y = 0, so Ay = 0.
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Finally, for y € A(X) = (Ker A)!, y =lim Az,
IVyll = Vigll =lim [[Vo(Azy)|| =lim ||z, || =lim || Az, ]| = [y
and
VAy =ViAy =V, Ay =Ty

We conclude that the operators A, V have the properties 1) —4). If B, W are
other two operators with the same properties, W*W is the projecticn onto

(Ker W)* = B(X) and also T'= W B. Then,

A2 =TT = (WB)"(WB) = B*(W'W)B = B*

By the uniqueness of the square root, it follows that A = B. Using further
that WA = V A, we have that the partial isometries W,V coincide on their

initial subspace, A(X), so, everywhere.

Remark. The preceding result (due to von Newmann), enables us to regard
the partial isometry V as a generalized "sign” of T' and A as the "absolute
value”, of T'.

The next corollary is immediate:

Corollary 5.3.1 If T is invertible in B(X), the partial isometry in its polar
decomposition is unitary.

5.4 Matrix representations of bounded oper-
ators ~

Next, it is shown how to associate a matrix with a given bounded operator
T € B(X) on a separable Hilbert space X. Let {¢, | n € N}be an orthonormal
basis; then, for z € X, z = Y3°, < z,e,5e,. From the linearity and
continuity of 7', we have

Tz = Z < T e, > Ten
n=1
On the other hand, the development in Fourier series of each T'e,, (n € N) is

00
Te, = Z < Te,,ex > €
k=1
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By the above two relations it follows that
[o ol o) [o <l o} .
Tz=73 ) <€ ><Ten e >e= Y > <zen><Ten,ex > e
n=1k=1 k=1n=1

Thus, we have

< Tey e, > <Teye > --- <ze > <Tzx,e; >
<Tejeg> <Teyepg> -+ |.| <zye5> | = | <Tz,e5>

This matrix equation leads to the following definition:

Definition. Let T be a bounded linear operator on a separable Hilbert space
X and {e, | n € N} be an orthonoimal basis of X. The matriz corresponding
to T and the orthonormal basis {e, | n € N} is defined by

aij =< Tej,e.- >, i,j€N.

Example. Let X = L§([—m,n]) and T € B(L%([~m,7])), defined by

(Tz)(t) = a(t)=(t),

with @ : [-m,m] — K, a bounded complex-valued Lebesgue measurable
function. The "doubly infinite” matrix (a;)5%- ., corresponding to T and
the orthonormal basis e, (t) = 712-;6‘"‘, n € Z, is obtained as follows. Let

a, = % /::a(t)e"‘"‘ dt.

Then,

1 ¢~ ari
ajx =< Aek,e,- >= — a(t)e‘(""’)‘ dt = a;_ g
21 J-n

Thus the matrix is
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which is called the Toeplitz matrix.

Definition. A bounded linear operator T' on a separable Hilbert space X
is said to be diagonalizable if there is an orthonormal basis {e, | n € N} for
X such that the matrix corresponding to 7" and the orthonormal basis {e,, |
n € N} is diagonal.

Remark. The previous definition may be generalized for operators defined
on arbitrary Hilbert spaces, as follows: a bounded linear operator T on X is
said to be diagonalizable if there is an orthonormal basis {z; | j € J} for X
and a set {); | 7 € J} in K (necessarily bounded) such that

Tr=) Aj<z,z;>z;, VzeX
J

5.5 Exercises

1. For arbitrary n € N, let T, defined on 1} by T, ((&k)x) = (Ent1,€ni2,.)-
a) Show that T, € B(l%),V n € N, and find T%;
b) Show that Jim Ta(z) =0, Vz € I, but there exists , € I} such that

the sequence (7 (z,)),, does not converge in .

(From b), it results that the mapping T' — 7" on B(X) endowed with
the pointwise convergence topology is not continue.)

2. In % the standard orthonormal basis is denoted by {e, | n € N}, Let
(An)n C K be an arbitrary numerical sequence.

a) Show that there exists uniquely T' € B(l%) such that

T‘(en) = A&y, Vn€EN

if and only if (A\,), € IY.
In addition T'((€x)) = (M )e, V(€x)x € li and | T]| =sup [An].
b) If (An)n € I, find T*.

c) Give necessary and sufficient conditions for the sequence (An)n € I
such that the operator 7' be self-adjoint, respectively normal, respectively
unitary, respectively projection.

d) Show that the operator 7" is compact if and only if the sequence (A;)n
converges to 0.

e) If T =T*, find my and M.

f) Show that 7" is compact if and only if A\, — 0, as n — oo.
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3. u) Show that the unilateral shift operator on l%, S((&)x) = (0,&, &, --.)
is in B(l%), find ||S||, and then S°.

b) Find the matrix corresponding to S and to the standard orthonormal
basis of I%;

c) Show that S is a partial isometry and find its initial, and respectively
final subspace.

4. Let A: L%([0,1]) — L%([0,1]) be the operator defined by

Az(t)=t-z(t), te]0,1]

a) Show that A is a positive operator;

b) Find m 4 , M4 and the norm of A.

¢) Find the square root of A.

d) Is A compact?

5. Let X be a complex Hilbert space and T € B(X). Show that T is
seif-adjoint if and only if < Tz,z >€ R, Vx € X.

6. Let P be a projection on the Hilbert space X. Then

a) 0 << Pz,z >< ||z|?, Vz € X;

b) If P #0, then ||P| = 1;

c)Ker P={ze€ X | < Pz,z >=0};

d) P(X) ={z € X |Pz = z}.

7. a) Find for an arbitrary projection P, mp and Mp.

b) Find for an arbitrary projection the square root and its polar decom-
position.

8. Write the polar decomposition for an arbitrary partial isometry.

9. Let Y, Z be two closed subspaces of the Hilbert space X and P, Q
the projections onto Y, respectively Z. Then P( is a projection if and only
if P() = QP. Under these conditions, PQ is the projection onto Y N Z.

10. Let Y, Z be two closed subspaces of the Hilbert space X and P, Q
the projections onto Y, respectively Z. Then, the following are equivalent:

(1) Y c Zz

(2) QP = P = PQ;

(3) 1Pl < 1P

4) P<Q.

11. Let Y be a closed subspace of the Hilbert space X, P the projections
onto Y, and T € B(X). Then,

a) T(Y)CY < PTP=TP,

b) T(Y)CY and T*(Y)CY <= PT =TP.
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12. Let A be in A(X) and define R = A + il. Show that:

a) R is normal,

b) |Rz||® = || Az||? + ||z||* and R is injective;

c) R is invertible in B(X);

d) The Cayley transform of A, U = R*R™! is unitary.

13. Let X be a separable Hilbert space. Show that 7" € B(X) is diag-
onalizable if and only if there is a unitary operator U from % onto X such
that the corresponding matrix to U/T'U ! and to standard orthonormal basis
of 1% is diagonal. .

13. For a bounded linear operator 7" on a Hilbert space X, the following
are equivalent:

1) 3a > 0 such that ||Tz|| > a|z||, Vz € X;

2) 3S € B(X) such that ST = 1.

14. a) Let A be a self-adjoint operator on a Hilbert space X such that
Jda > 0 with ||Az| > a||z||, Vz € X. Show that A is invertible in B(X).

b) Denote by X the linear space of all complex polynomials equipped
with the inner product < p,q¢ >= [; p(t)q(t)dt and consider the map 7' :
X — X, Tp(t) = (1 + t)p(t). Show that < T'p,q >=< p,Tq >, Vp,q € X,
ITpll > |lpll, Ve € X, T(X) is dense in X, but T(X) # X. Does this result
contradict a)?

15. Let X be a Hilbert space and T € B(X). The following are equivalent:

(1) T is compact;

(2) There exists a sequence of operators of finite rank (7},), € B(X) such
that (71},), converges in the operator norm to 7'

16. Let X be a separable Hilbert space. Show that T' € B(X) is diago-
nalizable if and only if there is a unitary operator U from I§ onto X such that
the corresponding matrix to UTU~! and the standard orthonormal basis of
I} is diagonal.
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Chapter 6

Elementary spectral theory

6.1 Invertible elements in Banach algebras

For each Banach (Hilbert) space X, the Banach space of all bounded linear
operators on X, (B(X), || - ||) is naturally endowed with a multiplication, the
composition of operators. Therefore, (B(X), -) is an algebra with a submulti-
plicative norm (||ST|| < ||S|| - IT|l, VS, T € B(X)), such that (B(X), |- |) is
a Banach space. It will be our pattern for an abstract topological-algebraic
structure, called Banach algebra. We will focus here on the properties con-
nected to the invertibility of elements, useful in particular in B(X).

Definition. A normed algebra over the field K is a normed space (A, || - ||)
over the field K, equipped with a multiplication, (S,T’) — ST, such that
i) (A,-) has an algebraic structure of algebra, i.e.

i1) M(ST) = (AS)T) = S(A\T), VS, T € A, V) € K;

i2) (S+T)V=SV+TV, VST,V € A,

13) S(T+V)=ST+SV,VS,T,Ve A
ii) The norm of A is submultiplicative, i.e. ||ST|| < ||S|- |T|l, VS, T € A.

Normed algebra A is said to be unital if there is I € A, (necessarily
unique) called the unity of A, such that IT =71 =T, VT € A and commu-
tative if ST =TS, VS, T € A.

A normed algebra is called a Banach algebra if the normed space (A, ||-||)
is Banach.

Remark. If A is a unital normed algebra, A # {0}, then we may suppose,
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without lose the generality that ||| = 1 (see Exercise 1).

Definition. In a unital normed algebra A, an element U is called invertible
if there are the elements S, T' € A such that US = TU = 1.

Notation. In the above definition, the elements ST are necessarily equal,
as it follows from

S =18 =(TU)S)=TWUS)=TI =T.

Then, we denote by U™! = § = T and we call it the inverse of the element
U. Note that the inverse is necessarily unique.

The set of all invertible elements in A, denoted here by G(A), endowed
with the inherited multiplication of A is evidently, a group (called when
A = B(X) the general linear group).

Further, in this section A will always be a unital Banach -algebra over the
field K, with unity I, ||I|| = 1.

Theorem 6.1.1 Suppose T € A and ||T|| < 1. Then, I — T € G(A), and

I-T)' =T T°=1

n=0

Moreover,

-1 1
I -T)"|| < ij

Proof. Let S, = Y p_oT*. Since the norm is submultiplicative we have
n n
ISall < Y_NTHI < Yo ITIF,
k=0 k=0

and, as ||| < 1, it follows that the series 3_,5,7™ converges. In addition,
(I-T)Sp=8S(I-T)=1-T"" —1

as n — 00, since |7} < ||T||**}, and ||T|| < 1. It results
I-TNT) = (T - T) =1
n=0 n=0
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which proves that I — 71" is invertible and (I — 7') ! = 322, T™. Finally,

= 1
I =T) < YT = 7
N

Corollary 6.1.1 1) Suppose T € A and ||[[-T| < 1. Then, T € G(A), and
i S
n=0
2) Let T, € A be invertible. Suppose T € A and |T —T,|| < 1/||T,*||. Then,
T € G(A),
Z[F -t

and

175 IPNT — Tol

(VA P
LT3 - T - Tl

Proof. 1) Everything is clear by the previous theorem, replacing T ~~
~ I =T,
2) Since
T=T,-(T,-T)=T,[I - T, (T, — T)]
and
1T, 1T, = T < I - (T =T < 1
with the Theorem 6.1.1 it follows that T is invertible and

V= [ TNT, - T) T = ZlT (T. - "L,
or equivalently,
T -~ Z[T (T, - T)|"T;*
Using the submultiplicity of the norm, we have

774 =T, < Ty IIZIIT (T, -T)I" <

|7 PIT — T
L= |75 - NIT = Tol

Corollary 6.1.2 The multiplicative group G(A) is an open subgroup of A
and the map T — T on G(.A) is a homeomorphism of G(A).

<N AT T = T =
n=1
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Proof. By the Corollary 6.1.1, 2), if 7, € G(A), the open ball

1
B(T,,——) C G(A),
o T SO
thus G(A) is open. In addition, as
m— - "T41”2”T — TO" 1 1
||I]—101§ — — VT € B(T,, ——
e A To iz )

it follows that the map T'—- T! on G(A) and its inverse are continuous.

Remark. The above results hold in the particular case of A = B(X). Tak-
ing into account that the invertibility of an element in the algebra B(X) is
equivalent to its bijectivity and that the convergence in B(X) implies the

pointwise convergence, we have to point out:
1) For each T' € B(X) with ||T|| < 1, the operator I — T is bijective and

(I-T)'y= Z'T"y, Vye X
n=0

(Theorem 6.1.1).
2) Let T, € B(X) be invertible. Suppose T' € B(X) and |
< 1/||T,Y||. Then T is invertible, and

T-T <

Ty = ST - TIPS, Yy e X
n=0

(Corollary 6.1.1).

Examples. 1. Infinite systems of linear equations.
We will relate the previous results to certain infinite systems of linear
equations

)
Za.,-:c,' = %Y, 1= 1,2,
j=1 ’

where 7 = (yx)x € Il% is given and = = (zx)s is the desired solution in
I§. Clearly, any equation T'z = 7, where T' € B(X) and X is a separable
Hilbert space, can be written as an infinite system of linear equations. Indeed,
let {e, | n € N} be an orthonormal basis for X. Then, with the matrix
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representation of the operator T', (section 5.4), the equation T’z == y becomes
the system

oo

Z < Tej,e; >< x,8; >=<7,¢; >, 1 =1,2,....

i=1
A natural approach to the problem of finding a solution to an infinite sys-
tem of linear equations is to approximate the solution by solutions to finite
sections of the system. The next proposition, which is rather easy to prove
(being an immediate consequence of Theorem 6.1.1), is nevertheless very

useful.

Proposition 6.1.1 Suppose (a;;)_, ts an infinite matriz satisfying

00
z |a,-,~|2 < 1.

t,7=1

Then, the system of equations
o o)

I — Za,‘}'.’ﬂj = Y 1= 1,2,
j=1

has a unique solution n = (n;) € I% for every (v )x € IE.
The truncated system of equations -
n
Ti— ) 6i;ZT; =7, i=12,...,n
i=1

has a unique solution (n{™, ... n{™) and (z,)n = (0™, ...,7$,0,0...))n con-
verges in lf ton asn — oo.

Proof. Define A on I by A(e); = (52, aija;);. We know that A € B(lg)
and [|A]|* < 35%%_, |ai;|* < 1. Hence we have that I — A is invertible (Theorem
6.1.1), which ensures for each v € IZ the existence and the uniqueness of the
solution in % of the discussed system.

To approximate this solution, we consider, for each n € N, the operator
A, on I} | defined by

Aﬂ(&i)l' = (Z aljéj) Z a2]'£j) seey Z aﬂj€j1 0) 0"") 0) "))
ji=1 i=1 i=1
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where (&)i € Ig. Then, ||A|> < 37, |a;;|* < 1 and
I(1 = A) = (I - A)|* = |A~ A, < Z Zlaul2 + Z zlaul2 —+0
t=n+1j=1 Jj=n+1li=

as n — oo. Hence, I — A, is invertible, and, by Corollary 6.1.1 we have also
(1 =4~ (- A4)" -0

Taking (1™, n{", ....) = (I — A,)™ 'y, it follows from the definition of A, that

(n%" ,--n{™) is the umque solutlon of the finite linear system x;—3"7_, a;;jz; =

=% 1=12,..,n and n] = 1;, for j > n. Hence,
(I - A) 'y =lim (I - A) "'y =lim (1", .10, Yos1, Yar2, )
Taking into account that

Jim 1@, 0, Yorr, g2, ) = @7, 8,0,0.) =lim 3 =0

i=n+1

(since v € I}), it follows that the solution, (I — A)~'y is the limit in {§ of
the sequence (zq)n = (1™, ..., 7™, 0,0...))n.

2) Integral equation of the second kind.

We consider the integral equation (of second kind),

z(t) — /ablc(t, 8)z(s)ds = g(t)

(here ” = " means equal almost everywhere), where g € L ([a,b]) is given,
k € L¥([a,b] x [a,b]) and z is the desired solution in L ([a,b]). Clearly one
may write the above equation as

(I~ K)x=g,
where K is the integral operator, defined on Lg([a,b]) by
b
(Ka)(®) = [ k(t,9)9(s)ds, g€ Li([ab])

It is known that K € B(L%([a,b])) and its norm is less than ||k|| in L§([a, b]x
x [a, b]). Suppose that k|| < 1.
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Proposition 6.1.2 Given k € Li([a,b] x [a,b]), with ||k|| < 1, the equation

z(t) — /ab k(t,s)z(s)ds = g(t), (a.e.)

has a unique solution f € L%([a,b]) for every g € L¥([a,b]).
Moreover, for each n € N, the operator K™ 1s still an integral operator,

b

(K"9)(t) = [ kalt, 9)g(s)ds, g € Li((a,b),

a

with k, € L} ([a,b] x [a,b]) and the solution of the equation is given by -

b
10 = g(8) + [ kit 5)g(s) ds,
where, k is the sum in L% ([a,b]) of the series 52, kn.

Proof. By Theorem 6.1.1, since ||K|| < 1, I — K is invertible, from which
it follows that the integral equation of the second kind has for each g €
€ L% ([a,b]) a unique solution in L%([a,b]), (I — K) 'g. In addition,

(I -K)'g= Z K"qg
n=0
By Fubini’s theorem,

' k(t,r)Kg(r)dr = /

a

(K*9)(0) = [

a

“k(t.7) ( / k(. 9)9(s) ds) dr =

= [ ot ([ mie i ) s = [, shato)

where ,
k,(t,s)=/ k(t, r)k(r, s) dr

Using the Cauchy-Schwaiz inequality, it results that
b ) b
i, < ([ kte e ([t a)
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therefore,

/ablkz(z,s)P ds < ([b |k(t,r)|2dr) (/a"/: Ik(r, 8)l2drds)

and

//|k2t3| dsdt<(/ |ktr|2drdt)(//|k |2drda)

thus ky € LE([a,b] x [a,b]) and ||k, < ||k]|%
Proceeding in this manner, an induction argument shows that

b
(K"9)(1) = [ kalt,s)g(s)ds, VneN
and ||kn|| < [|k[|", where
b
ki(t,s) = k(,8), and ku(t, ) =/ k(t,r)kn 1(r.8)dr, Vi€ N

is in L%([a,b] x [a,b]).

Since ||k|| < 1, the series 3, ||k||" converges, which, combined with
[lkx | < IIk||" ensures the convergence in L? ([a b x [a, b]) ofthe ser1es Y ,5 kn.

Let k € L([a,b] X [a, b]) be its sum, and K the integral operator with kernel
k. Then,

13" K79~ Kgll = (32 K7 — K)gll < | 3_K ~ kIl - llgll — 0,
=1 i=1 j=1
as n — co. It results that
(I-K)'g=3 K'g=(I+K)g,
n=0
which shows that the solution of the equation in discussion is given by

16) =90 + [ Rt s)g(s) ds
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We shall end with a concrete example. To solve the integral equation

2(0) =2 [ ¢n(e)ds = gl0), g€ Z(0,1)),

where, |A| < 1, let k;(t,8) = A €', A short computation shows that ||k || <
< 1. We have,

1
ka(t,s) = /\2/ e e dr = A%t
0

and, inductively, kq(t,8) = A"e*"°. Then, the solution of the equation is, by
the above proposition,

10 =00+ 33 [ etola)da=g(0) + 125 [ e (o) s

Even the series }_,5; A" converges only for [A| < 1, a straightforward com-
putation shows that for all A # 1,

g(t) + i—é—x /: e?g(s)ds

is still a solution of the discussed equation.

6.2 Spectrum, definition, elementary proper-
ties, spectral radius

6.2.1 Spectrum

At the beginning, let A be a unital Banach algebra over the field K, with
unity I (||| = 1).

Definition. For every T' € A, we define the spectrum of T, denoted by o(T),
as the set

o(T) = {r€ K | \ - T ¢ G(A)}

The complement of o(T) is the resolvent set of T, denoted by p(T'). The
mapping from p(T') to A, defined by

R(T;\) = (M -T)!
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is called the resolvent function of T'.

Remark. When the algebra A is real (K = R), it is possible to find 1" € A,
with o(T") = 0. For example, taking A = L(IR?), the element

o {0 =1
(1)

has its spectrum void. Later we will see that this does not happen if the
algebra is complex.

Proposition 6.2.1 For every1' € A, the resolvent set of T', p(T") is an open
subset of C.
Proof. Let A, € p(T) and X be arbitrary in K. Then,
A= Xo| = (M =T) = (A1 =T,
therefore, by Corollary 6.1.1, if
- 1 ——
[(Aatd —T) M7
Al — T is invertible, so A € p(T). It follows that

B(Ao, [|(Ad = T) M| Y) € p(T)

7

M =T) = (Ad = T)| <

Further, in this section, A is suppoused to be a compler unital Banach
algebra (K = C), A # {0}. In order to obtain the main result of this section,
which shows that o(1') # 0, V1' € A, we need some preliminary results.

Lemma 6.2.1 For every T € A, the resolvenl function of T' hus the follow-
g properties:

1) R(T;-) is continuous on p(T');

2) For A\, p € p(T),

R(T; ) — R(T;p) = (u— ) R(T; X)) R(T'; )

(the Hilbert equation);
3) R(T};) is an holomorphic function on p(1’)
4) Jim R(T:3) =0,
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Proof. 1) follows from the continuity of the map T' —— T~ ! (Corollary
6.1.2) which shows that R(T’;-) is continuous.

2) results from the next short computation, by multiplying at the right
by R(T;p) : :

I'=(ul-T) R(T;p) = (0= M+ M = T)] R(T; p) =
=(p—A) R(T;p) + (M = T) R(T; p)
3) Given A, € p(T'), by 1), 2), we have

. R(T;\) — R(T; \) L _ . _ \ 2
lim - = lim ~R(T; %) R(T; \.) = ~R(T; \,)

which shows that R(T;-) is holomorphic (it posses a derivative wherever it
is defined).

(4) Given A € p(T) such that |A\| > ||T||, by Theorem 6.1.1, since
IT / All <1, there exists (I — T'/A)™! and

(-3 -£6)

or, equivalently, (\] — T') € G(.A) and

(A =T)" f: (F)

Estimating the norm of (Al — T)™" it results that

- "
IR =IO =1) ) < 3 5
n= 0' I
— i . 1 = 1 — 0
NCT-E T =

as |A| — 00, s0 4) holds.
By the proof of the above proposition, it follows that

Corollary 6.2.1 1) o(T) c B(0, ||T||),
2) For every X € ||T||,
[e o} 7’n

(-1 =3

n=0 "

An+1
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Lemma 6.2.2 (TheLiouville’s theoremon Banach spaces) Let O(D, A)

the space of holomorphic functions from D = DC C to A. Then,
1) For every x € O(D, A) and f € A*, the function f oz is still in O(D, A).
2) Each bounded x € O(C, A) is constant.

Proof. 1) Given f € A*, x € O(D, A) and )\, € D, we have

(om)N - (om)A) _ 2(0) =200
L0 o) = [ (B2 -0 <
< |22 ),

(where z'(),) is the derivative of z at A,). Thus f oz € O(D, A) and

(f oz) (X) = f(2' (M)

2) Let z € O(C, A), ||lz(N)|| £ M, VX € C and f arbitrary in A*. Clearly,

by
I(f e )M S NFI =) < M £l

we have fox € O(C,C), therefore by the Liouville’s theorem (see Appendix
D), f oz must be constant,

(foz)(X) =(fozx)(0), VAeC
This enables us to conclude that for a given arbitrary A in C,
f(z(A) —z(0)) =0, Vfe A
Then, by Corollary 3.2.2, () — z(0) = 0, VA € C, so z is constant on C.

Theorem 6.2.1 For ecvery element T in a compler unital Banach algebra
A, the spectrum of T is a compact, nonempty subset of C.

Proof. By Proposition 6.2.1, p(T) is open and, by Corollary 6.2.1, o(T')
is contained in B(0, ||T’||). It follows that, the complement of p(T), o(T’) is
closed, and, as it is also bounded, it is compact.

Suppose that o(T") = @. Then, the resolvent function of T' is an analytic
function defined on the whole C and it is bounded since Mlli_r‘nw R(T; ) = 0.
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By the Lemma 6.2.2, we have that R(T;-) is constant, this means, because
its limit at oo is zero that R(T’; A\) = 0, VA € C. Hence,

I =R(T;))'R(T; \) =0,

contradiction (A # {0}).
As a nice consequence of the above theorem we have the next corollary,
known as Gelfand-Mazur theorem.

Corollary 6.2.2 If A is a division ring (i.e. G(A) = A\{0}), then, A is

isometrically isomorphic to C.

Proof.  For each T in A, the spectrum of T' is nonempty, thus 3\ € o(T),
such that Al — T' is not invertible. It follows that AI — T' = 0, therefore
T = Al In addition, |T| = M| = [Al

Proposition 6.2.2 Suppose 0 ¢ o(T) (T is invertible). Then
o(T™) = {5 | e a(T)}
Proof. Let A € o(T ') (necessarily A # 0). Then,
M-T1'¢G(A) < 1- %T“ g G(A) =
e T YT - %1) ¢G(A) T - %1 ¢ G(A),
thus 1/ < o(T).

6.2.2 The sg3ctral radius

The ne 't lemma will enable us to define the spectral radius.

Lemm 1 6.2.3 Suppose that A is a unital algebra equipped with a submulti-
plicatire norm. Then, for every T' € A, there ezists

lim |T"|% =inf |T"||*
n—oo n>1
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Proof. Let m > 1 be a fixed positive integer and n > 1, arbitrary in N.
Then, there exist the positive integers g(n), r(n) such that

n=mg(n)+r(r) and 0 <r(n) <m -1
It follows that .
r{n) =0and lim a(n) =—

n—voo n n— 00 T m

Taking into account that the norm is submultiplicative, we have
T R v e A

hence

lim sup ||| <lim sup s e Vi ey

rin

’ . or(n)
T T A

It results that i
limsup |[T™[|* <inf II7™||%
n m2>1

which combined with
inf |T™||= <liminf ||T"||=
n>1 < n

shows that there exists "lmgo ||T"||% and this limit is equal to u;f1 ||’]”'||i,
— n>

Definition. Suppose that A is a complex unital Banach algebra. For every
T € A, we define the spectral radius of T' (denoted ||T||,), by

. i
ITlle = lim 1T

Lemma 6.2.4 For each A such that |\j > ||T']|, the series

2 j\:T"

n>0

i3 convergent.
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Proof.  Using the Cauchy-Hadamard theorem (see Appendix D), we ob-
tain that the series 3, 5, ||T™|| t"converges for each t with

1
< =
limsup ||T"||~ Tl
n

Since for each A, with |A| > ||T'||,, we have

1 1
e, &L ,
AL~ 1Tl

0<

it follows that the series

Z T"II

n>0

converges. Thus, the series
Z 1
>0 A

is absolutely convergent, hence convergent.

Remark. Since for each A, with |A| > ||T||, the series ¥, 5¢(1/A")T™ is
convergent, it results that

lim iﬂT" =0

n—oo )

Next result shows that the spectral radius of T is the smallest positive
real r such that o(T") C B(0,r).

Theorem 6.2.2 Let T be in the complex unital Banach algebra A. Then,
1) Every X with |A| > ||T||, is in p(T) and

o0

R(T; \) =

2) The spectral radius of T is

ITlle = sup |Al
Aea(T)
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Proof. 1) By the previous lemma, if |A| > ||T’||,, the series
1, .

2wl

n>0

is convergent. Considering, for any positive integer n > 1,

L |

. k
=), I
k=0
we have "
T T \"
(1-3)s=s(1-3)=1-(5)
Hence,

(-3 (5w

It results that the element Al — T is invertible, therefore A € p(1") and

e~ B
my—-1 _
(A -T) _';))‘nﬂ
2) From 1), clearly, o(T) C B(0,||T|ls). We show that, for each r > 0,

IT|ls < sup |A| + 7. In order to do that, let us denote by &, = sup |\ + 7
Aeo(T) rea(T)
and, observe that & ¢ o(T). Then, &, € p(T') and there exists

R(T'; &) = (&1 - T)i]
On the other hand, for any |A| > ||T|,,

. o~ 1
RTiN =Y ol
n=0

By the uniqueness of the development in Laurent series (Appendix D), it
follows that

m — 1 mTn
R(T;¢&.) = Z =T
n=0 £r
thus
lim ||—7™| = 0.
n—00 b

Hence, one can conclude that ||'I’"||* < &, (for n sufficiently large), so |1, <
< &,, which ends the proof.
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6.2.3 More about the spectrum in involutive Banach
algebras

Suppose, as before, that A is a complex unital Banach algebra.

Definition. A map 7' +—— T* from A to A is called an involution if

i) (aT + BS)* =aTl* +BS*, VT,S€ A, a,p€C;

ii) (T'S)* = S*T*, VT,S € A,

iii) T** =T, VT € A. 5
The involutions that naturally occur in Banach algebras are isometric,

1Tl =T, vT'eA

Definition. A Banach algebra A endowed with an involution is called an
involutive Banach algebra.
If the involution is isometric and

ITT*|| = ||T||?, VT €A
the algebra is called a C*—algebra.

. ,;‘,,i‘}"n“,-. F3 “

Remarks. 1. In every unital involutive algebra, 1* = I.
2. If T € G(A), then, a short computation shows that T* € G(A) and °
(7)1 = (1Y) .
We note that the algebra of all bounded operators on a Hilbert space X, -
B(X) is a C*—algebra. Some of the particular terminology of this algebra is
inherited in general involutive Banach algebras.

Definition. Let A be a unital involutive Banach algebra. An element T € A :
is said to be normal if 17" = T*T. An element U € A is said to be unitary .
if UU* = U*U = I. An element A € A is called self-adjoint if A* = A. A
projection is a self-adjoint element P € A such that P? = P,

Theorem 6.2.3 Let A be a unital involutive algebra. Then, for every T €
€ A, B
a(I*)={N| Aea(T)}.

Proof. Taking into account the above second remark, we have
Aeo(T*) = M -T"€G(A) <
&= (M =T") =X -T € G(A) <= X € o(T)
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Theorem 6.2.4 Suppose thut A is a C*—algebra. Then,
1) For every U € A, U unitary, o(U) C{A € C | [N\ =1};
2) For every A € A, A self-adjoint, o(A) C R;

3)IfT € A T normal, |T|, =

Proof. 1) If U is unitary, then |U| = ||U*| = 1. It follows that o(U) C
C B(0,1), which 1mplles that any A € o(U) satisfies |A| < 1. On the other
hand, since U* = U !,

1 —
o(U*) = {5 | A e o)} € BO,1),
thus, any A € o(U) satisfies

1
<l<&=|M\2>21
Al

We conclude that o(U) C {A € C | |A| = 1}.
2) First, we note that, for each a € C,

o(T+al)=0(T) +

Then, if a + b € o(T) (a,b € R), for each r € R, the complex number
a+bi+riisino(T)+ri=0o(T +ril) C B(0,||T + ril||). We have,

la+bi+ri]? < |T +ril|>  |[(T + ril)(T +ril)*|| =
= |IT? = 71| < || +r2

Hence, 2br < ||T'||* - a2, Vr € R,and we infer b =
3) If T is normal, then IT|I? = |IT?||. Indeed,

N7 = WT2*)T*) | = WTT*)ET*) | = | TT°]* = |T|)*
By an induction argument we obtain that

1T || =

r

T||, Vne€N,

and because of,
e PP
as n — 00, everything is clear.
Taking into account that B(X) (where X is a Hilbert space) is a C*—
algebra, for bounded operators on Hilbert space all the above results are
valid, hence we have:
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Theorem 6.2.5 Let X be a Hilbert space. Then,

1)VT € B(X), a(T) # 0; o(T) is compact and contained in B(0,||T|,);
2)VT € B(X), p(T) is open, )
5110 ¢ o(1), ol ') = {1/X] A€ o(1));

4)a(T*) ={A | xea(T)}

5) For every U unitary, o(U) C{A€C | |\ =1}

6) For every A self-adjoint, o(T) C R;

7) For every T normal, ||T|, = ||T|-

6.3 The spectrum of compact self-adjoint
operators

In this section X is a Hilbert space over the field K = R, C.

Definition. For each T' € B(X), the point spectrum of ', denoted by a,(T'),
is the set
0p(T) = {AN € K| Al — T is not injective}

Remarks. 1. Clearly 0,(T) is contained in o(T').
2. A number A € 0,(T'), if and only if there exists z # 0 such that (A — T)z‘ =
= 0, or equivalently, the subspace Ker (Al — T') # {0}.

Definition. A number A in 0,(T) is called an eigenvalue of T" and the
elements which are not zero of Ker (Al — T') are called the eigenvectors
corresponding to A.

Remark. If X = K", then, since on finite dimensional spaces a linear
operator is injective if and only if it is bijective, it follows that, for each
linear operator T, 0,(1") = o(7’). In addition, A € o(T'), if and only if

det (Al -T)=0
50, A is a root of this algebraic equation.
Lemma 6.3.1 Let (\,), be a sequence of eigenvalues such that Ap, # Am,

Vm # n and z,, € Ker(A,I —T), Vn. Then, the set (z,)n 18 linearly indepen-
dent.
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Proof. We will proceed by induction. For n = 1, since each nonzero
element form itself a linearly independent set, the statement is true. Suppose,
that all hold for a positive integer n, and let A, ;; be an eigenvalue, \,,, #
# Am, Ym = 1,2,..n, 2,4, € Ker(Agy1f — T'). If the set {zx}1ckenyy is
linearly dependent, then there exist «, ay, ...a,, (not all zero) such that

n
Tni1 = ) kT,
k=1

thus, T'(za41) = b axT'(zx), 1.
Ant1Znt1 = Z Qg Ak Tk.

Combining the above relations, it follows that

Y k(A1 — A)zk =0

k=1

in which not all the coefficients are zero that means the set {xx}1cx<n is
linearly dependent (contradiction).

Remark. Given a sequence of eigenvalues (\,), such that A, # Ay, Ym # n
and z,, € Ker(A\,I — T'), Vn, let X,, be the space spanned by{zs}1<k<n, Vn.
Then, with the previous lemma, obviously, X, is strictly contained in X, Vn.

Further T' always will be a self-adjoint operator, T = T™.
Proposition 6.3.1 The point spectrum o,(1') of a self-adjoint operator T' is

contained in the interval [my, Mr), and, for every A, p € 0,(T), A # p, the
subspaces Ker (M — T') and Ker (ud — T') are orthogonal each other.

Proof. For an arbitraiy A € o,(7T),
ALz, >=<Tzx,x >

for some z # 0. Then,
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Now, for z € Ker (Al — T') and y € Ker (u — T') we have
ALz y>=< A,y >=<Tzx,y >=
=<z, Ty >=<z,py >=p < x,y >,

which, since A # p, gives < z,y >= 0, therefore Ker (A\] —T') L Ker (ul —T).

Proposition 6.3.2 Let T be a self-adjoint operator on the Hilbert space X .
Then, X € 0p(T) if and only if (A —T)(X) # X.

Proof.  Given X in 0,(T"), Ker (A — T) # {0},which is equivalent to
Ker(Ml - T)* # X
It follows, since
Ker(M — T)* = (M - T)*(X)

and M — T is self-adjoint that (A — T')(X) # X.
Conversely, if (Al — T)(X) # X, then, there exists x, # 0, z, belonging
to

(M —T)(X)" = Ker(M — T)* = Ket(A\I — T)
It follows that Az, = T'z,, thus A € 0,(T) C R. Then A = X € 0,(T).
Remark. For every T' € B(X) one defines the residual spectrum of T by
0,(T) ={A € K| A — T is injective and (Al — T)(X) # X}

The previous proposition shows that if 7' is a self-adjoint operator, its residual
spectrum is empty.

Proposition 6.3.3 Let T be a self-adjoint operator on the Hilbert space X .
Then, A € p(T) if and only if there ezists p > 0 such that

I(M = T)al| > plzll, vz e X.
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Proof. Suppose that A € p(T), i.e. there exists (Al —T) ' € B(X). Since
M —T € B(X), 3M > 0 such that

(M = T)z|| < Mjz||, Vze X,
in which, setting £ = (Al — T') "'y, one obtains
pllzl < (AL =T)z||, Vze X,

(where p = 1/M).
Conversely, if there exists u > 0 such that

I(AMf = T)z|| 2 plizll, Vze X,

M — T isinjective. Then A ¢ 0,(T'), and, by Proposition 6.3.2, (Al — T)(X) =
= X. It follows that for every y € X, there exists (z,), C X such that

Yn =/\$n—Tzn — Y,
as n — 00. By i
1
lzn — zm|l < Z"yn - Yml,

it results that (z,), is a Cauchy sequence, which means, since X is complete,
that dz =li'{n z,. Consequently, y = Az — T'z. We have proven that Al — T
is surjective, and, as it is also injective, all is done.

As an immediate consequence of this theorem, we have:

Corollary 6.3.1 Let T be a self-adjoint operator on the Hilbert space-X.
Then, A € o(T) if and only if there exists a sequence (T,)n, with ||z,] = 1
such that \z,, — Tz, — 0, as n — oo.

Proposition 6.3.4 For every self-adjoint operator T', the spectrum of I is
contained in [mr, Mr) and mr, Mr € o(T).

Proof. Suppose that A < mr, so mpr — A > 0. Then, since for arbitrary
z € X,

< (T - M)z, z >=< Tz, x> -\ <z, >> (my — N)|z*
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it results that 7'— Al € A, (X). Thus, by the Cauchy-Schwarz inequality, we
have

T = M)zl - ||zl 2< (T = M)z, 2 >2> (mr - N)||z||?, Vz € X,
and using Proposition 6.3.3, it follows that A € p(T').
Similarly, if A > My, the operator Al — T is positive, because of
<M =Tz, x>=A<z,z>—<Tzx,z>>(A— Mp)|z|?
and by the same argument as ab(;ve, one obtains
A = T)z| - ||lz|| =< (M = T)z,z >> (A - My)|z||?, Vze€ X,

therefore A € p(T').
We have seen that o(T") C [my, Mr]. Further, we prove that mr € o(T).

Since my =:|ix”1f < Ta,z >, there exists a sequence (Z,),, with ||z,|| = 1
lz||=1
such that

<Tz,, x, >— mr,

as n — oo. If we check that (mgpl — T')z, — 0, by the Corollary 6.3.1, it
follows myp € o(7'). In the next computation one uses the Cauchy-Schwarz
inequality corresponding to the positive operator 1" — mpl. Thus, we have,

“(T - ""L‘I’I)wn”“ =< (T - 7"”1’])xfn (T - "lTI)xn >2S
<< (T —= mpD)zy, 0 > - < (T — megl)*z,, (T — mrl)z, ><
T —wnpl|| - (T - mypl)z,||?

which, combined with < (T — my!)z,, z, >— 0, shows that

<< ('1‘ - ”L'I'I)J:vnl'n >

(mel'-T)zy, — 0

Similarly, My € o(T).

6.4 Spectral properties of compact
self-adjoint operators

[n order to obtain the description of the spectrum of a compact self-adjoint

operator on a Hilbert space, we give first a result concerning the spectrum

of compact operators. We have to notice that the next proposition remains
valid if X is only a Banach space.
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Proposition 6.4.1 Let T' be a compact operator on the Hilbert space X .
Then, the point spectrum of T', a,(T') is an (at most) countable set with zero
as the only possible accumulation point.

Proof.  Suppose that there exists A\, # 0 an accumulation point of the
point spectrum of T". Then, there exists (A,)n C 0,(7), An # A, An —- Ao
Let (zn)n be a sequence of corresponding eigenvectors,

z, € Ker(Apl = T), Vn

and X, the linear subspace of X spanned by {z),%,,...,z,}. Clearly, X, is
closed (it is finite dimensional) and X,,_; is strictly contained in X,. For
every n > 2, since X,-; C X,, by the Projection theorem, there exists
z2 € Xo N X, |, ||lz2]| = 1. Then, for z € X,,_;,

|22 — z||? =< Ty — T,Tp — T >=
= |lz2|I?- < 2%,z > — < z,2° > +||z||® =
= llznll* + llzll* = llan)l* = 1,
therefore ||z — z|| > 1, Vz € X,,_1.
Now, we consider the sequence ((1/An)z2)n, which, as Ay — A, # 0, is
bounded and we show that the sequence

(),

has no convergent subsequences. Indeed, for every n, z € X,, thus,
n
o
x, = Zakxk, (Ok € K),
k=1

which implies that
n-1

o
AnTpn = Ty, — Z QxTy,
k=1

and applying T, .
T.'D'a‘ = Zak/\kmk.
k=1
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It follows that

1 ) n-1 /\k
X—T;l?n = Z ak/\—mk + Qnly.
n k= n

=]
Then, for an arbitrary © € X,, ;, we obtain
n-1

'8 Al o A
(*) || Txg —:E“—”Zak——xk+an$n z|| =
N L

n-1

n-1
2 A

= || 2—‘ ak:\imk +z, — E oz — || =
k=1 n k=1

n-1
Ak
= l"E'l - Zak(l - _)mk + 113)" 2 1
k=1 An
since
Z ak zk +Te Xn 1
Taking into account that
/\ ITI‘Z_I EX,Fl,
"

and inserting it in the above formula (), it results that

1

|- Tl — ——Tag | 2 1,

D
and as, for m < n -1, X,, C X,,_,, it follows

1 1
—Tzi — —Tzg || 2 1
I Tes - 5Tl 2 1,

which shows that (7'(1/A,.)z3), has no a convergent subsequence (contradic-
tion, because of 1" is compact).

Thus, we have proven that, if there exists an accumulation point of the
point spectrum, it has to be only zero. Further, we notice that

op(T) C o(T) C B(0,||T||) =

o0

U {reK| ———IITll <A< —IITII}U{O},

n=1
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thus,
el - s ol 1 g - 1
op(T) € Ureay(T) | —ITI <IN <,

n=1

T’

71 Uto)
Each set i )
A r < - = g
(A€ () | —=ITI <IN < 7,

(n € N), can be only finite (otherwise, since it is infinite and bounded, it
follows that it has an accumulation point which, necessarily is not zero; one
contradicts what we have proven). We conclude, that o,(1') is (at most)
countable, as a subset of an (at mest) countable set.

Proposition 6.4.2 Let T' be a compact self-adjoint operator. Then, each

A€ a(T), XN #0 s in o,(T), thus
o,(T) C o(T) C 0,(T') U {0}.

Proof. Given A € o(T), A\ # 0 there exists a sequence (&), ||z,]| =1
such that Az, — T'z, — 0. Since T" is compact, there exists a subsequence
(1) of (Zn)n such that (T'z,), is convergent. Then,

1 m l sl

T, = X(’\xn' - IIn') ¥ XI‘TH'

converges. Let = be its limit. As ||z,/|| = 1, clearly,  # 0, and since

Az, — Tz, — 0,
it follows that Az = T'z, therefore A € a,(1').
Remark. If X has infinite dimension and T' is compact, then 0 < o(T').
By the previous proposition it follows that o(1') = 0,(7") U {0}.

Corollary 6.4.1 For every compact self-adjoint operator T # 0, the point
spectrum a,(T) is nonempty. Moreover, there exists A € a,(1'), X # 0.

Proof. Since T # 0, ||T|| = max(|my|,|Mz|) # 0, therefore at least one
of mp, Mr is not. zero. By Proposition 6.3.4, my, My € o(1'), thus by the
Proposition 6.4.2, there exists A € g,(T), A # 0.

Proposition 6.4.3 IfT' is compact, for every A # 0, A € 0,(1"), the subspace
Ker (M —T) has finite dimension.
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Proof. Suppose A # 0, thus
Ker(A —T) = Ker (I - %T)

Let us denote by T) = (1/A)T and by N, the closed subspace Ker (I — T}).
Clearly, T} is compact and Ti(N;) C N;. If B, is the unit ball of N,
Ty(B,) = B;. Since B; is bounded in X, and T} is compact, Tj(B,) is
relative compact in X, so B, is compact in N;. By Corollary 2.3.3, as the
closed unit ball of V) is compact, it results that /N; is finite dimensional.

Definition. For each A € 0,(T'), the dimension of the corresponding sub-
space of eigenvectors, Ker (Al —T') is called the multiplicity of the eigenvalue
A

We will state now one of the main theorems of this section, which gives a
complete description of the spectrum of a compact self-adjoint operator on
a Hilbert space.

Theorem 6.4.1 (The Riesz-Schauder theorem) Let T be a compact self-
adjoint operutor on the Hilbert space X . Then, the spectrum of T, o(T) is a
countable set having no accumulalion points ezcept perhaps A = 0. Further,
any nonzero A € o(T') is an eigenvalue of finite multiplicity.

Proof.  All follows combining the results of Propositions 6.4.1, 6.4.2 and
6.4.3.

The next theorem is known as the Fredholm alternatsve.

Theorem 6.4.2 Let T' be a compact self-adjoint operator on the Hilbert
space X and A € K \ {0}. Then

1) If X ¢ 0,(T), the equation (A — T)z = z has a unique solution, for any
zeX. )

2) If X € 0,(T), the equation (M — T)x = z has solutions if and only if
z € (Ker(AT = T))*.

Proof. 1) Suppose A # 0, A ¢ 0,(T). Then, by Proposition 6.4.2, A\ ¢
¢ o(T), thus, A\I — T is surjective and injective, therefore for every z € X,
there exists a unique z € X sucl. that (Al — T)z = 2.

161

https://biblioteca-digitala.ro / https://unibuc.ro



2y Let Ao o (1) Cleally, Tiker (A —=T)) C Kei 1\ — 1) and inc
1= self adjsint, [ (kei (AL =T C Ker (M T)* let us consi!
testniction of 1 1o the subspace Keo (M —T)4,

T, Kei (A T) — Ker (M —T)

I Aeo(l) iz, #0, 1, € Ket (M = T)* such that Tz, = % thos
t € Ker (A 1) {contiadiction). Hence A @€ (7,) -1 equivalentiv 2/ — 1/
i nvertibie on ke (A T)'  which prove: that for <ot - € (Kei (AT T
theie exi-to o ¢ (Ko (\[ ["))l such that (AL 1)

Conversel if the cquation (M = T)+ = z has a solution ¢ X then we
can wiitex ; t+ £, withxz; € Ker (A1 =T), z,+ Ker (! []' S

(/\1 ’11)(1] i ,1'2) = (AI —T}(l'-/) € Kt ()\1 — ) .

Votutio Next I is w compact self-adjoint operator on the Hill,e it +pace
X Theio by the Rivsz Schauder theorem, the st (/)\{0} i o« non  mpty
countald. et. Thereire, we may consider this set as a »ejueni« (A, ), We
suppeo thut in this sequence cvery eigenvalue repeats itself as 111+ times as
it- muli;; licity (the dimension of the corresponding subspace f eigeiivectors)
is. In every subspace of eigenvectors we choose an orthonormal basis. Since
for Ay / A Ker (A1 T)LKer (M —T'), it follows that, considering
the set ¢f all orthoioimul 1 ases of the spaces of correspondu ¢ cigeiivectors
to the sequ nce | ‘igenvalues (A, ), we obtain an ortho il sequence of
eigenverturs, (Tnlp in € ke (\gI — T), Vi

With these n: tation- we have (lie next theoiem concerning the speciial
representation of . ompa | self adjoint ope . «tors

‘I'heoreimn 6.4.3 (The Halbert-Schmiit theorem) Fui each r € X,

[o o)
Tz Z A\, <Z X,  Tn
no1

Proof.  Let us denote by Y the linear space spanned by (z, ), We prove
that
Ker T=Y*

The inclusion Ker 1" C Y* is clear whenever 7' is injective; if it is not,
0 € 0,4(T), and, since A, # 0, Vn, it results that

Ker T'L Ker (A, —T), Vn,
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thus, Vz € Ker T is orthogonal to Y, s0 z € Y.

For the converse, we note first that, because (z,), are all eigenvectors,
T(Y) C Y, thus, T being self-adjoint, (Y1) C Y. Consider the restriction
of T to YL, Ty : Y* — Y! and suppose that T} # 0. T} is a compact self-
adjoint operator on the Hilbert space Y+, therefore, by Corollary 6.4.1, it has
an eigenvalue A # 0. It follows that there exists x5 € Y1, x)\ # 0 such that
Tz, = Azy. Then, 5 € Y NY*, therefore Y NY* # {0} (contradiction).
Consequently, T} = 0, that means, the restriction of T' to Y ' is zero, or
equivalently, Y* C Ker 7.

Hence, every z € X can be written (uniquely) as z = z, + y, where
2, € Ker T =Y' and y € Y. In addition, since (z,)n is an orthonormal
set in Y such that the closure of the linear space spanned by (z,), coincides
to Y, it follows that (z,), is an orthonormal basis for the Hilbert space Y,
therefore - -

Y=Y <YTn>Tn=) <I,Tp>Tn
n=1 n=1

Then,
Tr=T(z,+ ) <Z,Zp>z,) =

n=1

[e o] [s o]
=Ta:o+z<x,x,,>T:r,.=E/\,,<m,a:,.>m,.

n=1 n=1

Remark. The numerical sequence (A,), converges to zero. Indeed, other-
wise, there exists a subsequence A, — A, # 0. Since (z,'), is bounded,
there exists a subsequence (z,~),» such that T'(z,”) = A »x,» converges. It
results finally that (z,~),~ is convergent (contradiction, since ||z, — Zm| =

- V3).

Remark. The previous theorem states that each compact self-adjoint oper-
ator on a Hilbert space is diagonalizable (see section 5.4). In the particular
case of finite dimensional spaces, it results that every hermitian matrix is
diagonalizable.

6.5 Exercises

1. Let A be a unital normed algebra and [ its unity. Show that:
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a) 1] > 1;

L) There exists a norm || - ||' on A such tha || || ~| ||, ~ ! and
(A, 1118 aunital normed algﬁhrh

2. Let A be a normed algelms. (ovei the fietd K) Show thet A4 x & oo
be organized as a unital normed algﬂhrh such that the map T — (71.0) 1
an algebra homeomorphism from A to 4 ~ K

3. Let A be a normed algebra arici ( 4., ),, (B,), Cauchy sequences. Show
that (A, B,), is a Cauchy sequence.

4. Let T be & locally compart space and Ca. {z: T - K|
continuous, and Ve > 0, 3Q(¢) compsrt such that |T t)| <& Vt g Q!
with the usual norm, ||r|| = sup {(z(t)| | t € T'}. Define the multiplication
by (zy)(t) = z(t)y(t) and an involution by z — z*, 7°(t) = z(t). Show that
Cw(T) is a commutative non-unital Banach C* -algebra.

5. Define on L{(R) a multiplication by

(@2 9)(t) = [ alt = a)y(s) ds

Prove that (I.:(R),*) 18 a commutative non unital Banach algebra.
6. Let A be a unital normed algebra.
a) Show that for every S, T € A,

a(STYU {0} =~ (TS 11{0}

b) Consider in the algebra B(I§), 7(£,)n = (€n)n 9. Shov that (77" =
# o(T*T) (therefore, yenerally o(ST  # U(Tq))

7. Let A be a umitoal normed algelraand P€ , , Pe€ {01 P = ~
Show that o(F’) = {0,1}.

8. Let A be a unital Banach alget.ra Show that, for everv 7 € A

[I7)i- = int {t >0 | ((i:-) )n is a bounded sequencv:

9. Let 7' € B(I%) be the operator defined by T'(&n)n = (&njns

a) Find o(T), 0p(T). o(T*), 0,(1"*).

b) Is the operator T™* compact?

10. Define on the space L [—1,1], the operator £ — T'z, where

Tz(t) =tz(t), Vie[-1,1]
a) Show that 7' € A(L%[-1,1]) and find my, My, ||T];
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b) Find o(A), o,(A);

c) Show that T'(L%[—1,1]) is not a closed subspace of L[-1,1];
d) Prove that T is not compact.

11. Define on the space %, the operator T', by

2 3 +1
T(€n)n>1 = (1621 '2‘63, sy QT:—&.H, ves)

a) Show that T" € B(l%) and find ||T|;

b) Show that 0,(7') = {A € K| |A\| < 1};

¢) Find |7}l

d) Find o(T');

e) Is the operator 7' normal?

f) Is the operator T compact?

12. Let X be & separable infinite Hilbert space and {e, | n € N} an
orthonormal basis. For a bounded numerical sequence (A,), let T' be the
bounded linear operator defined by T'e, = Anen,Vn . Show that o,(T) =
= {An | n € N} and o(T) = {A, | m € N}.

13. Let U be the integral operator on L%[0,1] defined by

Uxz(s) = /01 stz(t)ds

Find o(U), 0,(U).
14. Let T be the operator on Cx([0,1]), defined by

Tz(s) = /o' z(t)dt

a) Show that T € B(Ck[0,1]) and find ||T’||;

b) Find |T]l,;

c) Find 0,(T), o(T).

15. Let X be a separable infinite Hilbert space and D C X a bounded
open set. Show that there exists T' € B{(X) such that o,(T) = D and
o(T) =D.
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Chapter 7

Locally convex spaces

7.1 Topological vector spaces

Definition. A vector space X over the field K, (K = R, C) equipped with
a topology 7 such that:

i) the mapping (z,y) — z + y from X x X to X is continuous (with
respect to the product topology on X x X );

ii) the mapping (a,z) — az from K x X to X is continuous (with
respect to the product topology on K x X );
is called a topological vector space.

The topology T is said to be compatible with the structure of vector space
X.

Notation. Both, the origin of X and the number zero in K will be denoted
by the same symbol, 0, since, by the context, no confusion could be made.

Remarks. 1. If X is a topological vector space, then, clearly, for every
z, € X and o € K, a # 0 the mappings * — = + 2, and £ — oz are
homeomorphisms (of X onto X ). Consequently, if V is a neighbourhood of
the origin, then the sets V +z, = {z+2, |z € V} and aV = {az | z € V}
are also neighbourhoods of the origin.

2. By the Remark 1, it follows whenever B is a fundamental system of
neighbourhoods of the origin in X, setting B,, = {B + z, | B € B} we get a
Jundamental system of neighbourhoods for z,.

8. Take z, € X, a, € K, arbitrary fized. By

azT — a,T, = (@ — a,)(T — x,) + (@ — a,)z, + a,(T — x,)
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it follows that i1) in the above definition holds if and only if 1) holds and the
mappings (a,z) — ax (from Kx X to X), a — az, (from K to X),
z+— o,z (from X to X) are continuous at (0,0), respectively at 0.

Examples. 1. Each vector space X endowed with the indiscrete topology,
= {0, X} is a topological vector space.

2. Every normed space is a topological vector space.

3. fU : X — Y is a linear operator from the vector space X to the
topological vector space (Y,0), then 7 = {U }(D) | D € g} is a topology
compatible with the structure of the vector space X, thus X is a topological
vector space.

4. If {X;,7;},cs is a family of topological vector spaces, then

X=I[Xj

jeJ

with the product topology, 7 = [];c; 7; is a topological vector space.
In order to prove that, consider first the spaces

XXXa.ndZ-—‘H(XJXXJ)

jed
(with the product topology) and notice that the mapping
9: X x X — 27 g({z;}ics {yi}ics) = {(z;,45) }ies
is a homeomorphism. On the other hand, for each j € J, the mapping
hi: Xjx X; — Xj, hya;,9;) = 25+ y;
is continuous, so also
h:Z— X, h({(zj,yi)}ies) = {25+ yitieu

is continuous. It follows that the map hog from X x X to X, i.e. (z,y)
—— & + y s continuous. Similarly, one can show that the application
(a, 2) ¥ az from K x X to X is continuous.

5. If X is a vector space, X # {0}, then X with the discrete topology,
is not a topological vector space. Indeed, let us suppose that the application
A +— Az, (where 2, € X, x, # 0) is continuous at zero. It follows that
for each neighbourhood of zero in X, in particular for V' = {0}, there exists
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by > 0, such that VA, |A] < Oy, Az, € V (contradiction, since for A # 0,
Az, # 0, thus Az, ¢ V = {0}).

Remark. Let Y be a subspace of a topological vector space X. Then,
its closure is also a linear subspace. This follows from the continuity of
the mappings f : X x X — X, f(z,y) = z+yand g : Kx X — X,
g(a, ) = az, thus f(Y,Y) C f(V,Y) and g(K,Y) C g(K,Y).

Definition. If X is a (topological) vector space, a subset A of X is said to
be balanced if and only if A C A, Va € K, || < 1. A subset A of X is

said to be an absorbing set if, for any « € X, there exists a; > 0, such that
Va € K, 0 < |a| < a,, A contains az.

Remarks. 1. If A is balanced, then A is an absorbing set <= Vz € X,
there exists a, > 0, such that a,z € A. This is clear taking into account
that, if o € K, 0 < |a| < a4, then |a/a,| < 1, therefore

«

«
ar=—-q,-TE€— ACA
Qg Qy

2. If A is a balanced set, then, for every A\, p € K, |A| < |u|, AA C pA.
In particular, if |a| = 1, ®A = A. It is also immediate, by the continuity of
the mapping g : K x X — X, g(«, z) = au, that 4 is also balanced.

Examples. 1. In a normed space the closed unit ball B(0,1) is a balanced
absorbing set.

2. In a topological vector space, every neighbourhood of the origin is an
absorbing set.

8. In the normed space I, the set

A= {()n € l?( | Z"l|€n|2 <1}
n=1

is balanced, but it is not an absorbing set.

Proposition 7.1.1 Let A be a set in the topological space X. Then
A= N (A+W),

weB

(for every B a fundamental system of neighbourhoods of the origin in X ).
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Proof. Let B be a fundamental system of neighbourhoods of the origin
in X. Then, {z — W}wep is a fundai.-ntal system of neighbourhoods of T
(z arbitrary in X). Then,

zeEA= AN(z-W)#0, VW eEB<+—

= JyweWrzeA+yw <= z€ [ (A+W)
WeB
Proposition 7.1.2 Let X be a topological vector space. Then, X is Haus-
dorff if and only if Yz # 0, IV € V, such thatx ¢ V.

Proof. X is Hausdorff if and only if
Ax ={(z,y) e X x X |z=y}
is closed in X x X (with respect to the product topology). As the mapping
h:XxX-—X, h(z,y)=z—-y

is continuous, in order to prove that Ay is closed we have to see that the set

{0} is closed in X. Let z be in the closure of {0} and suppose that z # 0, so

consequently, —z # 0, too. Then, by assumption, there exists V € V, such

that —z ¢ V. It follows that {0} N (z + V) = 0, so z ¢ {0} (contradiction).

We conclude that the set {0} coincides to its closure, thus {0} is closed.
The converse is obvious.

Proposition 7.1.3 Let X be a topological vector space. Then, there ezists
B a fundamental system of neighbourhoods of the origin with the following
properties:

1) Every B € B is balanced;

2) BEvery B € B is closed,

8) For every B € B, there exists B, € B such that B, + B, C B;

4) For every Be Band a € K, o # 0, aB € B.

Proof.  First we notice that for each V € V,, there exists W € Vo, W
balanced, W C V. Indeed, take an arbitrary V € V,. By the continuity of
the mapping (a,z) — ax at (0,0), it follows that 30 > 0 and IW,; € W
such that for every a € K, |a|] < 6 and £ € W), ax € V. Then, setting
W = Ujaj<o W1, clearly W € Vo, W balanced and W C V.
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Next we will prove that each V € V, contains a balanced closed neigh-
bourhood of zero. By the continuity of the addition, there exists W € V,
such that W+ W C V. We saw that W can be supposed balanced. We focus
on showing that W C V. So, let z € W be. As the mapping (z,y) — z —y
is continuous at (2, z) and W € V), there exists U € V, such that U-U C W.
On the other hand, since z € W, UNW # 0. Set z, € U NW. Then,

2=(z-2)+t2eU-U)+WcCcW+WcCV
Setting B = {W € Vy| W balanced, W closed}, everything is clear.

Theorem 7.1.1 Let X be a (nonempty) vector space and B C P(X) with
the following properties:

1) Every B € B is an absorbing balanced set;

2) For any By, By € B, there erists B € B such that B C BiN By;

3) For any B € B, there erists B, € B, such that B, + B, C B,

Then, there exists T, a topology on X such that, endowed with this topology X
is a topological vector space and B is a fundamental system of neighbourhoods
of the origin for T.

Proof. Let us set
V={VcCcX|3IBeB,BCV}

and for any z € X,
V, ={z+V |V eV}

We need to prove first that Yz € X, V, has the properties of the system of
neighbourhoods of a point in an arbitrary topology:

V1) z e U VU € V,;

V2)IfU € V, and U C V, then V € V,;

V3) For every U, V € V,, UNV € V,;

V4) If U € V,, 3V € V, such that U € V,, Vy € V.

To show V1), let U € V;. Then, 3V € V such that U/ = V +x, s0 3B € B,
B balanced such that B + x C U. As each balanced set contains the origin,
it follows that z € U.

The second property V2) easily results by the definition of V: If U € V,
and U C V, there is BB € B such that B+ 2 C U C V, hence V € V,. Taking
into account the property 2) of B and the definitions of V;, V3) follows
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immediately. For V4), let U € V,, and B € B such that x + B C U. Then,
(3)), 3B, € B, B, + B, € B. Setting V = B, + z, we have for each y € V
that U € V,, because

Bl+yCB,+Bl+:cCB+:cCU

Then, by a well known theorem (see Preliminaries), there exists a topology
7 on X such that, Vo € X, V; = V]. Further, we will prove that this topology
is compatible with the structure of vector space X. It is almost evident, by
3) that the map (z,y) — = + y is continuous at each (z,,y,). We will use
the Remark 3 to check the continuity of the mapping (a,z) — az (from
K x X to X). Because each B is'an absorbing balanced set, obviously, the
mappings (o, z) — az (from K x X to X) and a — az, (from K to X)
are continuous at (0,0) and, respectively at 0 (where z, is arbitrary in X).
The only thing to check is that the mapping z — o,z (from X to X) is
continuous at 0 (where @, is arbitrary in K). Take V' € V. By the property 3)
of B, we can find inductively, for each natural number n, V,, € V, such that
2"V, C V. Take n, natural such that |a,| < 2". Then, a,V,, C V, which
ends the proof.

Definition. Let X be a topological vector space. A subset A of X is said
to be bounded if for every V' € W, there is A > 0 such that AA C V.
The definition involves the next properties regarding bounded sets:

Proposition 7.1.4 Let X be a topological vector space. Then:
1)If A C X, A bounded and B C A, then B is bounded;
2)If A C X, A bounded and a € K, then aA is bounded;

3) If A, B are bounded subsets of X, then A + B is bounded;
4) Every finite subset of X is bounded;

5) Each convergent sequence of X is ¢ bounded set.

Proposition 7.1.5 Let A be a subset of a topological vector space. Then,
A is bounded if and only if for any sequence (z,)n C A and any decreasing
numerical sequence A, \, 0, the sequence (AnZn)n converges to zero.

Proof. Suppose that A is bounded and take arbitrary sequences (z,. ), C A
and A\, \, 0. Let V be a neighbourhood of the origin, which, without restrict-
ing the generality may be supposed balanced (Proposition 7.1.3). Then,
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X > 0, such that Az, € V, Vn. Since A, \, 0, there exists a positive integer
n, such that A\, < A\, Vn > n, . As V is balanced, it follows that

)‘,.:v,.=—)i\’—'-)\:c,.€V, Vn > n,

Conversely, supposing A is not bounded, it results that A € nV, for some
V € Vp and arbitrary n € N. Thus, we can pick (z,), C A and

(" To)n £V
(contradiction).

Remark. By the previous proposition, it follows that an infinite subset A
of X is bounded if and only if each countable subset of A is bounded.

7.2 Locally convex spaces

Let X be a vector space and {p,};c 4 be a family of semmorms on X. There is
a standard method of defining a topology on X compatxble with the structure
of vector space X by means of this family, as follows. Let F(.A) be the family
of all finite subsets J of A . For any J € F( A) and e € (0,00), let W, C X,

WJE—{£€X|pJ()<E Vje J}
and consider W = {WJ€|J€.7"(A e €(0,00)}. iy

Proposition 7.2.1 The family W C P(X) has the follow'mg properties:
1) Every W € W is an absorbing balanced set;

2) For any W, W, € W, there ecists W € W such that W C W N Wy;
3) For any W € W, there exists Wy € W, such that W, + W, C W;

4) BEach W € W is conver.

Proof. Let W,. € W.If A€ K and |A| < 1, then for x € W,,

- pi(Az) = Al pi(2) < pyi(e) < e, 3 Vi€ J, _
thus W, is balanced. Take an arbitrary z ¢ X. If p;(z) = 0, Vj € J, then
azr € W, (Va € K). If max pi(z) # 0, then

r G WJ'S,

max p; (<)
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80, W, is an absorbing set. We have checked that 1) holds.
2) is proven by

WJ,UJg,min (€1,62) C WJl,n n Wh €2
The third property is also clear since
Wiera+Wiepn CWype

As any seminorm is positive homogeneous and subadditive, obviously each
W € W is convex.

Definition. A topological vector space X is said to be Iocajjl convez if there
exists a fundamental system of convex nelghbourhm(ﬁ of the origin of X.

Theorem 7.2.1 Let X be a vector space and {p;};c4 be a famtly of semi-
norms on X. Then,

1) There ezists T a topology on X compatible with the siructure of vector
space X such that W is a T-fundamental system of neighbourhoods of the
origin of X;

2) X endowed with the topology T is a locally conver space;

3) The topology T ts the coarsest topology on X compatible with the structure
of vector space X such that each p;, j € A, 1s continuous on X for this
topology;

4) The topology 7 is Hausdorff if and only if {p;},eca satisfies the followmg
separation condition: for each x € X, x # 0, there is some j € A, such that
pi(z) #0;

5) If {p;}jea is a directed family (i.e. Vp;,, p;, there exists j € A such that
Piy, Pja < p;), then a fundamental system of neighbourhoods for the topology
TisW={W,,.|j€ A e€(0,00)} where W, = {x € X | pj(z) < €}.

Proof. 1) and 2) result directly from the previous proposition combined
with Theorem 7.1.1. Let us consider an other topology on X compatible w1th
its vector structure, 7' C 7 such that each p;, _7 € A, is continuous on (X, 7).
As p; '(—00,€) = Wiibe, it results that 7 C 7', therefore 7 and 7' coincide,
so 3) holds. The fourth statement follows lmmedlately by Proposition 7.1.2,
taking into account that p;(z) =0,V j € A involves £ € Ny W.

If {p;};ca is a directed family of seminorms, then for each J € F(A),
there exists [ € A such that p, > p;,Vj € J (such l exists because the family
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of semincrms is directed). We infer that
W{l},e C WJ,e )
which ends the proof.

Remark. Let {p,};c4 be a family of seminorms on X. Then the family of
seminorms {qy } ¢ 7 (4), where

94(z) =max p;(x)

is a directed family of seminorms which evidently defines the same topology
as {p;};ca. Hence, there is no loss in generality assuming that the family of
seminorms which defines the locally convex topology in the above theorem
is directed. ’

Further, we will prove that the topology of any locally convex space is
defined by a family of seminorms.

Remarks. 1. Let X be a locally convex space. Then, each neighbourhood
of the origin, contains a balanced convex neighbourhood. Indeed, let V' be
a neighbourhood of zero and W' a convex neighbourhood of zero, W' C V.
Setting
W = ﬂ AW
[A121

we have that W is balanced. Indéed, take z in W, so x € AW', VA, |A] > 1
and p such that || < 1. Then, as [A/p| > 1, it follows that x € A/uW’, VA,
|A] > 1; that means pz € AW', VA, |A| > 1. We conclude that uW C W, Yy,
lu| < 1.

2. Let X be a locally conver space and W a fundamental system of
balanced conver neighbourhoods of the origin. For every W € W, the gauge
function of W s the mapping defined on X by

pw(z) =inf{p >0z epW} zeX

Notice that since W is an absorbing set, for every © € X, there exists ap > 0
such that y
(— +o0) C{n>0]xepW},
T

thus pyw 1s a well defined ({p > 0| x € pW} # @) mapping from X to R.
The next lemma shows that whenever W is convex, py- is subadditive,
and if in addition W is balanced, py is a seminorm.
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Lemma 7.2.1 Let X be a locally convez space and W a balanced convez
neighbourhood of the origin. Then, the gauge function of W, pw is a semi-
norm.

Proof. Let z,y € X and € > 0, ¢ arbitrary. Then, z € (pw(z) + )W,
y € (pw(y) + €)W, and accordingly,

1
e e R s L
Since W is convex and
_ pw(z) +¢€
 pw@h+pw(y) + 2

<1

we have that

1 1
eI Ll Ukt Al

thus z + y € (pw(z) + pw(y) + 2e)W. 1t follows that
pw( +Y) < pw) +pwly) + 2
Because ¢ is arbitrary, it follows that pw is subadditive.
Now, let t > 0. We have for any r € X,
pw(tz) =inf{u >0 |tz € uW} =inf{u>0|z € $W} -

= inf{tr >0 |z € YW} =t pw(z).

v=p\t

If 3 is complex and || = 1, since W is balanced, W = W, therefore
pw(fz) =inf{p >0 | fz € yW} =inf{p >0 | x € pyW} = pw(z)

Take now an arbitrary complex a # 0. As a = |a|f3, where |3| = 1, it follows
that '

pw (o) = pw(|a|fz) = || pw(Pzr) = |a| pw(z)
Obviously, if @ = 0, pyw(0zx) = 0, which ends the proof.

Lemma 7.2.2 Let W obe a balanced convez neighbourhood of the origin in
the locally conver space X and pyw the gauge function of W. Then,

{re X |pw(r)<l}cWc{re X |pw(z) <1}
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Proof. Let z be in X such that pw(z) < 1. Then, there exists p < 1
such that € uW, and, since W is balanced, it follows that x € W, thus the
first inclusion is proven. The second is clear.

Theorem 7.2.2 Let (X, 7) be a locally convez space and W a fundamental
system of valanced conver neighbourhoods of the origin. Then, the topology
of X, 7 is defined by the family of seminorms {pw }wew (where pw is the
gauge function of W ).

Proof. For every W € W, we have by Lemma 7.2.2 that
{:L‘ e X I pw(IL‘) < 1} Cc W,

therefore the topology defined by the family of seminorms {pw}wew, is
stronger than 7. Conversely, to show that 7 is stronger than the topology
defined by the family of seminorms {pw }wcw, consider

V={zeX|pw(z)<e i=12..,n}
Clearly, (¢/2)W, where
W=WnW,.nWw,
is a T-neighborhood of the origin and, in addition it is contained in V. Indeed,

if « € (¢/2)W, then (2/¢)z € W, which implies that

pu/‘_ (gz) S 1, V’t o 1,2,...,”’,

or, equivalently,
2
€

pw,(z) € -<e, Vi=12..,n

Remark. The above theorem shows that the topology of any locally convex
space is defined by a family of seminorms.

Theorem 7.2.3 (Kolmogorouv’ theorem) Let (X, 1) be a Hausdor[f topo-

logical vector space. Then, there exasts a norm, || - || on X such that vy =7
if and only of there exists a bounded conver 1-neighbourhood of the origin of
X
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Proof.  Clearly, if (X, 7} is a nouned space, i = 1, then the unit ball
B(0,1) = {z € X | ||z|| < 1} is a bounded convex T-neighborhood of the
origin of X.

Conversely, suppose that W is a bounded convex 7-neighborhood of the
zero in X. We may consider that W is also balanced (otherwise, we can
replace it by M5>; AW ). Thus the gauge function of W is a seminorm. We
will show that py is a norm. Let = be such that py(z) = 0. Then, z € uW,
Vu > 0. Taking into account that W is bounded, for each 7- neighbourhood
V' of zero, uyW C V for some g > 0. It follows that z belongs to each r-
neighbourhood of the origin, and, as (X, 7) is Hausdorff, this involves that
z=0.

Now, we have only to show now that the topology defined by the norm
pw coincides to 7. Because of the inclusion

WC{re X |pw(z) <z}, V=2>0,

we infer that 7 is weaker than the topology defined by the norm py . We claim
that it is also stronger than this topology. Indeed, if V is a 7- neighbourhood
of the origin, AW C V for some A > 0. It fullows that

{m€X|pw($)<)‘}C{m€X|pw(§)<1}C

CMze X |pw(z)<llCc AW CV,
therefore
{zxeX |pw(z)<A}CV,
which ends the proof.

7.3 Weak topologies

If (X, -l) is a normed space and X* is its dual space, then the family of
seminorms {ps} e x+ on X, where p;(z) = |f(z)| for all z € X, define a lo-
cally convex topology on X denoted by o(X, X*) (or w) and called the weak
topology on X. Notice that, by Corollary 1.3.1 to the Hahn-Banach theo-
rem, the topology o(X, X*) is Hausdorff (the family of seminorms {p;}, x-
satisfies the separation condition).

Theorem 7.3.1 Let (X, | - ||) be a normned space. Then, the weak topology
on X, (X, X*) s weaker than the norm topology, 1. The two topologies
commecrde of and only if the space X s finite dumensional.
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Proof. Let W(fi, fo, ..., fu;€) a 0(X, X*)-neighbourhood topology of zero.
Since f; € X*,j =1,2,...,n, we can pick §; > 0 such that for every z € B(4;),
Ifi(x)] <€, 7 =1,2,..,n Then, setting
6 = min §;,
1<j<n

clearly, B() is contained in W(fy, fa, ..., fu;€). Thus the weak topology on
X, 0(X, X*) is weaker than the norm topology, 7.

If dimg X = n, let {e;,e,... e,,} be an algebraic basis of X. We may

suppose that ||| = 1, ¢ = 1,2,...,n. Consider for every i = 1,2,...,n the
linear functional on X deﬁned by

L) _¢&e) =&
=1

From .
|fl(Z€JeJ)| = ‘§i| S ”(61162)“')61‘!)"1)
=1
since the norms are equivalent on X , it follows that f; € X*, 1 =1,2,...,n
Then, the o(X, X*)-neighborhood topology of zero W (fi, fa, ..., fa; €/n) is
contained in B(g) as it results by

loll = 1 3 €iesll < 3 lesl <€
j=1 j=1

We have proved that in the case of finite dimensional spaces, o(X, X*) coin-
cides to the norm topology, 7. )

Next, suppose that the weak topology on X, o(X, X*) coincides to the
norm topology, 7. It follows that there exist fi, f2,..., fn € X* and § > 0
such that

W(f1, fa, Ji8) = {z | /;(=)] < 8} € B(1)

Then, we can infer that

-y
S

r f; = {0}

<
I
-

Indeed, let = be with f;(z) = 0, j = 1,2,...,n; it results that f;(mz) = 0,
VmeN, j=1,2,..,n, 50 mz F( ), Vm E N, or equivalently ||z|| < 1/m,
VmeN, ie z= 0.
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Further, since (\} | Ker f; = {0}, we have that

nKer fiCKerf, VfeX®

j-1

Then, for every f € X*, we can find ay, a2, ....a, € K such that
n
f(z) =3 a,f(2)
=1

as it results from the sequel Define on X the K"-valued function, by

g('l;) = (f](x)\fz(Il?),..-, ,.(1‘))

and set X, = g(X). Clearly, X, is a linear subspace of K". Next, we consider
the K-valued mapping h on X, defined by

h(yl)ylly“')yn) = f(-l').
where z is chosen in X such that
fil®)=v;, i=1,2,...,n

Noutice that the mapping h is well defined since if f,(z) = y,, j =1,2,...,n,
then z —y€Ker f,, 9 =1,2,...,n, s0

z—yGﬂKer fi CKerf
i=1

The mapping h is linear; if H is a linear extension of A to the whole space
K", there exist a,, «y, ..., a, € K such that

n
H(y1,y2, -, yn) = 3 0,9,
71

In particular, for every z € X, we have

f(r) = hg1(2), ga(2), .. gn(2)) =

= H(g:(2), ga(), o gn(2)) = i]a,g,-(z)
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Thus, as each f € X* isin Sp {f1, f2, ..., fu}, we have proven that X* is finite
dimensional. This fact implies that X is also finite dimensional.

Now consider the dual space X* of the normed space X. This has a norm
topology and a weak topology also, o(X*, X**). Another useful topology
on X*, is the locally convex topology, (obviously Hausdorff), defined by the
family of seminorms {p;}.cx, where p,(f) = |f(z)| for all f € X*. This
topology, denoted by o(X*, X) (or w*) is called the weak* topology on X*.
We notice that since X C X** (Proposition 3.2.1), o(X*, X) is weaker than
a(X*,X*).

Remark. We may regard X* as a sulset of the product KX. Taking into
account that a typical o(X*, X)-neighborhood of zero contains a set of the
form

{f e X*| |f(z))l <e, Vj, 1< j<n},
clearly the weak® topology on Xtis the relativization to X*of the product
topology of KX.

Theorem 7.3.2 (Alaoglu’s theorem) Let (X,| - ||) be a normed space.
Then, the unit ball of X*, B = {f € X*| ||f|| < 1} is compact for the weak*
topology.

Proof. For each z € X we set B(z) = {f(x) | f € B}. Notice that

B c [] B(=).

zeX

The idea of the proof is the following. First, we will show that [[,c x B(z)
is compact for the weak® topology. Our arguments here will be based on
Tychonoff’s theorem (Preliminaries), which states that in the product topol-
ogy a product of sets is compact if and only if each of them is compact and
on the fact that the weak® topology on X‘is the relativization to X*of the
product topology of K¥. Second we will prove that B is w*-closed, which,
since a closed subset of a compact set is also compact, will end the proof.
So, start showing that for each £ € X, B(z) is compact. Since

If(z)| < |lz||, VfeB
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it follows that B(z) C {\ € K| |A| < ||z||}, therefore B(z) is bounded in K.
Further, let (f,(z)), be a sequence in B(z) that converges to A € K. Since

|/a(2)] — |2l

we have that |[A| < ||z||, so |A] - §z||”* < 1. By the Corollary 1.3.1 to the
Hahn-Banach theorem, there exists f, € X* with || f,|| =1 and f,(z) = ||z||.
Let consider the linear functional on X defined by

@) = llel ' foly), WyeX

We remark that f(z) = A and f € B since by

1£ @)l = A1 217 fo()] < |- el iyl
we have that f € X* and

A< AL flel ™ <1

We have just proved that A € B(z), this shows that B(x) is closed. Hence,
we may infer by Tichonoff’s theorem that [[,cx B(z) is compact for the
relativization of the product topology on X*, so for the w* topology.
Finally, let us verify that B is closed for the w* topology. Let f, be in the
w*-closure of B. We have to prove that f, is in B, that means f, is linear,

bounded and its norm is less than one. Take arbitrary z;,z; € X , a, § in
K and ¢ > 0 and consider the o(X*, X )-neighbourhood of f,,

W = fO + W((Q.’l‘] +Bz2)l Ty, 12), €

It follows that for each f € W, |f(ax; + Bz3) — fo(azi + Bxy)| < ¢, |f(z1)—-

~fo(z1)| < € and |f(z2) — fo(z2)| < €.
As f, is in the w*-closure of B, there exists f, € € W N B. By

|folazy + Bza) — afo(x1) — Bfo(a)| =

= |folaz) + Bzy) — fi(az, + Bxy) + afi(z1) + Bfi(22) — afo(z1) — Bfo(22)| <
< |folazi+Py) — filazy +Bza) | +|al-| fo(z1) = fi(z1)|+]8]-| fo(za) = fi(za)| <
<e+lale  |Ble = (1 + |al +(B]),
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since ¢ is arbitrary, it follows that f; is linear. Finally, consider the o(X*, X)-
neighbourhood of f,,

W ={feX*||f(z) - fo(z)| < €}

(with z in X and € > 0 arbitrary). As f, is in the w*-closure of B, there
exists f; € W N B. By

[fo(@)] < |folz) = i@ + /1@ < e+ Al - llzll <&+,

it follows that |f,(z)| < ||lz||, Vz € X, i.e. f, is bounded and | f,|| < 1. The
theorem is proven. .

7.4 Linear functionals on locally convex
spaces

At the beginning, let us make an useful remark.

Remark. A linear functional on a topological vector space X is continuous
on X if it is continuous at zero. Indeed, if f : X — K, is continuous at
zero, Ve > 0, 3W € V, such that for all z in W, |f(z)] < e. Then W + z, is
a neighbourhood of z, (z, arbitrary in X), and for all z in W + z, we have

that |f(z) — f(z.)| < €.

Proposition 7.4.1 Let X be a locally convex space such that its lopology is
defined by means of the directed family of seminorms (p;)jes and f : X — K
linear. Then, the functional [ is continuous on X if and only if 3j, € A and
7 > 0 such that |f(z)| < 7 p;,(z), Yz € X.

Proof. Let f be continuous on X. Then, there exists a neighbourhood
Wij.}.eo such that for all x € Wy,,y.,, |f(z)| < 1. Take now an arbitrary
r € X. Evidently, for each 8 > 0,

' Eo

r =—e
pi.(z) + 0

T G W(Jo)nta

which, implies that

7@ < = () +0)
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Since 0 > 0 is arbitrary, the previous inequality implies that

/(@) <1 pafe) Ve € X,

(where n = 1/g,).
The converse is clear.

The next result is an immediate consequence of the Hahn-Banach exten-
sion theorem.

Theorem 7.4.1 Let X be a locally conver space, let Y be a closed subspace
of X, and let z, be any point of X that x, ¢ Y. Then, there is a continuous
linear functional f on X such that its restriction to Y is zero and f(z,) = 1.

Proof. Let z, bein X, z, ¢ Y, thus —z, ¢ Y. Since Y is closed there
exists W € Vp such that (W — z,)NY = @. Then, {z | p(z) < e} C W
for some seminorm p on X and € > 0. If y is arbitrary in Y, as y is not in
W — z,, evidently y + z, ¢ W. It follows that p(y + z,) > €. Thus, we have

1
;p(y+xo) >1, VyeY.

If Z is the linear space spanned by Y U {z,}, we define here the linear
functional f,: Z — K, by

flly+Az) =X, yev, rek.
Then,

Yy 1 Yy
+ A = | < I\ - L4 .  — 2= o= =
Ifo(y xa)l ' l S ' | P(A +.’L‘°) : : P() } xo)»

equivalently,
lfo(2)| < pi(2), VzEZ

where p, is the seminorm 1/¢ - p. By the Hahn-Banach extension theorem,
3f : X — K, a linear extension of f, such that |f(z)| < pi1(z), Yz € X.
Applying Proposition 7.4.1, it follows that f is also continuous. Since f is
an extension of f, defined as above, clearly f(y) = 0, for each y in Y and

J[(z,) = 1.

Corollary 7.4.1 Let X be a Hausdorff locally convex space and z, in X,
2y # 0. Then, there erists [ a continuous linear functional on X such that

f(xo) # 0.
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Proof.  One can apply the previous theorem for the closed subspace ¥ =
= {0} and the point z, ¢ Y.
An immediate consequence of this corollary is:

Corollary 7.4.2 Let X be a Hausdorff locally convez space and z, y in X,
z # y. Then, there exists f a continuous linear functional on X such that

f(=) # 1(y).

The next theorem, apart from being an interesting result, will be an useful
tool further. Recall that if X is a vector space over C, a real linear functional
on X is a mapping f : X — R which is additive and real homogeneous, i.e.
f(az) =af(z),Va e R,z € X.

Theorem 7.4.2 Let X be a locally conver space, let C be a closed convex
subset of X, and let z, be any point of X that x, ¢ C. Then, there is a
continuous, real linear functional f on X such that

f(ze) < sup f(z).

zelC

Proof. Since C is closed and z, ¢ C, there exists a balanced convex open
neighbourhood of zero V such that (z, — V) N C = (. Let us define

C=U@E+V)

zeC

and notice that clearly, C is an open convex set including C. In addition, z, ¢
¢ C (otherwise, 3z € C such that , € z+V;; it follows that (z,—V)NC # 0,
contradiction). We shall show that there is no loss in generality in assuming
that 0 € C. Indeed, let z be any point in the open set C. Clearly, C — z has
zero in its interior and z, — z ¢ C — 2. If we can find a continuous, real linear
functional f : X — R such that' f(z, — z) > sup {f(y) | y € C — z}, then

f(z0) > sup {f(y) | y € C} 2 sup {f(y) | y € C}

and we would have proven the theorem.
Thus we may consider that C is a convex neighbourhood of zero, thus c
is an absorbing convex set. Defining { PG the gauge function of C, clearly (see

Lemma 7.2.1) this is well defined (C is an absorbing set), subadditive (Cis
convex), and p; (ar) = apy (z), Va € R, a > 0, z € X (only for positive
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scalars since C is not necessarily balanced). Regard X as a vector space over
R, let Y be the linear space spanned by {z,} and define f,: Y — R, by

fo(Az,) = A-p(z,), A€ER
Let yeY,y=Azx,. f A >0,
foy) = fo(Azo) = X~ p(z,) = p(Az,) = p(y)
For A <0,

fo(y) = fo(Az,) = A - p(z,) <0 < p(Az,) = p(y),

so, we infer that f,(y) < p(y), Vy € Y.
By the Hahn Banach ext nsion theorem, there exists an extension of f,,
f: X — R, real linear such that f(z) < p(z), Vz € X. Then,

f(z0) = p(z,) > 1 > sup{p(z) | z € C} >
> sup{f(x) | z € C} > sup{f(z) | = € C}.
Moreover f is continuous. Clearly, we can pick U C C, U balanced, thus
Pz (z) <pula), VzeX |
Then f(z) < py(z), and f(—z) < py(—z), Vz € X, accordingly,
|f(@)| < pu(z), VzeX

Using Proposition 7.4.1 it results that f is continuous.

7.5 Extreme points, the Krein-Milman theo-
rem

The next theorem (due to Krein and Milman) proves that the compact sub-
sets of locally convex spaces have a useful geometric property. At the begin-
ning let us introduce some more notions.

Definition. Let X be a vector space over the field K and let A be a nonempty
subset of X. A nonempty subset B of A is said to be an extreme subset of
A if a proper convex combination: Az + (1 — A)y, 0 < A < 1 of two points
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and y of A lies in B only if both z and y are in B. An extreme subset of A
consisting of just one point is called an eztreme point of A.

Remark. Notice that w € A is an extreme point of A if the conditions z,
y € A, X a real number such that 0 < A < 1 and Az + (1 — A)y = w imply
that z =y = w.

Examples. 1. Let A be the solid unit square in R?
A={(z,y)|0<z<1,0<y<1}
Then, the boundary of A,

B={(z,y)lt=0,y=0,z=1, y=1}

is an extreme subset of A and the vertices of the square are extreme points
of it.

2. Let A be the unit closed ball in R?, A = {(z,y)|z? + y* < 1}. Then,
each point of the unit circle is an extreme point of A.

Notation. We will write £xtr A for the set of all extreme points of A

Theorem 7.5.1 (The Krein-Milman theorem) Let X be a Hausdorff, lo-
cally convez space and let K be any compact subset of X. Then,

(1) Extr K # 0,

(2) co (Extr K) =co K.

Proof. Let P be the family of all closed, extreme subsets of K and remark
that P has the following properties:

() P is not the empty family (since it contains K).

(B) If (S.).ex C P such that e S, # 0, then N,. S, € P.

Indeed, since N,y S, is a closed subset of the compact set K, it follows
that M,c S, is compact too. Moreover, for any z, y € K and A, 0 < A< 1
with Az + (1 — M)y € N.cx S, we have that Az + (1 — A)y € S,, hence, since S,
is an extreme subset of K, z, y € S,, V. € T, or, equivalently z, y € N,cx S..

() Let S be in P, f a continuous, real linear functional on X, and

n=sup{f(z) | z € 5}

Then, the set of the points of S where f attains its maximum,
Sr={xe€ S| f(z) = u}
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is in P. Clearly, S; is compact as a closed subset, (S; = f~!({u})) of the
compact K. Further, for any z,y € K and A,0 < A < 1 with Az4(1- )y €
€ Sy it results first that Az + (1—\)y € S. It follows, f(z) < p and f(y) < p.
Then,

p=fOz+1-Ny)=A(2)+ (1 -Nfy) <+ 1-Np=p,

which allows us to conclude that f(z) = u, f(y) = p,soz, y € S;.

Now we will prove the statements of the theorem in two steps.

I) First we show that for any S in P, SNEztr K # @ (which, in particular
will get Eztr K # 0).

Thus, for S arbitrary fixed in P, let us denote by S the family of all
subsets of S which are in P which clearly is not the empty family since
S € P. We introduce a partial order,” <” on §,

Th<Ty<=T,CTh

and notice that each chain C = (T});c; in the partial ordered set S, has an
upper bound, as it results from the next. For any finite subset J of I, since
C is totally ordered

NT:#0

icJ
Then, the family of compact sets (7});c; has the finite intersection property
the

NT#0

i€l

By the property (8) of P, it follows that i, 7: is in P, thus, N, T; € S.
In addition
T,<T, Viel
icl

Hence, by Zorn’s lemma, S has a maximal element, 7, (s0, T, C S and T, is
an extreme subset of K).

We will prove that T, consists of a single point, T, = {w}. Suppose there
exist , y in T,, ¢ # y; then by Corollary 7.4.1, there exists a continuous,
real linear functional f on X such that f(z) # f(y). If

p=sup {f(z) | z € To},
then,
Ty ={2€T,| I(Z)=#}§To
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By the property () of P, it follows that T,;, € S. As T, < T,s, our assumption
allows us to a contradiction (since T, is maximal).

Now, we can conclude that SN Extr K # (), because w is an extreme
point of K, and it is also contained in S.

IT) Second, it remained to see that co(€xtr K) = co K . Clearly,

co(xtr K) CcoK
For the converse inclusion there is enough to check that

K C co(Extr K)

Otherwise, there is z, in
z, & co(Extr K)

By Theorem 7.4.2, there exists a continuous, real linear functional f on X
such that

f(@o) > sup {f(2) | z € co(Extr K)}
Let p=sup {f(z) | z € K} and K; = {z € K | f(z) = pn}. Then, K; € P,
and by the first step,
KiN€xtr K#0

This is a contradiction, since for any z € Extr K, f(z) < f(z,) < p, thus
I ¢ K].

Application to the Krein Milman theorem

We will prove that each probability measure on a Hausdorff compact
space 1" can be approximated pointwise on C¢c(7') by measures with finite
support on 7. Let us be more specific.

If Cc(T) is as usually the Banach space of all continuous complex functions
on a Hausdorff compact space T', (endowed with the norm, ||z|| =sup |z(t)]),

te

the dual of Cc(7"), denoted by M(T') is called the space of Radon complex
measures on T'. The set of all probability measures on T, M,(T), is8 M,(T) =
={p e M(T) | llull €1, p(1) =1} (where 1 € Cc(T), 1(t) =1,Vt € T).
We will consider on M(T') the w*-topology.

Theorem 7.5.2 Let M(T') be the space of Radon complex measures on a
Hausdorff compact space T, and My(T') be the set of all probability measures
onT. Then,

1) My(T) is a w*-compact convez subset of M(T');

2) Extr (M,(T)) = {6 | t € T}, where &(z) = z(t), Vx € Cc(T') (6, is called
the unit point mass at t, or the Dirac measure at t).
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Proof. 1) Clearly, M_(T) is a w*-closed convex subset of the unit ball of
M(T) that by Alaoglu’s theorem is w*-compact. It follows that M,(T) is
also w*-compact.

2) First, we prove the following properties of the elements of My(T):.

i) If z € Cc(T'), and x = Z, («(t) = x(t), Vt), then pu(z) € R, Vu € My(T);

ii) If z € Cc(T'), and = > 0, then p(z) > 0, Vu € M (T);

iii) If z € Ce(T), and p € Mp(X), then |u(z)| < p(|=|).

Let z € C¢(T'), with ¢ = T and suppose that u(z) = a + @b, b # 0. Then,
for Vn € N, we have

(o + ibm)| < |1z -+ b

Taking into account that |p(z + ibn)| = a? + b*(1 + n)? and |z(t) + itn| =
= |z(t)|? + b®n?, Vt € T, the previous inequality gives

a? + b2 (1 +n)? < ||z|? + b*n?

which enables us to conclude that b = 0, so 1) holds.
Let z > 0 be and p € M,(I'). Then,

lzll = p(z) = plizll - 2) < flzll — = < ||z

which shows that u(z) > 0.
By i), p(Rez) = Re pu(z), = € Cc(T'). Then, iii) follows from

lu(z)| = u(x)e“ argu(z) _ mex e—iargl‘(z)) = Rep(z - ewngp(z)) _

= p(Ree " *EH0z) < p(|z- e *>E HO)) = p(z)

We have also to remark that an immediate consequence of ii) is
ii') If z,y € C¢(T), and z > y, then pu(z) > p(y), Yu € My(T).
Further, we will prove that each u € £xtr (My(T)) is a multiplicative
functional,
p(zy) = p(@)ply), Vz, y € Cc(T)

First, we notice, since the linear space spanned by {z € C¢(T) | 0 < z < 1}
coincides to Cc(T'), there is sufficiently to prove that u(ry) = u(z)u(y), only
for 2, y € Ce(T), llzll < 1, Iyl < 1.
Let £ € C¢(T) be such that 0 < z < 1. Set a = p(z). Using ii), clearly
a € |0,1]. If @« = 0, we have pu(z) - u(y) = a- u(y) = 0, and on the other
hand, by
0 < |u(zy)| < p(lyll - x) = llyll - u(z) = 0,
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/L(.I'?/) = 0, thus the e(pmlily holds. If « 1, by
O<p((l - o)y)| < llgll - (1 - 0) 0,

it follows that p(y) = p(ry), equivalently, /l.(AI,'y‘) = pul(y) - 1 = ply)p(r)
Now, for an arbitrary « € (0, 1) we define on Ci-(1') the functionals | and
¥ by
ply) = o 'p(azy),  Vyelo(l)

and respectively,

Yly) = o 'pl(l =)yl Yy e Co(T)
Clearly, ¢ and ¢ are linear and ¢(1) = ¢(1) = 1. In addition,

li(@y)| < w(lzy]) = pzly]) < llyl| - o,

which unplhes that [ (¢)] < |lull, Yy € Co(T), so ||l < 1.
Similarly,

(X = z)y)| = pllay]) = (1 )y <Nyl - (1 - ),

thus, also [9(3)] < llyll, Vy € Ce(T), hence 9 < 1
We have obtained that ¢, ¥ € My(T'). But p = ay + (1 — )y and
p € Extr (M,(T)). It results that u = ¢ = 1, therefore pu(y) = u(z) 'p(r
The next step in our proof is to show that for each p € Extr (Mp( 1)),
there exists t € T such that Ker ¢ C Ker §,. Otherwise, suppose that for
each ¢ in W, there is £<*" in Ker ;2 with 277 (t) # 0. Then, there exist=
neighbourhood of ¢, V=<' such that r= ' 1s strictly positive on V< - As T

is compact and contained in (e V', there exist t;, ty, ..... ,ta in 1" such
that
X v
1—1

For each ¢« = 1,2,..,n, denote by x; the function =%~ and by V, the neigt-
bourhood of t;, V<4~ . We have that x,(s) > 0, Vs € V,,. Then, the function

T T

I
.:'Ma

has clearly the property that z(t) # 0, Vt € T Hence,
1 1
1 =pfz: 7) = ji(f) - /1(-’-:) -0,
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(contradiction). It follows that Ker u C Ker 6.
Then, for each z € C-(T'),

£ — p(x) -1 € Kerp C Keré,,
thus, x(t) = p(z). Consequently, we have obtuined, that each u belonging to
Extr (My(T)), is also in {6, | t € T}.
In order to end the proof we need to see that Vt € T
b € Extr (M,(1))
Let ¢, ¥ € Mp(T') and a € (0, 1) such that §, = ap + (1 — a)y By,
ele()] < ap(lyl) < &(lyl) = lu(1)]

it results that Ker ¢ O Ker 6, thus as above (y) = 6(y), V y € Cc(T)
Similarly one prove that ¢ = §,.

Corollary 7.5.1 Each probability measure on a Haudorff compact space T
cun be approzimated pointwise on Ce(T') by measures with finite support on

v

Proof. Combining the previous theorem with the Krein Milman theorem,

W

My(T) = co{éy [t € T}

Then, for each p € M,(T), there exists a net (6g)s C co{d, | t € T} such
that (65)s converges to p in the w*-topology. Taking into account that the
elements of co{é, | t € T} are finite linear combinations of Dirac measures,
the corollary is proven.

7.6 Fréchet spaces

In this section we will describe a special class of locally convex spaces, of
those locally convex spaces whose topologies can be defined by means of a
countable family of seminorms. Let us begin by a preliminary result.
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Lemma 7.6.1 Let (X,7) a Hausdorff locally conver space, the topology T
being defined by means of the countable family of seminorms (p,)nen. For

each € X define
il Pa(z)
=2 1+ )

1) Then:

i) q(z) = 0 if and only if = = 0,

i) g(—x) = g(x), Vz € X;

i) g(z +y) < q(z) +4q(y), Vr,y € X.

2) For each z,y € X define d(z,y) = q(« —y). Then, d is a translution
invariant metric on X and the topology defined by d coincides to 7.

Proof. 1) Clearly, for each £ € X the series

l' p,,(CL‘)
n212n 1+p"($)

is convergent, since

1 p,,(;r) 1
— <-—, VneN
2 1+4pa(r) ~ 20 "

Suppose ¢(z) = 0. Then, because of

1 pu(2) .

%'1+p,.(x) < g(z), VneN
(z
(

it follows that for each n € N, p,(z) = 0. As the family of seminorms (pp)nen
satisfies the separation condition ((X, 7) is a Hausdorff space) we have z = 0.

ii) is evident by
Pn(—2) = Pa()

For each z,y € X, taking into account that

(T +y) < pa() + puly)

and using the fact that the function t +— (1 4 t) ' is increasing on [0, 00)
we have

Loty L @) tply)
AL l + [’,‘(I + l/) AL l +[)”(1) } I»““/)
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_ l p,,(l‘) pn(y)
- (1 +Pa() + Paly) 1 + pn(z) +p'.(y)) =

2n
- 1( P(2) _Puly) ),VneN

=2 \1+pa(z) 1+ paly)

Summarizing, iii) results.

An immediate computation shows that d is a translation invariant metric.
Let us denote by 74 the topology defined on X by d. We shall investigate the
relationship between the 74- and 7-neighbourhoods of zero in X. We prove
first that for each € > 0, there exists a finite set F' = {i;,1s,....,i,} C N and
0 > 0 such that

Wpy,s C Bq(E)

(where, as in section 7.2, Wgs = {z € X | p;(z) < 6, j € F'} and, as usually
By(e) = {z € X | q(z) < €}). '
We shall consider the increasing family of seminorms (p,,)nen,

I’;‘(x) = max{pl(:l:), pg(:l:), ,pn(l')}

and we notice that the locally convex topology defined by means of this
family coincides to 7. For each z € X define

21 pu(e)

ql x)= on 1
() n=l2ﬂ 1+p,,(~'17)

Since
Pa(@) 2 pu(z), VzEX

and the function ¢ — ¢(1 +t)~'is increasing on [0,00) we have that ¢'(z) >
> q(z), Vz € X, hence, for each € > 0,

Bq' (E) C BG(E)

It follows it is enough to show that for each € > 0, 3n > 0 and m € N, such
that
W{p;n)»" c Bql (é)

Let £ > 0 be; then 2% < ¢ for some k > 0. We show that

W’{Plki |}u2_(*+1) C Bq, (E)
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Indeed, let € X such that
Pr(z) <2 ¢V
As (p, )nen is an increasing family it follows that
pi(x) < 276 Wj=12 .. k%1

Then,

Setting n = 2-*41) and m =k + 1, it follows that
Wista © By (€)
Thus 7 is stronger than 74.
Now, let W(;, i, .i.},e- Let k be natural such that 2- k < ¢. We have

1
q(2i1+i2 +...+:'..+k+_1)

Indeed, let « be with

C Wiiig,int2* C Wiiia, in)e

1 o= 1 P]( ) B 1
q(z) < Qirtizt. tinthtl Z-:E' ' 1+ p,(z) S Qijtizt.. linthtl
As .
— L(x)— <q(z), VIi=12.,n
24 1+ p,(x)
we have

1 py(o) 1

o < % ,

2% 1+ P.‘,(Z‘) U 221:1-#"1 ijtk+1
from where it fcllows that

1+ pu(z) > py () - 22w H

thus,
1 1

p‘l('fl:)< 22] l,:'tjlkll = '2_k

We conclude that the topology 74 is stronger than 7, so finally the two
topologies coincide.
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Theorem 7.6.1 Let (X, 7) a Hausdorff locally convez space. Then, the fol-
lowing are equivalent:

(1) The topology T is metrizable;

(2) There exists B a countable, fundamental system of T-neighbourhoods of
zero;

(8) There ezists P a countable family of seminorms that satisfies the separa-
tion condition such that the topology defined by P coincides to 7.

Proof. It is clear that (1) implies (2). Assuming (2), it is no loss in
generality supposing that all neighbourhoods in B = {U,}, are convex and
balanced. Let p, be the gauge function of U, for each n. By Theorem
7.2.1, clearly the topology 7 is defined by means of the countable family of
seminorms P = {pn},, then (2) implies (3). (3) involves (1) follows from the
previous lemma.

Definition. A locally convex space whose topology is metrizable is called a
metrizable locally convez space. A complete, metrizable, locally convex space
is called a Fréchet space.

Example. In this example, we shall denote by Ng = NU {0}. For n € N,
R" is, as usually endowed with the euclidean norm, || - ||2. For the closed
ball of radius m > 0, we shall write as usually B(m). Let be C(R") the
space of all numerical functions on R" which have partial derivatives of any
order. If I = (I},1,,...,l,) € N, l; € Ny is a n—multi-index, we write |/| for
Li+1ly+...+1,. For each arbitrary function £ € C*°(R") and each multi-index
[, let
Az
e
T = A Al
oty oty ..otk

Further, if we write supp z for the support of x € C*(R"), let us denote by
Dy, = {z € C°(R") | suppz C B(m)}. We can define a countable family
of seminorms on D,,, (pg-m))Jg No DY

P (2) = sup {|D'z(t)| | L € Ny, |I| < 5}
te B(m)

The family (pgm))j( No 15 a countable family of seminorms that satisfies the
separation condition; it defines a metrizable, locally convex topology on D,,,,
Tw. Moreover (D,,,7,,) is a Fréchet space. Indeed, let (zx)x be a Cauchy
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sequence, (zx)r C Dy,. Thus, for each j € Ny and € > 0, there exists k(j,¢)
such that Vi, k > k(j,¢),

|D'zi(t) — D'zy(t)] <&, VIENG, || <j, Vt € By,

Hence, it follows that (D'xy)k is uniformly Cauchy on B(m), so uniformly
convergent to the continuous function y' (V I € N3, |l| < j). It results that
y' = D'yo, V1 € N3, |I| < j. As, this judgement is valid for each j € Ny, we
can conclude that y, € D,,, and the fact that (D,,, 7,,) is a Fréchet space is
proved.

7.7 Inductive limits of locally convex spaces

Let X be a vector space over the field K and (Xj;)jc; a family of linear
subspaces of X with the following properties:

l) X = UJ(J i

it) The family (X;);c, is duected by inclusion (i.e. V3, jo € J, js € J
such that X; C X;, and X, C X},);

iii) For each j € J, the space X is endowed with a locally convex topology,
7; such that if X; C X|, the trace of 1; on X is weaker than ;.

Let us consider further W, the family of all balanced, convex subsets W of
X enjoying the next property: Vj € J, the set W N X, is a 7;-neighbourhood
of zero in X;. Clearly, the family W satisfies the hypotheses of the Theorem
7.1.1, accordingly, there exists T;,q4 a topology compatible with the vector
structure of X, which in addition is locally convex, such that W is a funda-
mental system of neighbourhoods of the origin for this topology.

The space X endowed with the topology T;,4 defined as above is called
the inductive limit of the spaces (X, 7;);cs and is denoted by

(X, T,',u_() —:lln:l (Xj, TJ‘)

Proposition 7.7.1 Let (X, Ting) =lim (X;,7;) be and for Vj € J, let l;

be the canonical mapping which maps X; in X, l;(x) = x. Then, 1 is the
strongest locally conver topology such that l; is continuous, Vj € J.

Proof. Let 7 be a locally convex topology such that
L (X, 7)) — (X,1)
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is continuous, Vj € J. Then, for each arbitrary 7 -neighbourhood of zero, U,
LYU)=UNnX;

is a Tj-neighbourhood of zero, thus U € W. It follows that T;nq is stronger
than 7.

Proposition 7.7.2 Let (X, Ting) =lim (Xj,7;) be and f be a linear func-
tional on X, f : X — K. Then, the functional f is continuous if and only
if for each j € J,

foly: (X;,7) — K

13 continuous.

Proof. Clearly, by the previous proposition, if f is continuous, then, Vj €
J, f ol; is continuous. Conversely, suppose that Vj € J, f ol; is continuous,
s0, for each € > 0, (fol;) ' ({A € K | |A| < &}) is a 7;-neighbourhood of zero,
Vj € J. Since

(fel)'({AeK [N <eh) =4 o (ST {A €K A <€}))

we have that, for every j € J, f71({A € K| |A\| < €}) N X is a 7;-
neighbourhood of zero (Vj € J). Evidently f~'({\ € K| |A| < €}) N X;
is balanced and convex. It follows that f~'({A € K| |A| < €}) is & Ting-
neighbourhood of zero, which proves that f is continuous.

Example. (The distributions space, distributions) Let us denote by
D = {z € C*(R") | suppz compact}

and consider the family of vector subspaces of D, (D, Tm)men (Where for
each m € N, (D,,, 7,,) is the Fréchet space of the example in the section 7.6).
It is easy to see that D = |J,, D,n,and that D,, C D,,,,, Vm, thus the family
(Dyn, Tim)men is directed by inclusion. The equality

{2 € D| Pi™(z) < £} = {z € D P (2) < €} N Do

shows that for each m € N the relativization of the topology 7,4, to Dy, coin-
cides to 7,,,. Then, we can define (D, T;,4), the inductive limit of (Dy,, Ten )meN-
The space (D, Tina) is called the distributions space (the Schwartz space).
A continuous linear functional on (D, Tina) i$ called a distribution on R".
By the Proposition 7.7.2 it follows that f: (D, 7ing) — K is 2 distribution
if and only if Vm € N, fol, : (Dm,Tm) — K is continuous, therefore
Vm € N, 35 € Ny, and 3. > 0 such that |f(z)| < p pg'")(:z:), Vz € Dy,
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7.8 Exercises

1. Let T' be a Hausdorff topological space and Cx(T") the linear space of all
continuous functions, z : ' — K. Denote by K(T') the family of compact
subsets of T'. For Q € K(T') and € > 0 define

Wa.e = {z € Ck(T) | sup |z(t)| < €}
teQ

Show that there exists 7 a topology compatible with the vector structure
of Cx(T') such that the family W = { Wg.| Q € K(T'), € > 0} is a funda-
mental system of T-neighbourhoods (this topology is known as the topology
of the compact convergence).

2. Let X = {z € Ck([0,1]) | 3 € (0, 1] such that z(t) = 0, Vt € (0.a]}
endowed with the usual norm topology of Cx ([0, 1]). Show that the set

D={ze X |n-|z(l/n)] <1, Vn € N}

is an absorbing, balanced, convex set, but 1) is not a neighbourhood of zero
in X.

3. Let X be a topological vector space and [ : X — K, f linear. The
following are equivalent:

(1) The functional f is continuous;

(2) Ker f is a closed subspace of X.

4. Let (X, 7) be a locally convex space, 7 being defined by means of a
family of seminorms (p;);c,. Show that the net (z5)aca C X converges to
z € X if and only if Vj € J the net (p;(o — *))aca converges to zero.

5. Let (X,7) be a locally convex space, 7 being defined by means of a
family of seminorms (p;);c,. Show that the set B C X is 7-bounded if and
only if Vj € J, 3\; > 0 such that p;(z) < A;, Vz € B.

6. Let (X, 7) be a locally convex space, 7 being defined by means of the
directed family of seminorms P = (p;);cs and ¢ a seminorm on X.

a) The following are equivalent:

(1) The seminorm q is continuous;

(2) The seminorm gq is continuous at zero;

(3) The set {z € X | g(z) < 1} is a T-neighborhood of zero.

(4) 3¢ > 0 and p € P such that ¢(z) < ¢p(z), Vz € X.

b) If ¢ is a continuous seminorm on X, then the family P U {¢} defines
the same topology on X as P.
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7. Let sk be the linear space of all numerical sequences. Let P, Q, R
three family of seminorms defined as follows:

= {pﬂl ne N}) pn((gk)k) = |§n|
Q= {qu| n € N}, ¢n((&r)r) = max [&]

1<k<

R={r.| neN}, r.((&) Z €k

Show that:

a) P, Q, R satisfy the separation condition;

b) @, R are directed and P is not directed; '

c) The locally convex topologies defined by means of the families P, Q,
R coincide.

d) The locally convex topology defined at c) coincides to the product
topology on sg =KN.

e) The space sk equipped with the previous topology is a Fréchet space.

8. Let T' be a Hausdorff topological space and Ck(T') the linear space of
all continuous functions, z : T — K. . Show that the topology defined at
the Exercisel coincides to the locally convex topology defined by the family
of seminorms (pg)qex(r), Where

Pq(z) =sup |z(t)|
teQ

9. Let (X,7) be a topological vector space locally bounded (i.e. there
exists a 7-bounded neighborhood of zero). Show that (X, 7) is metrizable.
Considering the case of the space sx (Exercise7) show that, in general, a
metrizable topological vector space is not locally bounded.

10. Show that sk is not normable.

11. Show that Cx(T'), 1" noncompact (Exercise 8) is not normable.

12. Show that the product of the family of normed space (X;)jecs, X; #
# {0} is normable if and only if J is finite.
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Appendix A

Equicontinuity

We notice that, as usually, a sequence (z,), C Cx([a,b]) is said to be point-
wise convergent if for each t € [a,b], the numerical sequence (z,(t)), is
convergent in K; the sequence (z,), C Ck([a,b]) is said to be uniform con-
vergent to the K-valued function z defined on [a,b] if for each € > 0, there
is n, such that n > n, implies |z,(t) — z(t)| < &, Vt € [a,b]. As the function
T is necessarily continuous, this is equivalent to the fact that the sequence
(zn)n is convergent in the normed space (Ck([a,b]), ]| - ||) (lz|| =sup |z(t)])

t€|a,b)
to z € Ck([a, b]).

Definition. Let F be a family of functions from a metric space (M,d) to
another metric space (N, p). We say F is an equicontinuous family at t if
and only if for each € > 0, there is §,, > 0 such that d(¢,t') < 6., implies
p(z(t),z(t)) <e.

The family F is said to be an equicontinuous family on M if it is an equicon-
tinuous family at each t € M.

Theorem A.0.1 Let be (z,), a sequence of functions from one metric space
to another with the property that the family F = {z, | n € N} is equicontin-
uous. Suppose that (z,), converges pointwise to x. Then, x is continuous.

Theorem A.0.2 Let (z,,), be a sequence of functions from one metric space
(M,d) to another metric space (N, p) with N complete such that the family
F = {zn | n € N} is equicontinuous. Suppose that (z,), converges pointwise
on a dense subset of M. Then (z,), converges pointwise on M.

Definition. Let F be a family of functions from a metric space (M,d) to
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another metiie space (N op). We say Foas a anformly equecontonoas family
i and ondv af for each = - U, there is &, - 0 such that d(t 1 ) <& amplies
/I(.I(/),.l l'f ,) € 8

Theorem A.0.3 Lot (1), be a sequence of functions from [a, b to some
mectiwe space (N p) such that the funaly J {0 | e B} s wnformly
cqurcontinuous. Then (1), converges wriformly vija, b|.

We notice that the above theotems can be proved mmediately by an ¢

al2uinent.

Theorem A.0.4 /14:5(201.’1; ’s theorem) lel (1)), he a SCYlence uf ,f'llll(f/(ull'»
Jrowcja, by to some inctiic space (N py sacho that the faniedy oo {ay, [ 14}

s wnforndy bounded and « juecontiecns. Hhc there oo subscquence (1, )
of (fu)u such that (), converges arform!ly o la, bl

Proof.  let {(go)m be o nunbering of the vationals Since {a, |0 HY s
uniformaly bounded, |ay, (g, )] = MY 0 Phos by the diagonadization ok,
we can find a subsequence with (i, (gu)), converges as i -+ oo for each .
By Theorem A.0.2, the sequence (i, '),/ converges pointwise everywhere and

then, by Theorem A 0.3, (1)), converges wintormly

T
Remark. Ascoli’s theoren shows that o sabeet 1 of the Banach space

(Cxla, b - 1) s relative compact if 1t s bhounded aaad equicontimions.
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Appendix B

Weierstrass approximation
theorems

We state here Weierstrass approximation theorems, used in our approach
especially in the section concerning orthonormal bases .

Theorem B.0.5 (Weierstrass approzimation theorem)Ifzx is a complex
(real) valued function which is continuous on [a, b)], then for every € > 0 there
ezists a polynomzial p such that

|z(t) — p(t)| < € for all t € [a,}]

Remark. The above theorem shows that the linear subspace of polynomials
of the normed linear space (Cx[0,1], | - ||) is dense in (Cx[0,1], || - ||)-

Theorem B.0.6 (Weierstrass second approzimation theorem). If x is
a complez (real) valued function which is continuous on [—n, n|, and z(—7) =
= z(m), then for every ¢ > 0 there erists a trigonometric polynomial

To(t) =) _(ajcos jt+b;sin jt)
=0

such that
|z(t) — To(t)| < & for allt € [a,b]
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Appendix C

Measure spaces

Definition. A triple (X, X, m) is called a measure space if
i) (X, X) is a o-ring, i.e. X' is a family of subsets of the set X such that:
il) X € &;i2) CxB € X, VB € X;i3) |32, B, € X, for any countable
family of sets (Bp)n, € X (n=1,2,...).
ii) m is a non-negative, o-additive measure defined on X, i.e.
iil)) m(B) >0, VB € X
i12) m(U2, Bn) = 02, m(B,) for any disjoint sequence (B,), € X.

Definition. A real- (or complex-) valued function z(s) defined on X is
said to be X'-measurable or, short, measurable if the following condition is
satisfied: for any open set G C R (or C), the set z !(() belongs to &’ (it is
permitted that z(s) takes the value 00).

Definition. Let (X,X,m) and (X',X’,m’) be two measure spaces. We
denote by X x X' the smallest o-ring of subsets of X x X' which contains all
the sets of the form B x B', where B € X, B' € X'. It is proved that there
exists a uniquely determined non-negative measure m defined on X x X' such
that

(m x m')(B x B') = m(B)m(B').

m x m' is called the product measure of m and m'.
A property pertaining to points ¢ of X is said to hold m-almost every-
where (m-a.e.), if it holds for those s which form a set A € X with m(.1) = 0.

Definition. Let X be a closed subset of R". The Borel subsets of X are
the members of the smallest o-ring B of subsets of X which contains every

203

https://biblioteca-digitala.ro / https://unibuc.ro



compact set of X. The non-negative Borel measure on X is a non-negative,
o-additive measure defined cn B, such that the measure of every compact
set is finite.

Example. (The Lebesgue measure) Suppose X is the real line R or a closed
interval of R. Define a function m on the family of all countable unions of
disjoint open intervals (which is just the family of open sets), by

co ' 00
m(U(a,,, ,,) m(b, — a,)
n=1 =1

n

This m has a uniquely determined extension to a non-negative Borel measure
on X, called the Lebesgue measure,

m(B) = inf{m(I) | B C I, I open} =sup{m(K) | K C B, K compact}

The Lebesgue measure in R" is obtained from the n-tuple of the one-di-
mensional Lebesgue measures through the process of forming the product
measure.

Theorem C.0.7 (Luzin’s theorem) Let x be a real-valued function de-
fined on the Lebesgue measurable set A. Then x is (Lebesgue) measurable if
and only if for every e > 0, there is a closed subset F, C A such that m(A \
\F:) < € and the function z is continuous on F.

Further we shall define and give some results concerning the integral with
respect to a certain non-negative measure.

Definition. A real- (or complex-) valued function z(s) defined on X is
said to be finitely-valued if it is a finite non-zero constant on each of a finite
number, say n, of disjoint X-measurable sets B; and zero on X \ U}, B
Let the value of z(s) on B; be denoted by z;. Then x is mn-integrable over

X if ¥, |z;| m(B;) < oo, and the value 37, z; m(B;) is defined as the
mteg’ral of  over X with respect to the measure m, denoted by

/Xx(s) dmu(s), or, in short,/;a:dm

A real- (or complex-) valued function z(s) defined m-a.e. on X is said to
be m-integrable over X if there exists a sequence (z,), of finitely-valued
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integrable functions converging to = m-a.e. and satisfying Ve > 0, there is
n, such that m, n > n, implies

J, Ja(s) = zn(s)] dm(s) < e

It is proved that, if the function z is m-integrable in the sense of the

above definition, a finite
lim/ z,(8) dm(s)
n Jx

exists and the value of this limit is independent of the choice of the appro-
ximating sequence (Zy,)n.

Definition. The integral of the function z over X with respect to the
measure m is defined by

/X 2(s) dm(s) =lim /X 2n(s) dm(s)

Notation. If (X,X,m) is a measure space, the set of all m-integrable
functions over X is a linear space (with the usual sum and scalar multi-
plication), denoted by £!(X,m); the linear space of equivalence classes of
functions in £'(X, m) equal m-a.e. is denoted by L'(X,m).

The following crucial theorems hold:

Theorem C.0.8 (Monotone convergence theorem) If z, € L'(X,m),
0<z <z < ... and z(8) :lign x,(s),

then x € L(X,m) if and only if

lim/ |z (5)] dm(s) < 00

n X

and n that case
lim/ [n(s) — @(s)] dm(s) = 0
n X

and

llm/ |z, ($)| dm(s) /|.E )| dm(s)
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Theorem C.0.9 (Dominated convergence theorem) If z, € L'(X,m),
z(s) =lim z,(s),

m-a.e. and if there is g € L'(X, m) with |z, (8)] < g(s) m-a.e., for all n,
then z € L'(X,m) and

lim [ |za(s) - 2(s)|dm(s) =
im [ [za(s) — 2(s) | dm(s) = 0
Theorem C.0.10 (Fatou’s lemma) If <, € L'(X,m), each z,(s) > 0, and
if
liminf [ |z,(s)|dm .
im in /;(|x (s)] dm(s) < oo

then
z(s) =liminf z,(s) € £'(X,m)

and
/x j2(5)] dm(s) <liminf /x |z (8)] dm(s)

Theorem C.0.11 (Fubini’s theorem) Let (X,X,m) and (X', X' ,m’) be
two measure spaces, and m x m' the product measure of m and m' . Let x
be a measurable function on X x X'. Then

[ (] om0 mi <o

/ (/ |z(s,t)| dm(s )d7n()<oo

and if one (and thus both) of these integrals is finite, then

[ (f o), (]t onamr) s

Theorem C.0.12 /et [a,b] a closed interval in R. For any Lebesgue inte-
grable function x(s), and € > 0, there is a continuous function g. on [a,b]
such that

if and only if

/la,h| I:L‘(q) N gf(s“ dln(b') < &€
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Appendix D

Holomorphic functions

In the sequel, z is a complex valued function defined on a open set D of C.
Definition. The function z : D — C has derivative at a € D if there

exists .
o =(t) — 2(a)
t—a {—a
The value of this limit is called the derivative of = at a, written z'(a).

Definition. The function z : D — C is called holomorphic (analytic) if it
posses a derivative wherever the function is defined.

Definition. A power series is of the form Y, 50ant", where the coeffi-
cients a,, and the variable ¢ are complex. A Laurent series is of the form
a3 oo Gnt", Where the coefficients a,, and the variable ¢ are complex.

Theorem D.0.13 (4bel’s theorem) For every power series Y oo oant™,
there ezists a number p € [0, 00|, called the radius of convergence such that
the series converges absolutely for every |t| < p. In |t| < p the sum of the
series 18 an analytic function. The derivative can be obtained by termuwise
differentiation, and the derived serics has the same radius of convergence.

Theorem D.0.14 (Hadamard’s formula) The radius of convergence of a
power series Y o>, ant" 18 given by

B 1
lim sup Ianlﬁ
n
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Theorem D.0.15 The function x : D —— C s holomorphic if and only if
Jor each t, € D, there exists a ball with center t, and radius 6, B(t,, ) such
that on this ball T coincides to the sum of a power series,

[ o)

z(t) =Y au(t—t,)*, Vi€ B(t,0)

n=0

For the holomorphic functions defined on
Q(to;r, R) = {t € B(t,,R) | r <t < R},

where 0 < r < R, we have the next result of global representation in Laurent
series.

Theorem D.0.16 (Laurent’s development theorem) Let x be an holo-
morphic function on §(t,;r, R). Then, there erists a (unique) Laurent se-

ries converging on a set that contains QU(t,; r, R) and that coincides to x on
Q(to; 7', R))

#(t) = 200: an(t —t,)", VteQty,r, R)

T¢-=—00

Theorem D.0.17 (Liouville’s theorem) Let x be a bounded holomorphic
function defined on the whole complex C. Then, x is necessarily constant.
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FUNDAMENTUM

This elementary text is an introduction to
functional analysis. The book covers only a limited
number of topics, but they are sufficient to lay a
foundation in functional linear analysis, which, partly
because of its many applications nas become a very
popular mathematical discipline interesting for
applied mathemnaticians, probabilists, classical and
numerical analysts. Tt grew out of my attempts to
present the material in a way that was interesting and
understandable to second-third veas graduate
students who are taking a course in this subject.
The only background material needed is what is
usually covered in a one-year graduate level course
analysis and an acquittance with linear algebra.
However, to reach as large an audience as possible,
the material is generally self-contained: any lack of
knowledge can be compensated for by referring to
Preliminaries, to Appendices and the references
therein.
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