gtz,z% 70|

TOMESCU

DATA
STRUCTURES

EDITURA I‘\'I’\'liRSITX!‘II DIN BUCURESTI

JoiBLiOTECA CENTRALA
UNIVERSITARA
Bucuresti

Cota 77 029;;(?0
i

; lnvemar[7

https://biblioteca-digitala.ro / https://unibuc.ro

IOAN TOMESCU

DATA STRUCTURES

EDITURA UNIVERSITA'!‘II DIN BUCURESTI
-1997 -

https://biblioteca-digitala.ro / https://unibuc.ro

Referenti stiintifici: ~ Conf. dr. Octavian BASCA
Conf. dr. Horia Ioan GEORGESCU

— : e A R ———"
e itratat e

| BIBLIOT'CA O NTRALA Uy VERGITARA

COTA i/— o&%"ryﬂ Q/dé /-

B.C.U. Bucuresti

LT

I

© Editura Universititii din Bucuresti
Sos. Panduri, 90-92, Bucuresti — 76235; Telefon: 410.23.84

Redactor : fon MIHAI
Tehnoredactare computerizatd: Constanta TITU

ISBN: 973 — 575 - 147 - X

https://biblioteca-digitala.ro / https://unibuc.ro

CONTENTS

Chapter 1. Structured data types ...
§ 1. Linear lists. Stacks and qUEUEScccccooiri v
§ 2, Sequential allocation ...
§ 3. Linked allocation

. Circular lists ..o

. Doubly linked lists
. Graphs and treesccooviiiiiiiiiiiiecen e s
c BINATY tT€ES ..ot
. Huffman’s algorithm ...
§ 9. Marking algorithms for nonavailable Memoryccocoocverieiiiciicnnee
§ 10. Multilinked structures
§ 11. Dynamic storage allocation ... e
Chapter 2. Sorting techniques ...
§ 1. Sorting by COUNLINE ...ooioiiicrie ettt et e res s
§ 2. Sorting by INSETHIONccciiiiiii i e
3. Sorting by exchanging ...

4. Sorting by SeleCtion ...t
S. Sorting by METEINE ..ot e
6. OPHIMUIM SOTHIE ..oeiiiiiiiiie et et e
7.
8.
h

W Won wOn U W
G0~ A B

Sorting by distribution ...

The linear median algorithm
apter 3. Searching techniques ...
. Sequential SEArChiNGccoioiiiiiiiiniiie i
. Self-organizing linear listscoooiiiiiiiiienin e
. Scarching by comparison of keys ...
. Binary tree searching

. Weighted trees ...
Balanced trees
Weight - balanced trees ...
Hashing oo
ITash functions VS
0. The division method
1. The multiplication method

§
§
§
§
§
§
C
§
§
§
§
§
§
§
§
§
§
§

)
2
3
4
§
6
-
8
9
)
!

https://biblioteca-digitala.ro / https://unibuc.ro

(= BV N ST S)

wOn LN L L O LOn
— e e e e

7. Splay trees

§ 18. Random search trees

. Universal hashingo..c......
. Hashing with chaining
. Iashing with open addressingcoccveieveninincini e
. d-Heaps ...
. Fibonacci heaps

§ 19. Multidimensional data STUCIUIEScoecvereeimerenemiirie e

Assignments
List A

Bibliography

https://biblioteca-digitala.ro / https://unibuc.ro

141
143
148
158
164
176
185
190
197
197
200
203
204
206

Chapter 1. Structured data types

§ 1. Linear lists. Stacks and Queues

A linear list is a set of n 2 0 nodes X [1], X [2] ,..., X [n] whose
structural properties essentially involve only the linear (one-dimensional)
relative positions of the nodes:

if n >0, X[1] is the first node;
when 1 <k <n, the k- th node X [£] is preceded by X [k — 1] and followed
by X [k+1];

X[n] is the last node.

The operations we might want to perform on linear lists include,
for example, the following:

1) Gain acces to the k—th nodc of the list to examine and/or change
the contents of its fields.

ii) Insert a new node just before the k- th node.

111) Delete the k— th node.

iv) Combine two or more lists into a single list.

v) Split a linear list into two or more lists.

vi) Make a copy of a linear list.

vii) Determine the numbecr of nodes in a list.

viii) Sort the nodes of the list into ascending order based on cer-
tain fields of the nodes.

ix) Search the list for the occurrence of a node with a particular
value in some field.

There are many ways to represent linear lists depending on the
class of operations which are to be done most frequently. It appears to
be impossible to design a simple representation method for linear lists
in which all of these operations are efficient.

https://biblioteca-digitala.ro / https://unibuc.ro

Linear lists in which insertions, deletions, and accesscs to values
occur almost always at the first or the last node arc frequently encoun-
tered, and we give them special names:

A stack is a linear list for which all insertions and deletions (and
usually all accesses) are made at one end of the list. Stacks have
been called push - down lists, last-in-first out (LIFO) lists, ...

* A qucue is a linear list for which all insertions are made at one end
of the list; all deletions are made at the other end. Qucues have
been called also circular stores or first-in-first-out (FIFO) lists.

Stacks most frequently occur in connection with recursive

algorithms.
top ——» front ———»
bottom rear ———»
Stack Queue

We write 4 < x (when A4 is a stack) to mean that the value x is
inserted on top of stack 4, or (when A is a queue) to mean that x is
inserted at the rear of the queuc.

The notation x <= 4 is used to mean that the variable x is set equal
to the value at the top of stack 4 or at the front of queue A4, and this value
is deleted from 4.

Notation x < A is meaningless when 4 is empty.
§ 2 Sequential allocation

The simplest way to keep a linear list inside a computer is to put
the list items in sequential locations, one node after the other:
LOC(X[j + 1]) = LOC(X[/]D + ¢

where ¢ is the number of words per node (usually ¢ = 1).

6

https://biblioteca-digitala.ro / https://unibuc.ro

We will assume that adjacent groups of ¢ words form a single node.
In general LOC(X[j]) = L+ ¢j, where L_is a constant, called the
base address.
Sequential allocation is convenicnt for dealing with a stack.
We have a variable 7 called the stack pointer. When the stack is
empty, we let T=0.
- X & Y (insert into stack):
T« T+ 1;if T> M then OVERFLOW;
X[Tl« 7
- ¥ < X (delete from stack):
if T =0, then UNDERFLOW;
Y« X[T};)T<T-1.
(We assumed that X[1] ,..., X[M] is the total amount of space
allowed for the list).
OVERFLOW means that the storage capacity has heen
exceeded, and the program terminates.
For a queue we use two pointers F and R (for the front and rear of
the queue). If F = R then the queue is empty.
We can set aside M nodes X [1],..., X [M] arranged implicitly in
a circle with X[1] following X [M]. (R = F = M initially).
Hence we usc a queue as a circular queuc.
1, if queue is full
Letc= { 0, if queue is empty *\N\\x“ I Xfej

2, otherwise - /—r‘
/ / ”\
)\xm

* X < Y (insert into queue):
1. if ¢ = 1 then OVERFLOW;

https://biblioteca-digitala.ro / https://unibuc.ro

ifR=MthenR ¢ l,elscR< R+ 1.
2. X[R] &« Y;if R=Fthen c ¢« 1, else c « 2.

* Y & X (delete from queue):

1. if ¢ = 0 then UNDERFLOW;
ifF=Mthen F& 1, clse Fe— F+ 1.

2. Y& X [F]; if F=Rthen c « 0, else c « 2.

Bottom

List 1 Available space List 2
Bottom Top Top

When there are just two variable size list, they can coexist to-
gether if we let the lists grow toward each other: List 1 expands to the
right and List 2 to the left.

OVERFLOW will occur when the total size of both lists exhausts

all memory space.

But there is no way to store three or more variable — size sequen-
tial lists in memory so that (a) OVERFLOW will occur only when the
total size of all lists exceeds the total space, and (b) each list has a fixed
location for its ,,bottom’’ element.

Suppose that we have n stacks; the insertion and deletion algo-
rithms above become the following if BASE[i/] and TOP[i] are link vari-
ables for the i-th stack:

Lk

BASE[i] TOP{i|

* Insertion: TOP{i] « TOP [i} + ¢;
if TOP [i] > BASE [i+1], then OVERFLOW; otherwisc sct
NODE [TOP[i]] « Y.

8

https://biblioteca-digitala.ro / https://unibuc.ro

* Deletion: if TOP [i] = BASE [{], then UNDERFLOW; other-
wise set ¥ <~ NODE [TOP [i]], TOP [i] « TOP [i] - c.

These stacks are all to share the common memory area consisting
of all locations L with L S L <[

(L. - L,1s amultiple of ¢).

We wight start out with all stacks empty, and BASE [i]=TOP {i]
=L,~c, foralli

We alsoset BASE[n+1]=L_-c.

Whenever a particular stack, except stack n, gets more items in it
than it ever had before, OVERFLOW will occur.

When stack i overflows, there are three possibilities:

a) We find the smallest & for which

i<k2nand TOP [k] < BASE [k + 1],
if any such & exist.

Set CONTENTS (L + ¢) <~ CONTENTS (L) for
TOP [k] + ¢ > L 2 BASE [i + 1} + ¢ (this should be done for decreasing
values of L to avoid losing information).

Set BASE[j]«< BASE[j]+¢

TOP [j]« TOP [j]+c,fori<j<k.

b) No & can be found as in a), but we find the largest & for which
1 < k<jand TOP [k] < BASE [k + 1].

Set CONTENTS (L - ¢) « CONTENTS (1),
for BASE [k+ 1]+ c<L<TOP[i]+¢
(for increasing values of L)

Set BASE [j] « BASE [j] — ¢, TOP [j] « TOP [j] - ¢, for
k<j<i.

¢) We have TOP [k] = BASE [k+ 1] forall £+ i. We cannot find
space for the new stack entry, and we must give up.

By imagining a sequence of m insertion operations a, a, ,.... a_
where each a, is an integer between 1 and n representing an insertion on
top of stack a. we can regard each of the »n™ possible specifications
a, ..., a, as cqually likely.

We can ask for the average number of times it is necessary to
move a word from one location to another during the repacking opera-
tions as the entire table is built.

https://biblioteca-digitala.ro / https://unibuc.ro

Starting with all available space given to the n—th stack, we find
that the average number of move operations required is

-4

(hence is cssentially proportional to the square of the number of items in
the tables) by counting the number of inversions in all n™ such strings.

*» Algorithm R [Relocate sequential tables].

For 1 <j < n the information specified by BASE [j] and TOP[/]
in accord with the given conventions is moved to new positions speci-
fied by NEWBASE [/] and the values of BASE [j] and TOP [/] are
suitably adjusted.

1 (Initialize) Setj < 1 (Note that stack 1 never needs to be moved,
so for efficiency the programmer should put the longest stack first if he
knows which one will be largest).

2 (Find start of shift). Increase j in steps of 1 until finding either a)
NEWBASE [;]<BASE [/]: go to 3; orb) NEWBASE [/] > BASE [/]: go
to 4; or ¢) j > n : the algorithm terminates.

3 (Shift down) Set 8 « BASE [j] - NEWBASE [;]. Set
CONTENTS (L — 8) < CONTENTS (L) for L = BASE [j] + ¢, BASE
[1+c+1,.,TOP[j]+c—1.Set BASE [j] ¢« NEWBASE [j], TOP [j] «
TOP [/]1-6.

Go to 2.

4 (Find top of shift). Find the smallest k> for which NEWBASE
[k + 1] < BASE [k + 1]. (Note that NEWBASE [n+1] = BASE [+ 1],
so that such a &k will always exist).

Then do step 5 fort =4k, k—1,..., j; finally sctj « kand go to 2.

5 (shift up) Set

6 « NEWBASE [f] - BASE (1]
Set
CONTENTS (L + &) « CONTENTS (L) for L = TOP [¢t] +
+¢c-1,TOP[f]+c-2,.,BASE[f]+c
Set BASE (7] < NEWBASE [/]
TOP [f] « TOP [1] + 6.

Notation. Letf g :N - R
* We write f{n) = O(g(n)) if there cxist C> O and n, € N such that
|
i—f(n) <C
1&(r)
10

https://biblioteca-digitala.ro / https://unibuc.ro

for all n > n,

AL
. _ yie lim 2—-2 =0
Sin) = olg(m)) i 170N =T

[(n)
* fin) ~ g(n) (asimptotically equal) if '111_1)11 pr =1

§ 3. Linked Allocation

Each nodc contains a link to the next node of the list:

Sequential allocation: Linked allocation:
Address Contents Address Contents
L +c Item 1 A: Item 1 B
L, +2c: Item 2 B: Item2 | C
L +3c: Item 3 C: Item3 | D
L +A4c: Item 4 D: Item4 | E
L, +5c: Item 5 E: Item5 | A

A is the null link.
Links are often shown simply by arrows and the liked table above
might be shown as follows:

Item 2 |- Item 3 »|[tem 4 Item 5(A

FIRST —{Item 1

) 4

Here FIRST is a link variable pointing to the first node of the list.

Comparisons between sequential and linked allocation:

* linked allocation takes up additional memory space for the links.

* itis easy to delete an item from within a linked list. For sequential
allocation such a deletion implies moving a large part of the list.

* it is easy to insert an item into a list when the linked scheme is
being used.

By comparison, this operation would be extremely time — con-

suming in a long sequential table.

11

https://biblioteca-digitala.ro / https://unibuc.ro

» references to random parts of the list are much faster in the
sequential case.
s the linked scheme makes it easier to join two lists together orto

break one apart.
We shall assume that a node has one word and that it is broken

into two fields

INFO and LINK: |INFO | LINK |

The use of linked allocation implies the existence of a list of
available space: AVAIL list (AVAIL stack).

X< AVAIL” : if AVAIL = A, then OVERFLOW;

otherwise X <~ AVAIL, AVAIL « LINK (AVAIL).

»AVAIL & X' : LINK (X) « AVAIL, AVAIL « X.

T —»

f Insertion:

P < AVAIL, INFO (P) « 7,
/ LINK(P) « T, T« P.

v :
) \ Deletion:
vr
A If T= A, then UNDERFLOW,
otherwise set P «~ T, T « LINK(P),
A linked stack Y « INFO(P), AVAIL ¢= P.
F —» > —> > Ale—R
A linked queue
F —» » 1> > R

. v Xf
Insertion:

P < AVAIL, INFO(P) « Y,LINK(P) «~ A; if F=Athen R F« P,
else LINK (R) « P, R« P.

12

https://biblioteca-digitala.ro / https://unibuc.ro

(By definition an empty queue is represented by F = A)

(T TN .
U

AVAIL

<«—R

\4
>

Deletion

If F= A, then UNDERFLOW; otherwise set P « F, F < LINK(P),
Y « INFO(P), AVAIL < P.

§ 4. Circular lists

—

A circular list has the property that its last node links back to the
first instead to be A .

—I» ~» <— PTR

a) Insert Y at left

P < AVAIL, INFO(P) « 7, if PTR = A, then

PTR « LINK(P) « P; otherwise LINK(P) « LINK(PTR),
LINK(PTR) « P.

b) Insert Y at right
Insert Y at left, then PTR « P.

c) Set T to left node and delete
If PTR = A, then UNDERFLOW; otherwise P « LINK (PTR),
Y «- INFO(P), LINK(PTR) « LINK(P), if PTR = P, then PTR « A,
AVAIL < P.
(a) + (c) = a stack
(b) + (c) = a queue
It is convenient to ,,erase’ a list, i.e., to put an entire circular list onto
thc AVAIL stack at once:
[f PTR # A, then AVAIL < LINK(PTR).

13

https://biblioteca-digitala.ro / https://unibuc.ro

(The ,,«> *’ operation denotes interchange, i.e., P « AVAIL,
AVAIL « LINK(PTR), LINK (PTR) « P).

If PTR and PTR, point to disjoint circular lists L and L,, respec-
tively, we can insert the entire list L, at the right of L :

If PTR, # A then

(if PTR, # A, then LINK (PTR)) <> LINK (PTR,)

sct PTR| « PTR,, PTR, < A).

We can put a special, recognizable node into each circular list, as
a convenient stopping place.

This special node is called the list head.

List head

i

On this way the circular list will then never be empty. The refer-
ences to such lists are usually made via the list head, which is ofien in a
fixed memory location.

We will consider the two operations of addition and multiplica-
tion of polynomials in the variables x, y and z.

Let us suppose that a polynomial is represented as a list in which
cach nodc stands for one nonzero term, and has the two-word form

COEF
+ ABC | LINK

where COEF is the coefficient of the term x*y#zC.

The nodes of the list always appear in decreasing order of the
ABC field and the list head links to the largest value of ABC (the order is
the lexicographic order).

For exemple, the polynomial 3x%y* — 6xy°z + 5y"x? would be rep-
resented thus:

W PTR

14

https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm A (Addition of polynomials)

This algorithm adds polynomial P to polynomial Q, assuming
that P and Q are pointer variables pointing to polynomials having the
form above.

The list P will be unchanged, the list Q will retain the sum. Pointer
variables P and Q retum to their starting points at the conclusion of this
algorithm; auxiliary pointer variables Q1 and Q2 are also used. The
pointer variable Q1 follows the pointer Q around the list.

1. [Initialize]. Set P « LINK(P), Q1 « Q, @ « LINK (Q) (Now
both P and Q point to the leading term of the polynomial. The vanable
01 will be ,,one step behind’’ Q, in the sense that 0 = LINK(QO1)).

2. [ABC(P) : ABC(Q)]. If ABC(P) < ABC(Q), set Q1 < Q and 0
« LINK(Q) and repeat this step. If ABC (P) = ABC(Q), go to step 3. If
ABC(P) > ABC(Q), go to step 5.

3. [Add coefficients] (We have found terms with equal exponents)
If ABC(P) < 0, the algorithm terminates. Otherwise set COEF(Q) «
COEF(Q) + COEF(P). Now if COEF(Q) = 0, go to 4; otherwise, set
01 « O, P« LINK(P), Q « LINK(Q), and go to 2.

4. [Delete zero term]. Set 02 « @, LINK(Q1) «- O « LINK(Q),
and AVAIL < Q2.

(A zero term created in step 3 has been removed from pelynomial {).

Set P « LINK(P) and go to 2.

5. [Insert new term] (Polynomial P contains a term that is not
present in polynomial Q, so we insert it in polynomial Q).

Set 02 <= AVAIL, COEF(Q2) - COEF(P), ABC(Q2) « ABC(P),
LINK(Q2) « @, LINK(QI]) « @2, Q1 « Q2, P « LINK(P), and
return to step 2.

Algorithm M (Multiplication of polynomials)

This algoritm, analogous to algorithm A, replaces polynomial Q
by polynomial Q + polynomial M x polynomial P.

1. [Next multiplier] Set M « LINK(M). If ABC(M) < 0, the
algorithm terminates.

2. [Multiply cycle] Perform algorithm A, except wherever the
notation ,,4BC(P)” appears in that algorithm, replace it by ,,if ABC(P)
< 0 then -1, otherwise, ABC(P) + ABC(M)"; wherever ,,COEF(P)”
appears in that algoritm, replace it by ,,COEF(P) x COEF(M)"”. Then
go back to step 1.

15

https://biblioteca-digitala.ro / https://unibuc.ro

§ 5. Doubly linked lists

et The{ T el [el [[Rewicim

For even greater flexibility in the manipulation of linear lists, we
can include two links in each node, pointing to the items on cither side
of that node.

Here LEFT and RIGHT are pointer variables to the left and right
of the list.

Each node includes two links, called LLINK and RLINK.

When a list head node is present. we have a typical diagram of a
doubly linked list:

List head
B YW A

If the list is empty, both link fields of the

F

(>
f—\,j—"

list head point to the head itself.

The list representation clearly satisfies the condition

RLINK (LLINK(X)) = LLINK(RLINK (X)) =X
if X is the location of any node in the list (including the head).

A doubly linked list usually takes more memory space than a
singly linked one does, but the additional operations that can now be
performed efficiently are often more than ample compensation for this
extra space requirement.

One can delete NODE (X) from the list, given only the valuc of X
X

1 f\\

N

T -

AVAIL

https://biblioteca-digitala.ro / https://unibuc.ro

RLINK(LLINK(X)) <~ RLINK(X). LLINK(RLINK(X)) <~ LLINK(X).
AVAIL < X.

The tnsertion of a node adjacent to NODE (X) at either the left or
the right is easy.

P < AVAIL, LLINK(P) « A, RLINK(P) « RLINK(X), LLINK
(RLINK(X)) « P, RLINK(X) « P
do such an insertion to the right of NODE (X); by interchanging left and
right we get the corresponding algorithm for insertion to the left.

Arrays and lists. A generalization of a linear list is a two — dimen-
sional or higher — dimensional array of information. For examplc, con-
sider the case of an m X n matrix

AL AL2]. L AlLn)
A2 A[2.2]. A1 2,n)

Alm,1], A[m.2],.... Am,n]

In this two — dimensional array, each node A[}, k] belongs to two
linear lists: the ,,row j " list A[},1], A[},2],..., A|j,n], and the ,,column &
list A[1,k], A[2,k],..., A[m,k].

Similar remarks apply to higher — dimcnsional arrays of infor-
mation.

Sequential allocation. When an array is stored in sequential
memory locations, storage is usually allocated so that

LOC(A[J,K))=a,+aJ+a,K,
where @, a,, and a, arc constants.

The most natural (and most commonly used) way to allocate stor-
age is to let the array appear in memory in the ,,lexicographic order” of
its indices.

In general, given a k-dimensional array with ¢-word elements
Al ,L,.. . 1] for0</ <d,0</,<d,...,0<] <d, we canstore it in
memory as
LOC (A[l, 1,, ..., 1,]) = LOC(A4[0.0....0D) + «(d, + 1) ... (d, + DI + ...

k

L 4ed +)+l = LOC(A[00...0]) + X a.]..

r=I

k e T
wherc a, =c Il (d_+1). 74 1LI1O0T
s=r+l >
® ¢ ENTRAL '
uNVERsiTAR)] VT

l() ¢ PR /
S CUuRER’ A
T r——T

https://biblioteca-digitala.ro / https://unibuc.ro ~

To see why this formula works, observe that ais the amount of
memory needed to store the subarray A(/,,....,/, J ... J;Jif 1.1 are
constant and J _ ,...,J, vary through all values0<J | < d,.,0< J,
< d,; hence by precisely this amount when /_changes by 1.

The above method for storing arrays is generally suitable when
the array has a complete rectangular structure, i.e., when all elements
All,.1,,...,1,] are present.

There are many situations in which this is not the case; most com-
mon among these is the triangular matrix, where we want to store only
the entries A[/ k] for,say, 0 < k<j<n:

A[0,0]
A[1.0] A[11]

A[n,0) Ain,l]... Aln,n]

We may know that all pther entries arc zero, or that A[j, k] = A[k,],
so only half of the values need to be stored.

If we want to store the lower triangular matrix in (n+1)(n+2)/2
consecutive memory positions, we can now ask for an allocation ar-
rangement of the form

LOC(L, K]) = a, + £,()) + /,(K)
where f, and f, are functions of one vanable.
We have in fact the formula
LOC(4[J, K]) = LOC(A4[0, 0]) + cJ(J+ 1)/2 + K¢

The generalization of triangular matrices in higher dimensions is
called a tetrahedral array. A k-dimensional tetrahedral array A4[i ,i,,...,1,]
satisfles 0</, <... i <i <n.

If A 1s stored in lexicographic order of the indices then

(T +k—r
LOC (A[l,,.... 1]) = LOC(A[0, 0,..., 0]) + €. [k o)

r=1

1 +k-r
To sce why this formula holds, observe that C[[) 1s the

18

https://biblioteca-digitala.ro / https://unibuc.ro

amount of memory nceded to store the subarray 4(/,...,/ |, J,....J)if
/...l are constant andJ,...,J, vary through all values 0 <J, ..<J <
I - 1, i.c. the difference of locations between A[/,,..., I, 0,...,0] and
All..... 1, 1,0,..,0]. The number of increasing words J,...J, of length
k —r + 1 with lctters in an alphabct of cardinality / is precisely the

number of combinations with repetition of a set with / elements taken

1r+k-—rj

k—r+1atatime.ie., (k—r+1

Linked allocation. For higher — dimensional arrays of informa-
tion the nodes can contain & link ficlds, one for each list the node is in.

Sparse matrices arc matrices of large order in which most of the
clements are zcro.

The goal is to operate on thesc matrices as though the entire ma-
trix were present, but to save great amounts of memory space because
the zero entries need not be represented.

The representation we will discuss consists of circularly linked
lists for cach row and column. Each node of the matrix contains three
words and five fields:

ROW UP
COL LEFT

VAL

Here ROW and COL are the row and column indices of the node;
VAL is the valuc stored at that part of the matrix; LEFT and UP are
links to the next nonzero entry to the left in the row, or upward in the
column, respectively.

There are special list head nodes, BASEROW [i] and BASECOL
[f]. for every row and column. These nodes are identified by
COL(LOC(BASEROWI[{])) < 0 and ROW(LOC(BASECOL [/])) <0

As usual in a circular list, the LEFT link in BASEROW [/] is the
location of the rightmost value in that row, and UP in BASECOL [/] is
the lowest value in that column.

https://biblioteca-digitala.ro / https://unibuc.ro

If the nodes are illustrated in the format

2 000

LEFT UP 0 -10 2

ROW | COL | VAL the matrix |-10 0 0 1] would be
0 0 00O

represented as shown below:

Wi -\
S _]_P\\;

List heads appear at the left and the top.

The amount of time taken to access a random element A[j 4] is
also quite reasonable since most matrix algorithms proceed by walking
sequentially through a matrix, instead of accessing elements at random.

§ 6. Graphs and trees

A graph G = (V,E) is a combinatonal structure consisting of a sct
of vertices V and a set of edges E. Unless otherwise stated, both arc
assumed to be finite. Each edge is associated with two vertices called its
end points.

20

https://biblioteca-digitala.ro / https://unibuc.ro

If these two end points have the same relation to the edge, the
edge has no natural orientation and is considered undirected. In this case
E is a set of unordered pairs of vertices.

If not, we may consider one of end points as the start vertex and
the other as the finish vertex, and in this case the edge is considered
directed. For directed graphs E is a subset of the cartesian product V'x V.

Usually, when we draw a representation of G, the vertices are
represented by points and the edges are represented by lines, not neces-
sarily straight. If the edges are directed, we add an arrowhead to specify
its direction. The vertex set and edge set of a graph G are also denoted
by V(G) and E(G), respectively.

The graph G| is undirccted. It has

V(G) = {abcdefgh,ij} and

E(G)) = {ab, ac, ad, fg. fh, gh, gJ, hi, ji}

G, is directed with V(G,) = {a.b,c.d,e,f} and E(G,) = {(a,b), (a,¢),
(c.e), (e.a), (c.d), (de), (ef)}.

The degree of a vertex v, denoted d(v) is the number of edges
containing v. In case of a directed graph we may also speak of the indegree
d (v), and outdegree d*(v), which are defined in the natural way.

For example, for the graph G, we have d(a) = 3, d(e)=0 (e is an
isolated vertex), d(f) = 2 etc.

21

https://biblioteca-digitala.ro / https://unibuc.ro

For G, we get d'(b)=1 and d7(h)=0; d (c)=1 and d*(c)=2 ctc.

Two vertices joined by an edge (dirccted or not) are called
adjacent.

A walk in a graph is a sequence of vertices x , x,,....x,_such that x,
is adjacent with x for 1 <i<r-1. For directed graphs (or digraphs) this
condition becomes (x, x,_) € E(G) forevery 1 <i<r-1.

If all vertices x ,...,x_ are pairwise distinct the walk is called
a path.

For undirected graphs if x, = x_and no edge is used twice, the
walk x,x,,....x_(=x,) is called a cycle.

If the edges of a cycle are directed arbitranly we obtain a cycle in
a digraph.

If every two adjaccnt cdges of a cycle in a digraph have not oppo-
site orientations, the cycle is called a circuit.

An undirected graph is said to be connected if for cvery two ver-
tices a and b there exists a path: a,...,b connecting them.

If a graph G is not connected, then it has r > 2 connected compo-
nents that are defined as maximal connected subgraphs of G (maximality
refers to set — inclusion).

Forexample, G, has three connected components, C,={¢}, C,;={q,
b, ¢, d} and C={f, g, h,i, j}.

A directed graph is said to be strongly connected if for cvery two
vertices a and b there exists a directed path from a to b. G, has 3 strongly
connected components: {b}, {f}, {a,c.d.e}.

The connected (strongly connected, resp.) componcents of a graph
G induce a partition of V(G).

Examples

* b,a,d,a,cis a walk for G, which is not a path.

*fghijis apath for G,.

* e.a,c.e,fis a walk for G, which is not a path.

* a,c,defis apath for G,.

*fghfand g h,ijg are cycles of G,.

*¢,¢,deis acycle of G, which 1s not a circuit.

e ¢,a,cd e 1s a circuit of G,

22

https://biblioteca-digitala.ro / https://unibuc.ro

Note that a cycle can use twice a
the same vertex. G, is in fact a cycle
a, ¢ e d ¢ b, a which uscs twice ver-
tex ¢. This cycle is in fact the sum of

two elementary cycles: ¢, ¢, b, a and c
¢ d e c.

The order of a graph G is by b G ¢
definition [V(G)|, the number of its 3

vertices and the size is |E(G))|, the num-
ber of its edges.

A connected graph that contains
no cycle is called a tree.

This notion referees mainly to
undirected graphs (see for example
graph 7). The following theorem gives
three characterizations of trees:

Theorem 1. Let G be a graph of T
order n 2 3. The following conditions
are equivalent:

(a) G is a connected graph without cycles;

(b) G is cycle — firee maximal (if any missing edge is added to G,
a cycle appears),

(c) G is connected minimal (if any edge is deleted from G, the
connectivity of G is destroyed).

Proof: We shall prove that (a) = (b) = (c) = (a).

(a) = (b): We assume that G is connected and cycle — free. Let
e=ab ¢ E(G), where a # b. There is a path in G between a and b; if we
add e this path with e form a cycle.

(b) = (c): If G would not be connected then by joining by a new
edge two vertices belonging to different connected components then no
cycle appears, which contradicts (b). If ¢ € E(G) and G—e is still con-
nected then there exists a path joining the extremities of e in G, hence G
contains a cycle, which contradicts (b) again.

(¢) = (a): If G would contain a cycle and e is any edge of this
cycle then G—e is still connected, which contradicts (c). [

23

https://biblioteca-digitala.ro / https://unibuc.ro

Theorem 2. If G is a tree of vrder n, then G has n — 1 edges.

Proof: First we shall prove that G contains at least one (in fact
two) vertices of degree one (terminal vertices).

Suppose, to the contrary, that d(v) 2 2 for cvery v e V(G). In this
casc consider a path P of maximum length (= number of edges) of G and
let x be an extremity of P. Vertex x has degree at least 2, hence it must be
adjacent to at least another vertex of P (by the maximality of P) which
produces a cycle in G, a contradiction.

Now the property that G has n—1 edges follows casily by induc-
tion: it 1s true for n=1 and if we supposc that it is true for all trecs
of order at most n—1 let G be a tree of order n. If x is a terminal vertex of
G, then G—x is also a tree of order n—1 and the induction hypothesis
applies to G—. [

If G has m edges wc shall associate to G a vectorial subspace of
R”, denoted by Z(G) and called the cycle space in the following manner:

First we orient in an arbitrary manner the edges of G and any
cycle ¢ of G is associated with a vector (¢ c,,...,c,) € R™ where

1,if edge e, € ¢ has the same orientation as c;

¢, =< —L,if ¢; € ¢ has opposite orientation toc;
0, otherwisc
X, For example cycle 1,2,3,1 is
TN associated to
/ZQ_] ¢, = (1.-1,-1,0,0);
/ : \/ e, 1,3,4,1 - (Q,O,l,l,l) =y
"1/ / X 1,2,3,4,1 -5 (1,-1,0,1.1)=c,
l," y /e /){ , \“, .It is cle.ar that ¢, ¢,, ¢, are
(1A ——‘——‘*/*‘f ; not linearly indepcndent, since
\ ,\'/ ' I =616,
T ;e Now Z(G) is defined as the
“ { I,” / vectorial subspace of R spanned
7, by all vectors associated with
vt cycles of G.

Consider now an ordered
partition of (G): V(G)=X LU X

24

https://biblioteca-digitala.ro / https://unibuc.ro

The cocycle (or cutset) @ induced by this partition consists of the sct of
directed edges (¢.h) where a ¢ X, and b € X, and of the set of dirccted
edges (¢,d), where c € X, and /€ X . To @ we associate a vector of R™,

(®,0,,...,0,), where

Life; =(a,b)anda € X, and b € Xy,
o, =3-Lilgae XY,andb e \|;

0, otherwise.

If X,={1,2} and X={3,4}, the cocycle @ = (0,-1,1,0,-1).

The cocycle space of G, denoted by U(G) is defined as the
vectorial subspace of R” spanned by all vectors associated with
cocycles of G.

If <, > denotes the scalar (or inner) product of vectors in R”, one
can casily check that <c ,w>=<¢,,0>=<c,,w>=0. This is a general
property for graphs.

Theorem 3. For any graph G, spaces Z(G) and U(G) are
orthogonal.

Proof: We shall prove that for any cycle c and cocycle w we have
<c,wm>=0.

Let X, U X, be the ordered partition of (G) inducing . It is clcar
that only edges of ¢ joining a vertex of X, with a vertex of X, will pro-
ducc non-vanishing components of < ¢, >. If ¢ goes from X, to X, this
non-vanishing component of the scalar product is always equal to
1 (1+1 if the corresponding edge of the cycle is from X, towards X, or
(=1)*(~1) if the directed edge has an opposite orientation), and if ¢ goes
from X to X, this component is cqual to —1 (1+(—1) or (—=1)-1). llence
< ¢, > cquals the difference between the number of times whencver ¢
passes from X, to X, and the number of times whencver ¢ passes from X,
to X, which is zero. [}

The dimension of Z(G) is denoted by u(G) and is called the
cyclomatic number of G and the dimension of U(G) is denoted by A(G),
the cocyclomatic number of G.

Theorem 4. (Kirchhoft). Let G be a graph having n vertices,
m edges and p connected components. Then u(G) = m-n+p and
AMG) = n—p.

25

https://biblioteca-digitala.ro / https://unibuc.ro

Proof: Suppose first that G is connected (p = 1).
Since G is conncected, from Theorem 1(c) it follows that therc
exists a spanning tree T of G (such that V(7) = V(G) and E(T) < E(G)).
T has exactly n—1 edges. We shall denote the remaining edges of G by
€,.€,,....¢, ... From Theorem 1 (b) it follows that 7+e contains a cycle
¢ forevery 1 i< m-n+1. These m—n+1 cycles are linearly independent
because each contains an edge that is not contained by the other cycles.
It follows that p(G) = dim Z(G) =2 m—n+1.
If E(T) = {f,..../,_,}, it follows that T—f, has exactly two

connected components, ¢! and ¢? which induce a partition of V(G),

hence a cocycle ©, of G for every 1 < i < n-1. These n—1 cocycles
arc linearly independent by the same argument as for cycles. Hence
A(G) = dim U(G) 2 n-1.

It follows that W(G) + A(G) = m. Because spaces Z(G) and U(G)
are orthogonal it follows that u(G) + A(G) < m since both are subspaces
of R™. We deduce that all inequalities are equalities and w(G) = m-n+1
and A(G) = n-1 hold.

If G is not connected it has p 2 2 connected components
CI’CZ""’Cp’ containing respectively s, vertices (n*.4n, = n) and
m,...,m, cdges (m]+...+mp=m).

By performing the same algorithm we find in each component
C, m—n+1 linearly independent cycles and n —1 linearly independent
cocycles.

(m

i

-n +1) =

4
Hence the number of these cycles is equal to
=1

t

»

=m —n + p and of cocycles is z (n, =1) =n - p and all these cycles
i=1

(resp. cocycles) are linearly independent. Since pu(G) + MG) < m it

follows, as above, that u(G) = m—n+p and MG) = n—p.)

Theorem 5. Let G be a graph of order n 2 3. The following con-
ditions are equivalent:

(a) G is a connected graph without cycles;

(d) G is cycle — free and has n—1 edges;

26

https://biblioteca-digitala.ro / https://unibuc.ro

(¢) G is connected and has n—1 edges,
() There is a unique path between every pair of distinct vertices
of G.
Proof: We shall prove that (a) = (d) = (e) = (f) = (a).
(a) = (d): WG) =0, i.c., m—n+1=0, or m=n-1.
(d) = (e): W(G) = 0 implies that (n—1)-n+p=0, or p=1, hence G is
connected.
(e) = (f): W(G) = (n-1)-n+1=0, hence G is cycle—free. Because
G is connected there exists at least a path between every pair of distinct
vertices of G. If for two vertices x,y € V(G) there exist two paths P, and
P, between x and y (P, # P,) this implies that G has at least a cycle,
which contradicts the property that G is without cycles.
(f) = (a): If G would contain a cycle C we contradict (f) since
between every pair of distinct vertices of C there are two distinct paths.
From theorems 1 and 5 we deduce six different characterizations
of trees: (a) — (f).

§ 7. Binary trees

The binary trees are the most important nonlinear structures aris-
ing in computer algorithms. Generally speaking, tree structure means a
branching relationship between nodes, much like that found in the trees
of nature.

In the sequel we shall use another notion of tree. In graph-thco-
retic literature trees as defined below are usually called ordered rooted
trees.

Trees consist of internal nodes (branching points) and terminal
nodes (or leaves).

Let V' = {v, v,, ...} be an infinite set of internal nodes and let
B ={b,b,, ...} be an infinite sct of leaves. We define the set of trees

over Vand B inductively.

Definition

a) Each element b € B is a tree. Then b, is also root of the tree.

b)If T,,...,T, (m = 1) are trees with pairwisc disjoint sets of inter-
nal nodes and leaves and v € V is a new node then the (m + 1) — tuple
T=<vT,.T >isatrcc. Node v is the root of the tree, p(v) = m is its
degree and T is the i—th subtree of T.

27

https://biblioteca-digitala.ro / https://unibuc.ro

We always draw trees with the root at the top and the leaves at the
bottom. Intermal nodes are drawn as circles and Icaves are drawn as
rectangles, but they can be drawn as circles also.

Fig. 1

We use the following terms when we talk about trees. Les T be a
tree with root v and subtrees 7, 1 < i< m. Let w =root (T). Then w, is
the i~th son of v and v is the father of w,.

Descendant (ancestor) denotes the reflexive, transitive closure of
relation son (father). w, is a brother of w, j # i. In the tree above, b, and
v, are brothers, v, is father of v, and v, and b, is descendant of v,.

The depth or level of a node v of a tree T is defined as follows: If
v is the root of T then depth (v, T) = 0. If v is not the root of T then v
belongs to T, for some i. Then depth (v, T) = 1 + depth (v, T). We mostly
drop the second argument of depth when it is clear from the context.

The height of a tree T is defined as follows: height (T) = max
{depth (b, T) : b is aleaf of T}. In our example, we have depth (v,) = 1,
depth (v,) = 2, depth (b,) = 3 and height (T) = 3. Tree T is a binary tree
if all intermal nodes of T have degree 1 or 2 and T is called complete if
all internal nodes of T have degree cxactly 2.

Our example tree is a complete binary tree. A complete binary
tree with # internal nodes has n + 1 leaves. The 1st (2nd) subtree is also
called left (right) subtree.

Note that the degree of a vertex (internal node or leaf) of a tree is
the number of subtrees of that vertex and leafs have degree zero. Also a
binary trec is not a tree from graphtheoretic literature. For example, the
binary trees below arce distinct (the root has an empty left subtree in one

28

https://biblioteca-digitala.ro / https://unibuc.ro

and

&) (B

case and a nonempty left
subtree in the other), although
as trees they would be identi-
cal. Algebraic formulas pro-
vide us with another example
of tree structure. The arith-
metic expression
ab — c(dle + hg)

may be represented as a binary
tree:

Traversing binary trees. Information can be stored in the leaves
and nodes of a tree. In some applications we use only one possibility. A
binary trce is realized by three arrays LLINK, RLINK and CONTENT
or equivalently by records with three fields, and a link variable T which
is a pointer to the tree. If the trce is empty, T = A; otherwise T is the
address of the root of the tree, and LLINK (T), RLINK (T) are pointers
to the left and right, respectively, subtrees of the root. These rules recur-

sively define the memory representation of any binary tree.

For example, the binary tree in figure 1 is represcented by

T Ta .-
B B] v, ‘ . }‘ —

N 4]

-) \
N R R v roge
L T O e N L L Aih

o IR S
' T]
A la | (A Fig

https://biblioteca-digitala.ro / https://unibuc.ro

Systematic exploration of a tree is needed frequently. A binary
trec consisting of three components (a root, a left subtree and a right
subtree), three methods of tree traversal come naturally:

Preorder traversal: visit the root, traverse the left subtree, traverse
the right subtree: Root, L, R.

Postorder traversal: traverse the left subtree, traverse the right
subtree, visit the root: L, R, Root.

Symmetric traversal: traverse the left subtrece, visit the root, traverse
the right subtree: L, Root, R.

These three methods are defined recursively; when the binary tree
is empty, it is traversed by doing nothing. Symmetrical variants are
obtained by interchanging L and R.

If we apply these definitions to the binary tree from fig. 1, we find
that the vertices 1in preorder arc v v.b v,b by b b,, in postorder are

17271747475 37279
bbbv,v,b,b,v,v, and in symmetric order: b,v,b,v,b.v b,v.b..

In ordér 10l traverse a binary tree we usually make use of an aux-
iliary stack, as in the following algorithm:

Algorithm T (Traverse binary tree in symmetric order).
Lect 7T be a pointer to a binary tree having a representation as in fig. 2;
this algorithm visits all the nodes of the binary tree in symmetric order,
making use of an auxiliary stack 4.

1. [Initialize]. Set stack 4 empty, and set the link variable P « T.

2.[P=AIfP=A, goto step 4.

3. [Stack <= P]. (Now P points to a nonempty binary trec which is
to be traversed). Set 4 < P, i.e., push the value of P onto stack 4. Then
set P « LLINK (P) and return to step 2.

4. [P < Stack]. If stack A is empty, the algorithm terminates;
otherwise set P < A.

5. [Visit NODE (P)]. Visit NODE (P). Then set P < RLINK (P)
and return to step 2.

In the final step of this algorithm, the word “visit” means we do
whatever activity is intended as the trec is being traversed.

When we get to step 3, we want to traversc the binary tree whose
root is indicated by pointer P. The idea is to save P on a stack and then
to traverse the left subtree; when this has been done, we will get to step
4 and will find the old value of P on the stack again. After visiting the
root, NODE (P) in step 5, the remaining job 1s to traverse the nght subtrec.

30

https://biblioteca-digitala.ro / https://unibuc.ro

Let us prove that algorithun T traverses a binary trec of 1 nodes in
symmetric order, by using induction on n. We shall prove a slightly
more general result:

Starting at step 2 with P a pointer to a binary tree of n nodes and
with the stack A4 containing 4 [1] ... 4 [m] for some m 2= 0, the procedure
of steps 2—5 will traverse the binary tree in question in symmetric order
and will then arrive at step 4 with stack A4 returned to its original value
A[1]... 4 [m].

This statement is obviously truc when n = 0, because of step 2. If
n> 0, let P, be the value of Pupon cntry to step 2. Since P # A, we will
perform step 3, which means that stack A is changed to 4 [1] ... 4 [m] P,
and P is set to LLINK (P,). Now the left subtree has less than n nodes,
so by induction we will traverse the left subtree in symmetric order and
will ultimately arrive at step 4 with A [1] ... 4 [m]P on the stack. Step 4
returns the stack to 4 [1] ... 4 [m] and sets P « P . Step 5§ now visits
NODE (P,) and sets P < RLINK (P)). Now the right subtree has less
than n nodes, so by induction we will traverse the right subtree in
postorder and arrive at step 4 as required. The tree has been traversed in
symmetric order and the proof is complete.

An almost identical algorithm may be formulated which traverses
binary trees in order Root, L, R by visiting NODE (P) between steps 2
and 3, instead of between steps 4 and 2.

If P points to a node of a binary tree, let P$ be the address of
successor of NODE (P) in symmetric order and $P be the address of
predecessor of NODE (P) in the same order. If there is no such succes-
sor or predecessor of NODE (P), the value LOC (7) is generally used,
where T is a pointer to the tree in question.

There is an important altemative to the memory representation of
binary trees given in figure 2, which is somewhat analogous to the dif-
ference between circular lists and straight one-way lists. It can be proved
easily by induction on n that for every binary tree with # nodes repre-
sented as in fig. 2 there are always cxactly n + 1 A links (counting T
when it is null) and there are #n non-null links, counting 7, hence there
are more null links than other pointers.

In the method called threaded tree representation terminal links
are replaced by “threads” to other parts of the trec, as an aid to traversing
the tree.

31

https://biblioteca-digitala.ro / https://unibuc.ro

The threaded trec equivalent to the representation in fig. 2 is:

H o f
v
A/"/ A4
I v ’/\?3
N

Fig. 3

Here dotted lines represent the threads, which go to a higher node
of the tree.

In the memory representation of a threaded binary trec it is neces-
sary to distinguish between the dotted and solid links; this is done by
two additional one-bit fields in each node, LTAG and RTAG. The
threaded representation may be precisely defined as follows:

Unthreaded representation Threaded representation
LLINK (P)= A LTAG (P)=-, LLINK (P) = §P
LLINK (P)=Q0#A LTAG (P)=+, LLINK (P)=Q
RLINK (P)=A RTAG (P) = -, RLINK (P) =

RLINK (P)=Q#A RTAG (P)=+ RLINK (P)=Q

Hence each new thread link points directly to the predecessor or
successor of the node in question, in symmetric order.

For threaded trees we shall use a list head for the trec, with
LLINK (HEAD) = T, RLINK (HEAD) = HEAD, RTAG (HEAD) = +,
where T is the pointer to the trec and HEAD denotces the address of the
list head.

If the trce is nonempty then LTAG (IIEAD) = +; otherwise we
have LLINK (HEAD) = HEAD, LTAG (HEAD) = —.

In accordance with these conventions, the computer representa-
tion for tree in fig. 1, as a threaded tree is shown in fig. 4.

32

https://biblioteca-digitala.ro / https://unibuc.ro

HEAD

[15 | b, |_]

Fig. 4

The advantage of threaded trees is that the traversal algorithms
become simpler.
The following algorithm calculates P$, given P:

Algorithm S (Symmetric successor in a threaded binary tree).
If P points to a node of a threcaded binary tree, this algorithm sets
Q « PS.

1. [RLINK (P) a thread?] Set Q «~ RLINK (P). IfRTAG (P) = -,
terminate the algorithm.

2. [Search to left]. If LTAG (Q) = +, set Q « LLINK (Q) and
repeat this step. Otherwisc the algorithm terminates.

Note that no stack is needed here to accomplish what was done
using a stack in Algorithm 7. Threaded trees grow almost as casily as
ordinary ones do.

Algorithm 1 (Inscrtion into a threaded binary tree). This
algorithm attaches a single node. NODE (Q), as the right subtree of
NODE (P), if the right subtrec is empty, and it inserts NODE (Q) be-
tween NODE (P) and NODE (RLINK (P)) otherwise.

33

https://biblioteca-digitala.ro / https://unibuc.ro

1. [Adjust tags and links]. Set RLINK (Q) < RLINK (P), RTAG
(0) & RTAG (P), RLINK (P) « O, RTAG (P) « +, LLINK (0) « P,
LTAG (Q) « —.

2. [Was RLINK (P) a thread?]. If RTAG (Q) = +, set LLINK
(0$%) « Q. (Here Q% is determined by Algorithm S).

§ 8. Huffman’s algorithm

The vertices of a binary tree have a natural correspondence to
words over an alphabet with 2 letters, say M = {0,1}. For example,

vertex H of fig. 5 corresponds to the
word 100, because we take first the
night son (1), then the left (0), and
finally the left (0).

Thus, for every vertex of the
tree there exists a unique word over
M. This is true whether the vertex is
terminal (like A) or not (like F, which
corresponds to 10). However, there

100 101 may be words over M which do not
correspond to vertices of the tree. Let
Fig. 5. I(v) (the level of vertex v) be the length

of the path from the root to v (or the depth of v): it is equal to the number
of letters in the word which corresponds to v.

The set of words which correspond to the terminal vertices of a
binary tree forms a prefix (sometimes called instantaneous) code; that
is, no word in the code is the beginning of another. Thus, if a sequence
of letters is formed by concatenation of words of the code, where repeti-
tions are allowed, the sequence can be decomposed by reading the se-
quence from left to right and marking off a word as soon as a word of
the code 1is recognized. For example, the code which corresponds to the
tree of fig. 5 is {00, 01, 100, 101, 11}. Now, the sequence 000110110100
1s easily decomposed, from left to right into 00, 01, 101, 101, 00.

We shall discuss a construction of a binary tree which is optimal
in a sense to be discussed shortly. We shall present it as a communica-

34

https://biblioteca-digitala.ro / https://unibuc.ro

tion problem, both because it is a natural application, and because his-
torically it was the context of its invention by Huffman. Later we shall
point out two more applications: in sorting and in searching.

Assume that we have L basic messages to be transmitted over a
communication channel which transfers letters of M = {0,1}, one at a
time. Wc assume that cach lctter of M requires the same time to trans-
mit. Also assume that these messages appear one after the other with
probabilities p , p,,...,p, and the next message to be sent is chosen with
these probabilities, independent of the previous messages. Our purpose
is to find a prefix code C = {w, w,,...,w, } over M with a vector of word

L
lengths (/, /,,...,/,) such that the average word length 21, Pili will be
i=
minimum. Here /(w) = [is the length (number of letters) in w..
Sorting by merging accesses data in a purely sequential manner.
Hence it is very appropriate for sorting with secondary memory, such as
disks and tapes. In this context the following problem is of interest.
Very often we do not start with sorted sequences of length one but are
given n sorted sequences S ,...,S_ of length w ,...,w_respectively. The
problem 1s to find the optimal order of merging these sequences into a
single sequence. Here we assume that it costs x + y time units to merge
a sequence of length x with a sequence of length y.
Any merging pattern can be represented as a binary tree with n
leaves.
The n leaves represent the » initial sequences and the n—1 internal

nodes represent the sequences obtained
by merging.

Tree represents the following
merging pattern:

§, « Merge (S, S,)
S, « Merge (S, S,)
S, « Merge (S, S,)

S, < Merge (5., S,)

35

https://biblioteca-digitala.ro / https://unibuc.ro

n
Here the sum to be minimized is 2 w,d(S;) | where w 1s the
i=1

length of S and d(S)) is its depth (or level) in the tree.

Another application of the Huffman tree to searching problems is
the following: in certain cases, data (keys) are stored in the leaves of
a binary tree. The question of how to construct this tree when the
probabilities of the various data are given and when we want to mini-
mize the average search time is identical with the problem which the
Huffman construction solves.

Let us first demonstrate Huffman’s construction by means of an
example. We shall assume that p 2 p, 2 ... 2 p,. Let our vector of
probabilities be (0.6, 0.2, 0.05, 0.05, 0.03, 0.03, 0.03, 0.01). We shall
write it as our top row (see fig. 6). We add the last (and thercfore least)
two numbers, and put the result (0.04 in our case) in its proper place.
We repeat this operation until we get a vector with only two proba-
bilities.

0.6 0.2 005 005 0.03_0.03_0.03 0.01
y

Of Oi2 0.05 005 0.04_0.03 0.03

0.6 0.2 00w04

Lo

06 02 009 _0.06 0.05

06 02 011 0.09

A

0.6 02 02

Ve

06 04
[10000] [10001]} D—‘ﬁmil m
0.03 : 0.03

Fig. 6 0.05
36

https://biblioteca-digitala.ro / https://unibuc.ro

We have obtained an optimal binary tree.

The fact that the [Tuffman construction is in terms of probabilities
does not matter, since the fact that p, + p, +...+ p, = 1 is never uscd in
the construction or its validity proof.

Definition: Let T be a binary tree withnleaves v ,...,v ; let CONT:

{v, vj,..,v,} = {w,..,w } be a bijection and let d, be the depth of leaf

v.. Then Cost (T) = z d CONT(v) is called the cost of tree T with
1=1

respect to labelling CONT.

In the case of sorting by merging trec 7 is a merging pattern, the
leaves of T are labelled by the n initial sequences, respectively their
lengths (weights). In our example above sequence S, is merged three
times into larger sequences: with S, then as a part of S, with §, and then
as a part of S, with S,. Also three is the depth of the leaf labelled S,.

In general, a leaf v of depth 4 is merged 4 times into larger se-
quences for a total cost of d CONT(v). Thus the cost of a merging
pattern 7 is as given in the definition above. We want to find the
merging pattern of minimal cost.

Definition: Tree T with labelling CONT is optimal if Cost
(T) £ Cost (T") for any other tree T~ and labelling CONT".

Theorem. If 0 < w < w, < .. <w then an optimal tree T and
labelling CONT can be found in linear time.

Proof: Huffman’s algorithm can be summarized as follows: We
construct trec 7'in a bottom-up fashion. We start withasct V= {v,,...,v }
of n leaves and labelling CONT (v) = w for 1 </ <n and an empty set
I of intemal nodes and sct & to zero; £ counts the number of internal
nodes constructed so far.

while k<n -1

do select x|, x, € I'U V with the two smallest values of CONT;
ties arc broken arbitrarily; construct a new node x with CONT (x) =
= CONT (x,) + CONT (x,) and add x to /; k « k + 1; delete x| and x,
from/ UV

37

https://biblioteca-digitala.ro / https://unibuc.ro

od

For n=>35and {w,...,w,} = {1, 2, 4, 4, 4} we start with 5 leaves
of weight 1, 2, 4, 4, 4. In the first step we combine the leaves of weight
1 and 2 and obtain an internal node with weight (content) 3 and so on:

I3 3 3 3 Y EY R [[E [

(i3
(7)
EENOREO
(1][2)[2][4)[4]

Let T_ with labelling CONTopt be an optimal tree. Let {y,,...,y, }
be the set of leaves of T opr- AAsSUme w.l.o.g. that CONTOP‘(y,.) =w for

1<i<n Let 4 be the depth of leaf y, intree T_ .
Lemma 1. If w, <w, then 42 47 foralli, j.

Proof: Assume otherwise, say w, < W, and 4 < d7?' for some i

and /. If we interchange the labels of leaves y, and y, then we obtain a
tree with cost

- 1 _ gopt opt .., t =
Cost (T,) ~ dw, — dP' w + df' w + d?¥w
= Cost (Topl) -, —w) " — ") < Cost (T, opt)> @ contradiction. .

Lemma 2. There is an optimal tree in which the leaves with con-
tent w, and w, are brothers.

Proof: Let y be anode of maximal depthin T andlety, and y,
be its sons. Then y, and y, are leaves. Assume w.lo.g. that CONT |

38

https://biblioteca-digitala.ro / https://unibuc.ro

() <CONT_| (yj). From lemma 1 it follows that either CONT(y) = w,
ord <d and hence d = d, by the choice of y. In either case we may
exchange leaves y, and y, without affecting cost of the tree. This shows
that there is an optimal tree such that y, is a son of y. Similarly, we infer
from lemma 1 that either CONT(y) = w, or d, < d, and hence d=d,
In either case we may exchange leaves y, and y, without affecting cost.
In this way we obtain an optimal tree in which y, and y, are brothers. [J

Lemma 3. The Huffman algorithm constructs an optimal tree.

Proof: (by induction on n). The claim is obvious for n <2. Let us
assume that 7 2 3 and let 7, _be the tree constructed by our algorithm for
weights w, < w, < ... <w . The algorithm combines weights w, and w,
first and constructs a node of weight (content) w, +w,. Let T " be the
tree constructed by our algorithm for set (in fact a multiset) {w, + w,,
w;, W,,...,w } of weights. Then

Cost (ng) = Cost (T'ds) +w +w,
because 7, can be obtained from 7", by replacing a leaf of weight
w, + w, by an internal node with two leaf sons of weight w, and w,,
respectively. Also 7°__is optimal for the set of n — 1 weights w, + w,,
W,,...,w by induction flypothesis.

Let T, be an optimal tree satisfying lemma 2, 1.e. the leaves with
content w, and w, are brothers in T, opt” Let T be the tree obtained from
T, by replacing leaves w, and w, and their father by a single leaf of
weight w + w,. Then

Cost (T,) = Cost (T') + w, +w, 2 Cost (T')+ w, +w, =
= Cost (T,,), since Cost (T") 2 Cost (T ag) DY induction hypothesis. It
follows that Cost (T wg) = Cost (7). 0

It remains to analyse the run time of the algorithm.

Lemma 4. Let z, z,,...,z_| be the internal nodes created by the
algorithm in this order. Then CONT (z,) S CONT (z,))< ... <CONT (z,).
Furthermore, we always have V = {v_,..v }, I = {z,..,2,} for some

iSn+ 1 j<k+1<nwhen entering the body of the Iloop.

Proof: (by induction on k). The claim is true when £ = 0. In each
iteration of the loop we increase £ by one and i + j by two. Also
CONT (z,,,) 2 CONT (z,) is immediately from the construction. T

39

https://biblioteca-digitala.ro / https://unibuc.ro

This lemma suggests a linear time implementation. We keep the
elements of ¥ and / in two separate sets both ordered according to CONT.
Since w, < ... <w,_ a queue will do for ¥ and since CONT (z,) < ...

< CONT (z, ,) another queue will do for 1. It is then easy to select
x,, x, € I'U V with the two smallest values of CONT by comparing the
first two front clements of the queues. Also x,, x, can be deleted in time
O(1) and the newly created node can be added to the J — queue in con-
stant time.

Huffman’s algorithm can be generalized to non — binary trees
(1.c., to m — ary trees, where m > 3).

§ 9. Marking algorithms for non-available memory

A (general) list is a linear list whose elements may contain point-
ers to other lists. The common operations we wish to perform on lists
are the usual ones desired for linear lists: creation, insertion, deletion,
concatenation, splitting, etc. For these purposes any of the three basic
techniques for representing linked linear lists in memory - straight,
circular, or double linkage can be used. The rest of this paragraph will
be devoted to the problem of maintaining the list of available space in
the memory.

The garbage - collection technique requires a new one-bit field in
each node called the “mark bit”. Garbage collection generally proceeds
in two phases. We assume that the mark bits of all nodes are
initially zero {or we set them all to zero). Now the first phase marks all
the nongarbage nodes, starting from those which are immediately ac-
cessible to the main program. The second phase makes a sequential pass
over the entire memory pool area, putting all unmarked nodes onto the
list of free space. The most interesting feature of garbage collection is
the fact that while this algorithn is running, there is only a very limited
amount of storage available which we can use to control our marking
algorithm. Hence it runs very slowly when nearly all the memory spacc
15 in use.

Algorithm A (Marking). Let the entire memory used for list
storage be NODE (1), NODE (2), ..., NODE (M), and suppose that these
nodes either are atoms or contain two link fields ALINK and BLINK.

40

https://biblioteca-digitala.ro / https://unibuc.ro

Assume that all nodes are initially unmarked. The purpose of this algo-
rithm is to mark all of the nodes which can be reached by a chain of
ALINK and/or BLINK pointers in nonatomic nodes, starting from a set
of “immediately accessible’ nodes.

1. Mark all nodes that are ‘“‘immediately accessible”, i.e., the
nodes pointed to by certain fixed locations in the main program which
are used as a source for all memory accesses. Set K«1.

2. Set K1«K + 1. If NODE (K) is an atom or unmarked, go to 3.
Otherwise, if NODE (ALINK (K)) is unmarked, mark it, and if it is not
an atom, set K1« min (K1, ALINK (K)). Similarly, if NODE (BLINK
(K)) 1s unmarked, mark it, and if it is not an atom, set Kl<—min
(K1, BLINK (X)).

3. Set K « K. If K £ M, rcturn to 2; otherwise the algorithm
terminates.

Throughout this algorithm and the ones which follow in this
section, we will assume for convenience that the nonexistent node NODE
(A) is marked and also min (K1, A) = K1.

Algorithm A is very slow when » is large. Another marking
algorithm follows all paths and record branch points on a stack:

Algorithm B. This algorithm achieves the same effect as Algo-
rithm A, using STACK [1}, STACK [2], ..., as auxiliary storage.

1. Let T be the number of immediately accessible nodes; mark
them and place pointers to them in STACK [1], ..., STACK [7].

2. If T =0, the algorithm terminates.

3.Set K« STACK [T], T« T- 1.

4. If NODE(K) is an atom, retum to 2.

Otherwise, if NODE (ALINK(K)) is unmarked, mark it and set
T « T+ 1, STACK [T] « ALINK(X); if NODE (BLINK(X)) is
unmarked, mark it and set 7 « 7 + 1, STACK [T] « BLINK (X).
Return to 2.

Algorithm B has an execution time proportional to the number
of cells it marks; but it can be not really usable for memory marking
because there is no place to keep the stack. A better alternative is
possible, using a fixed stack size, and combining algorithms A and B:

Algorithm C. This algorithm achieves the same effect as algo-
rithms A and B, using an auxiliary table of H cells, STACK [0], STACK

41

https://biblioteca-digitala.ro / https://unibuc.ro

[1]), ..., STACK [H-1].In this algo-
_rithm, the action “insert X on the
stack’ means the following:

“Set T« (T+ 1) mod H, and
STACK [7] « X. If T = B, set
B « (B+ 1)mod H and K1 ¢ min
(K1, STACK [B])".

(T points to the current top

T of the stack, but B points one place
T below the current bottom).

1.Set T« H-1,B « H-1, K1<M + 1. Mark all the imme-
diately accessible nodes, and successively insert their locations onto
the stack (as just described above).

2. If T = B (stack empty) go to 5.
3. Set K «~ STACK [T}, T « (T-1) mod H.

4. If NODE (X) is an atom, return to 2.

Otherwise, if NODE (ALINK (X)) is unmarked, mark it and
insert ALINK(X) on the stack. Similarly, if NODE (BLINK(X)) is
unmarked, mark it and insert BLINK (K) on the stack. Retum to 2.

5. If K1 > M, the algorithm terminates. (The variable K1 repre-
sents the smallest location where there is a possibility of a new link to a
node that should be marked). Otherwise, if NODE (K1) is unmarked,
increase K1 by 1 and repeat this step. If NODE (K1) is marked, set
K < K1, increase K1 by 1, and go to 4.

This algorithm and algorithm B can be improved if X is never put
on the stack when NODE (X) is an atom.

Algorithm C is essentially algorithm A when H = 1 and algo-
rithm B when H = M; it is more efficient when A becomes larger.

Algorithm E. Assume that a collection of nodes is given having
the following fields:

MARK (a 1-bit field, initially zero in each node), ATOM
(another 1-bit field), ALINK (a pointer field), BLINK (a pointer field).

When ATOM = 0, the ALINK and BLINK fields may contain A
or a pointer to another node of the same format; when ATOM = 1, the
contents of the ALINK and BLINK fields are irrelevant to this algorithm.

42

https://biblioteca-digitala.ro / https://unibuc.ro

Given a pointer PO, this algorithm sets thc MARK field to 1 in
NODE (PO) and in every other node which can be reached from NODE
(PO) by a chain of ALINK and BLINK pointers in nodes with ATOM =
0. The algorithm uses three pointer variables, 7, O, and P, and modifies
the links during its execution in such a way that all ATOM, ALINK, and
BLINK fields are restored to their original settings after completion,
although they may be changed temporarily.

1.Set T« A, P « PO.

2. Sct MARK (P) « 1.

3. IfATOM (P)=1, go 10 6.

4. Set O « ALINK (P). If O # A and MARK (Q) =0, sct ATOM
(P) &« 1,ALINK (P) < T, T« P, P < Q and go to 2. (Here the ATOM
field and ALINK fields are temporarily being altered, so that the list
structure in certain marked nodes has been rather drastically changed.

But these changes will be restored in step 6).

5.Set Q « BLINK (P). If O # A and MARK (Q) = 0, set BLINK
(P)e«<T, T« P, P« Q,and goto 2.

6. (This step undoes the link switching made in step 4 or 5; the
setting of ATOM (7) tells whether ALINK (7) or BLINK (7) is to be
restored).

If T= A, the algorithm terminates. Otherwise set 0 « 7. IFATOM
(Q)=1,5et ATOM (Q) « 0, T ALINK (Q), ALINK (@) <~ P, P < (Q,
and retum to 5. If ATOM (Q) = 0, set T « BLINK (0), BLINK
(Q) « P, P« Q, and return to 6.

A proof that this algorithm is valid can be formulated by induc-
tion on the number of nodes that are to be marked. One proves at the
same time that P = PO at the conclusion of the algorithm.

The interesting idea used in this algoritm can be applied to prob-
lems other than garbage collection, for example for tree traversal.

The fastest garbage collection method known combines
allgorithms B and E, like algorithm C combines algorithms A and B
[cf. D. Knuth].

Algorithm F. In the second phase of garbage collection this algo-

rithm compacts storage in the following sense:
Let NODE (1), ..., NODE (M) be nodes with fields MARK,
ATOM, ALINK, and BLINK, as described in algorithm E. Assume

43

https://biblioteca-digitala.ro / https://unibuc.ro

MARK = 1 in all nodes that are not garbage. The algoritm relocates the
marked nodes, if nccessary, so that they all appear in consecutive loca-
tions NODE (1), ..., NODE (k), and at the same time the ALINK and
BLINK fields of nonatomic nodes are altered if necessary so that the list
structure is preserved.

1.SetL <0, K« M+1, MARK (0) « 1, MARK (M +1) « 0.

2. L« L +1,and if MARK (L) = 1 repeat this step.

3. K« K -1, and if MARK (KX) = 0 repeat this step.

4. If L >K, go to step 5; otherwise set NODE (L) « NODE (K),
ALINK (K) «— L, MARK (K) « 0, and return to 2.

S.ForL =1, 2, ..., K do the following: Set MARK (L) « 0. If
ATOM (L) = 0 and ALINK (L) > K, set ALINK (L) « ALINK
(ALINK(L)).

IfATOM (L) =0 and BLINK (L) > K, set BLINK (L) « ALINK
(BLINK(L)).

§ 10. Multilinked structures

A multilinked structure involves nodes with several link fields in
each node, not just one or two as in our previous examples.

The problem we will consider arises in connection with writing a
compiler program for translating COBOL and related languages.

A programmer who used COBOL may give alphabetic names to
the quantitics in his program on several levels; for example, he may
have two files of data for sales and purchases which have the following
structurc

1 SALES 1 PURCHASES
2 DATE 2 DATE
3 MONTH 3 DAY
3 DAY 3 MONTH
3YEAR 3 YEAR
2 TRANSACTION 2 TRANSACTION
3 ITEM JITEM
3 QUANTITY 3 QUANTITY
3 PRICE 3 PRICE
3 TAX 3TAX
3 BUYER 3 SHIPPER
4 NAME 4 NAME
4 ADDRESS 4 ADDRESS

44

https://biblioteca-digitala.ro / https://unibuc.ro

This configuration indicates that each item in SALES consists of
two parts, the DATE and the TRANSACTION; the DATE is further
divided into three parts, and likewise TRANSACTION has five subdi-
visions. Similar remarks apply to PURCIIASES. The relative order of
these name indicates the order in which the quantities appear in external
representations of the file; note that in this example DAY and MONTH
appear in opposite order in the two files. To refer to an individual vari-
able in the ecxample above, it would not be sufficient merely to give the
name DAY it could also write, more completely, DAY OF DATE OF
SALES, but in general there is no need to give more qualification than
necessary to avoid ambiguity. Thus, NAME OF SHIPPER OF TRAN-
SACTION OF PURCHASES, may be abbreviated to NAME OF
SHIPPER, since only one part of the data has been called SITIPPER.

The rules may be stated more precisely as follows:

a) Each name is immediately preceded by an associated positive
integer called its lcvel number. A name either refers to an clementary
item or else it is the name of a group of one or more items whose names
follow. In the latter case, each item of the group must have the same
level number, which must be greater than the level number of the group
name.

b) To refer to an elementary item or group of items named A, the
general form is

A,OF 4 OF ...OF 4,
where n 2 0 and where, for 0 < < n, 4, is the name of some item
contained directly or indirectly within a group named A). There must
be exactly onc item A satisfying this condition.

¢) If the same name A appears in several places, therc must be a
way to refer to each use of the name by using qualification.

As an example of rule (c), the data configuration

b
iC
iD
2C
would not be allowed, since there is no unambiguous way to refer to the
sccond appcarance of C. A programmer may write

https://biblioteca-digitala.ro / https://unibuc.ro

MOVE CORRESPONDING o TO f
which moves all items with corresponding names from data area o to
data area f3. For example, the statement

MOVE CORRESPONDING DATE OF SALES TO DATE OF
PURCHASES

would mean that the values of MONTH, DAY and YEAR from
the SALES file are to be moved to the variables DAY, MONTH, YEAR
in the PURCHASES file.

Hence the problem is to design three algorithms which are to do
the following things:

1. To process a description of names and level numbers, putting
the relevant information into tables for use in operations 2 and 3.

2. To determine if a given qualified reference, as in rule (b), is
valid, and when it is valid to locate the corresponding data item.

3. To find all corresponding pairs of items indicated by a COR-
RESPONDING statement. We will assume that a “symbol table sub-
routine” exists within our compiler, which will convert an alphabetic
name into a pointer to a memory location that contains a table entry for
that name. In addition to the Symbol Table, there is a larger table which
contains one entry for each item of data; we will call this the Data Table.

In each Data Table entry we need five link fields:

PREV (a link to the previous entry with the same name, if any);

FATHER (a link to the smallest group, if any, containing this

item);

NAME (a link to the Symbol Table entry for this item);

SON (a link to the first subitem of a group);

BROTHER (a link to the next subitem in the group containing

this item).

It is clear that these data structures arc essentially trees. As an
example of the multiple linking used, consider the two COBOL data
structures

14

3B
70 3B

7D 3F
3F
3F
4G

14

3F

D
7C 4G

46

https://biblioteca-digitala.ro / https://unibuc.ro

1B 1H
SF

8 G

5B SF 5B \, 5C
sC

9E 8G

9D 9F oD 9G
9G

They would be represented as shown below. Note that the LINK
field of the Symbol Table entries points to the most recently encoun-
tered Data Table entry for the symbolic name in question.

SYMBOL TABLE DATA TABLE

4 Ty PREV FATHER NAME SON BROTHER
B 5 | 41 A A y, B3 Hi
c o5 B3 A 41 B C7 E3
5 551 €7 A B3 c A D17
‘ =5 D7 A B3 D A A
E3 A Al E A F3
F F35 1 s A A1 F Ga A
G G910 Ga A F3 G A A
H Hl| gy A A H Fs A
LINK FS F3 Hl F G8 B5
G | Ga Fs G A A
BS | B3 HI B A cs
cs [¢7 H C E9 A
ES | E3 cs E A D9
po | D7 C5 D A G9
Gy | G8 s G A A

Algorithm A (Build Data Table). This algorithm is given a se-
quence of pairs (L, P), where L is a positive integer ‘‘level number”’
and P points to a Symbol Table entry, corresponding to data structures.
This ordered sequence of pairs is in fact produced by traversing the
trees (non binary in general) in the order: Root, L, R. The algonthm
builds a Data Table. When P points to a Symbol Table entry that has not

47

https://biblioteca-digitala.ro / https://unibuc.ro

appeared before, LINK(P) will equal A. This algorithm uses an
auxiliary stack which is treated as usual (using either sequential or linked
allocation).

1. Set the stack contents to the single entry (0, A). (The stack
entries throughout this algorithm are pairs (L, P), where L is an integer
and P a pointer; as this algonithm proceeds, the stack contains the level
number and pointers to the last data entries on all levels higher in the
tree than the current level).

2. Let (L, P) be the next data item from the input. If the input is
cxhausted the algorithm terminates. Set Q < AVAIL (Q is a location of
a new node in which we can put the next Data Table entry).

3. Set PREV(Q) « LINK (P), LINK (P) « Q, NAME(Q) « P.

4. Let the top entry of the stack be (L1, P1). If L1 < L, set
SON(P1) « Q (or, if P1 = A, set FIRST « O, where FIRST is a vari-
able which is to point to the first Data Table entry) and go to 6.

5.If L1 > L, remove the top stack entry, let (L1, P1) be the new
entry which has just come to the top of the stack, and repeat step 5.

If L1 < L, signal an error (different numbers have occurred on the
same level).

Otherwise, i.e. when L1 = L, set BROTHER (P1) « Q, remove
the top stack entry, and let (L1, P1) be the pair which has just come to
the top of the stack.

6. Set FATHER(Q) « P1, SON(Q) « A, BROTHER(Q) « A.

7. Place (L, Q) on the top of the stack, and return to step 2.

The next problem is to locate the data table entry corresponding
to a reference 4, OF 4, OF ... OF 4 ,n 2 0.

Algorithm B (Check a qualified reference). Corresponding
to reference 4, OF 4, OF ... OF 4, a Symbol Table subroutine will find
pointers Py, P, ..., P_to the Symbol Table entnes for 4., 4,, ..., 4, re-
spectively.

The purpose of this algorithm is to examine P, P, ..., P_and
either to determine that this reference is ambiguous, or to set variable O
to the address of the Data Table entry for the item refered to by it.

1. Set 0 <~ A, P« LINK(P,).

2.If P = A, the algorithm terminates; at this point O will equal A
if the reference does not correspond to any Data Table entry.

48

https://biblioteca-digitala.ro / https://unibuc.ro

Otherwise set S« P and k « 0.

(S is a pointer variable which will run from P up the tree through
FATHER links; k is an integer variable which goes from 0 to n. The
pointers P, ..., P_may be kept in a linked list, and instead of k, we can
substitute a pointer variable which traverses this list).

3. If k < n go on to 4. Otherwise we have found a matching data
table entry; if O # A, this is the second entry found, so an error condi-
tion is signaled. Set 0 « P, P « PREV(P), and go to 2.

4. Setke k+ 1.

5. Set S « FATHER (). If S = A, we have failed to find a match;
set P « PREV(P) and go to 2.

6. IFNAME(S) = P,, go to 3, otherwise go to 5.

Note that the SON and BROTHER links are not needed by this
algorithm.

The statement MOVE CORRESPONDING o TO p where o and
P are references to data items, is an abbreviation for the set of all state-
ments MOVE o TO 3" where there exists an integer n > 0 and n names
Ap A, .., A _ suchthat o’ =4 OF 4 OF ..OF 4 OF o

f'=4,0F4 OF ..OF4 OFf ey
and either o.” or " is an elementary item (not a group item). Furthermore
we require that (1) show complete qualifications, 1.e., that 4, is the
father of 4 for 0 <j<n—1; o" and B must be exactly n levels farther
down in the tree than o and 3 are.

In our example, MOVE CORRESPONDING 4 TO H is an abbre-
viation for the statements MOVE B OF 4 TO B OF H; MOVE G OF F
OF 4 TO G OF F OF H. The algonthm to recognize all corresponding
pairs o', B* proceeds as follows: we move through the tree, whose root
is o, in preorder (root, L, R), simultaneously looking in the [tree for
matching names, and skipping over subtrees in which no corresponding
elements can possibly occur. The names 4, ..., 4, of (1) are discovered
in the opposite order 4, , ..., 4.

Algorithm C (Find CORRESPONDING pairs). Given PO and
QO0, which point to Data Table entries for o and f3, respectively, this
algorithm successively finds all pairs (P, Q) of pointers to items (o',
") satisfying the constraints mentioned above.

49

https://biblioteca-digitala.ro / https://unibuc.ro

1. Set P« PO, Q « QO. (In the remainder of this algorithm, the
pointer variables P and Q will walk through trees having the respective
roots o and f3).

2. If SON(P) = A or SON(Q) = A, output (P, Q) as one of the
desired pairs and go to 5. Otherwise set P «— SON(P), Q « SON(Q).

3. Now P and Q point to data items which have respective quali-
fications of the forms A OF 4, OF ... OF 4 | OF acand B OF 4, OF ...
OF A4_, OF B. The object is to see if we can make B, = 4 by examining
all the names of the group 4, OF ... OF 4, | OF B).

If NAME(P) = NAME(Q), go to 2 (a match has been found).

Otherwise, if BROTHER(Q) # A, set 0 « BROTHER(Q) and
repeat step 3. (If BROTHER(Q) = A, no matching name is present in the
group, and we continue on to step 4).

4. If BROTHER(P) # A, set

P « BROTHER(P) and Q < SON(FATHER(Q)),
and go back to 3. If BROTHER(P) = A, set

P « FATHER(P) and Q « FATHER(Q).

5. If P = PO, the algorithm terminates; otherwise go to 4.

A proof that this algorithm is valid can readily be constructed by
induction on the size of the trees involved.

The five link fields are not all essential, although they are helpful
from the standpoint of speed in algorithms B and C.

This situation is fairly typical of most multilinked structures.

It is interesting to note that we can achieve the effects of algo-
rithms B and C, using only two link fields and sequential storage of the
Data Table, without a very great decrease in speed: PREV (as in the
text); SCOPE (link to the last elementary item in this group). We have
SCOPE(F) = P if and only if NODE(P) represents an elementary
item and NODE(P) is part of the tree below NODE(Q) if and only if
Q < P <SCOPE(Q).

§ 11. Dynamic storage allocation
We have seen how the use of links implies that tables need not be

sequentially located in memory; a number of tables may independently
grow and shrink in a common ,,pooled” memory area. For a great num-

50

https://biblioteca-digitala.ro / https://unibuc.ro

ber of applications a single node size is not reasonable; we often wish to
havc nodes of varying sizes sharing a common memory area. Putting
this another way, we want algoritms for reserving and freeing variable-
size blocks of memory from a larger storage area, where these blocks
are to consist of consecutive memory locations. Such techniques are
generally called ,,dynamic storage allocation” algorithms. Sometimes,
often in simulation programs, we want dynamic storage allocation for
nodes of rather small sizes (say one to ten words); and at other times,
often in ,,exccutive” control programs, we are dealing primarily with
rather large blocks of information.

For uniformity in terminology between these two approaches, we
will generally use the terms block and area rather than ,,node” in this
section, to denote a set of contiguous memory locations.

A. Reservation. The problems we want to solve arc the following:

a) How is this partitioning of available space to be represented
inside the computer?

b) Given such a representation of the available spaces, what is a
good algorithm for finding a block of n consecutive frec spaces and
reserving them?

The answer to question (a) is, of course, to keep a list of the avail-
able spacc somewhere; this is almost always done best by using the
available spacc itself to contain such a list.

An exception is the case when we are allocating storage for a
disk file or other memory in which nonuniform access timc makes it
better to maintain a separate dircctory of available space.

Thus, we can link together the available segments: the first word
of each free storage arca may contain the size of that block and the
address of the next free area. The free blocks can be linked together in
increasing or decreasing order of size, or in order of memory address, or
in essentially random order. As for question (b), if we want n consecu-
tive words, clearly we must locate some block of m 2 n available words
and reduce its size to m —n.

Furthermore, when m = n, we must also delete this block from
the list. There may be several blocks with n or more cclls, and so the
question becomes which area should be chosen?

Two principal answers to this question suggest themselves: We
can use the ,,best-fit” mcthod or the ., first-fit” method. In the former
case, we dccide to choose an area with m cells, where m 1s the smallest

51

https://biblioteca-digitala.ro / https://unibuc.ro

value present which is n or more. This usually requires searching the
entire list of available space before a decision can be made. The ,,first-
fit” method, on the other hand, simply chooses the first area encoun-
tered that has 2 » words. Historically, the best-fit method was widely
used for several years; this naturally appears to be a good policy since it
saves the larger available areas for a later time when they might be
needed. But several objections to the best-fit technique can be raised:

It is rather slow, since it requires a fairly long search; more im-
portant, the best-fit method tends to increase the number of very small
blocks, and proliferation of small blocks is usually undesirable.

Algorithm A. (First—fit method). Let AVAIL point to
the first available block of storage, and suppose that each available
block with address P has two fields: SIZE(P), the number of words in
the block, and LINK(P), a pointer to the next available block. The last
pointer is A. This algorithm searches for and reserves a block of N
words, or reports failure.

1. Set 0 « LOC (AVAIL) (Throughout the algorithm we use
two pointers, Q and P which are generally related by the condition
P = LINK(Q). We assume that

LINK(LOC(AVAIL)) = AVAIL).

2. Set P « LINK(Q). If P = A, the algorithm terminates unsuc-
cessfully, there is no space for a block of N consecutive words.

3. If SIZE(P) 2 N, go to 4; otherwise set 0 « P and return to 2.

4, Set K « SIZE(P) — N. If K =0, set LINK(Q) « LINK(P).
Otherwise set SIZE(P) « K.

The algorithm terminates successfully, having reserved an area
of length N beginning with location P + K.

Let us temporariiy assume, however, that we are primarily inter-
ested in large values of N.

We would have been better off if we had reserved the whole
block of N + K words when K is very small, instead of saving K extra
words.

If we allow the possibility of reserving slightly more than N words,
it will be necessary to remember how many words have been reserved,
so that later when this block becomes available again the entire set of N
+ K words is freed. Hence it is usually to expect the SIZE field to be
present in the first word of every block whether it is available or not.

52

https://biblioteca-digitala.ro / https://unibuc.ro

In accordance with these conventions, we would modify step 4
above to read as follows:

4’, Set K « SIZE (P) - N. If K < ¢ (where c is a small positive
constant chosen to reflect an amount of storage we are willing to sacri-
fice in the interests of saving time), set

LINK(Q) < LINK(P) and L « P.

Otherwise set SIZE(P) « K, L « P + K and SIZE(L) < N.

The algorithm terminates successfully, having reserved an area
of length N or more beginning with location L.

When the best-fit method is being used, the test K < ¢ is even
more important than it is to the first-fit method, because smaller values
of K are much more likely to occur, and the number of available blocks
should be kept as small as possible for that algonthm.

B. Liberation. Now let us consider the inverse problem: How
should we return blocks to the available space list when they are no
longer needed?

The only difficulty in liberation methods is the collapsing pro-
blem: two adjacent free areas should be merged into one. In fact, when
an area bounded by two available blocks becomes free, all three areas
should be merged together into one. In this way a good balance is ob-
tained in memory even though storage areas are continually reserved
and freed over a long period of time (see the ,,fifty-percent rule” below).

The problem is to determine whether the areas at either side of the
returned block are currently available; and if they are, we want to update
the AVAIL list properly.

We will consider a method which eliminates all scarching when
storage is returned to the AVAIL list.

This technique makes use of a TAG field at both ends of each
block, and a SIZE field in the first word of each block, this ,,overhead”
is negligible when reasonable large size blocks are being used.

The method we will describe assumes each block has the follow-
ing form:

53

https://biblioteca-digitala.ro / https://unibuc.ro

Reserved block Free block

TAG - +[TAG] SIZE | First word |TAG| SIZE | LIMK |TAG=-
Second word LINK
TAG- + [TAG] Last word |TAG] SIZE | TAG = -

The idea in the following algorithm is to maintain a doubly linked
AVAIL list, so that entries may conveniently be deleted from random
parts of the list.

The TAG field at either end of a block can be used to control the
collapsing process, since we can tell easily whether or not both adjacent
blocks are available.

Double linking is achieved by letting the LINK in the first word
point to the next free block in the list, and letting the LINK in the second
word point back to the previous block; thus, if P is the address of an
available block, we always have

LINK(LINK(P)+1) = LINK(LINK(P+1)) = P

To ensure proper,,boundary conditions”, AVAIL and the follow-
ing location are set up as follows:

LOC(AVAIL): - —L to first block in AVAIL space list

LOC(AVAIL) + 1: —+» to last block in available space list

A first-fit” reservation algorithm for this technique may be
designed very much like Algorithm A. The principal new feature of this
method is the way a block can be freed in esscntially a fixed amount of
time:

Algorithm C(Liberation with boundary tags).
Assume that blocks of locations have the forms shown above, and as-
sume that the AVAIL list is doubly linked. This algorithm puts the block

54

https://biblioteca-digitala.ro / https://unibuc.ro

of locations starting with address PO into the AVAIL list. If the pool of
available storage runs from locations m, through m,, inclusive, the algo-
rithm assumes for convenience that

TAG (m,~1)=TAG (m, + 1) = +.

1. f TAG(PO-1)=+, goto3.

2. Set P « PO - SIZE (PO - 1), and then set P1 « LINK(P),
P2 « LINK(P + 1), LINK(P1 + 1) « P2, LINK(P2) « P1,
SIZE(P) « SIZE(P) + SIZE(PO), PO « P.

3. Set P « PO + SIZE(PO). If TAG (P)=+,goto5.

4. Set P1 « LINK(P), P2 «- LINK(P+1), LINK(P1 + 1) « P2,
LINK(P2) «— P1, SIZE(PO) « SIZE(PQ) + SIZE(P), P < P + SIZE(P).

5. Set SIZE(P - 1) « SIZE(PO), LINK(PO) <~ LINK(AVAIL),
LINK (PO + 1) « LOC(AVAIL), LINK(LINK(AVAIL) + 1) « PO,
LINK(AVAIL) « PO, TAG(PO) « TAG(P-1) « -

The ,,buddy system”. This method takes one bit of ,,overhead” in
each block, and it requires all blocks to be of length 2¥(k 2 0, k integer).
If a block is not 2* words long for some integer £, the next higher power
of 2 is chosen and extra unused space is allocated accordingly. When
this method is applicable it has an advantage of speed, especially in
,,real-time” situations.

The idea of this method is to keep separate lists of available blocks
of each size 2%, 0 < k < n. The entire pool of memory space under
allocation consist of 2™ words, which we will assume for convenience
have the addresses 0 through 2™ — 1. Originally, the entire block of 2™

words is available.

Later, when a block of 2¢ words is desired, and if none of this size
are available, a larger available block is split into two equal parts; ulti-
mately, a block of the right size 2* will appear.

When one block splits into two (each of which is half as large as
the original), these two blocks are called buddics.

Later when both buddies are available again, they coalesce back
into a single block; thus the process can be maintained indefinitely
(unless we run out of space at some point).

If we know the address of a block (i.e., the memory location of its
first word), and if we also know the size of that block, we know the
address of its buddy.

55

https://biblioteca-digitala.ro / https://unibuc.ro

The address of a block of size 2* is a multiple of 2* and this prop-
erty is easily justified by induction. In general, let buddy, (x) = address
of the buddy of the block of size 2* whose address is x; we can prove by
induction on k that:

x + 2% if x =0(mod 2**")
x — 2%, if x = 2¥ (mod 2**)

The buddy system makes use of a one-bit TAG field in each block:

TAG(P) = 0, if the block with address P is reserved;

TAG(P) = 1, if the block with address P is available.

Besides this TAG field, which is present in all blocks, available
blocks also have two link fields, LINKF and LINKB, which are the
usual forward and backward links of a doubly linked list. They also
have a KVAL field to specify & when their size is 2*. The algorithms
below make use of the table locations AVAIL[0], AVAIL[1},...,
AVAIL[n], which serve respectively as the heads of the lists of avail-
able storage of sizes 1, 2, 4,..., 2™,

These lists are doubly linked, so as usual the list heads contain
two pointers:

AVAILF[k] = LINKF(AVAIL[k])) = link to rear of AVAIL{A] list;

AVAILB[k] = LINKB(LOC(AVAIL[k])) = link to front of
AVAIL[A] list.

Initially, before any storage has been allocated, we have

AVAILF[m] = AVAILB[{m] =0,
LINKF[0] = LINKB[0] = LOC(AVAIL[m]),
TAG(0) =1, KVAL(0)=m .
(indicating a single available block of length 2", beginning in location 0),
and also AVAILF[k] = AVAILB[k] = LOC(AVAIL[k]), for 0 < k<m,
indicating empty lists for available blocks of lengths 2* for all k < m.

Algorithm R(Buddy system reservation). This
algorithm finds and reserves a block of 2* locations, or reports failure,
using the organization of the buddy system.

1. Set j be the smallest integer in the range k< j <m for which
AVAILF[j] # LOC (AVAIL[/]), that is, for which the list of available
blocks of size 2/ is not empty. If no such j exists, the algorithm termi-
nates unsuccessfully, since there are no known available blocks of suffi-
cient size to meet the request.

56

buddy, (x) ={

https://biblioteca-digitala.ro / https://unibuc.ro

2. Set L « AVAILF[j], AVAILF[j] « LINKF(L),
LINKB(LINKF(L)) « LOC(AVAIL[/]), and TAG(L) « 0.
3.If k=, the algorithm terminates (we have found and reserved
an available block starting at address L).
4. j« j— 1. Then set
P&« L+2 TAG(P) « 1, KVAL(P) «,
LINKF(P) « LOC(AVAIL[/]), LINKB(P) « LOC(AVAIL[}]),
AVAILF[j] « AVAILB[j] « P.
(This splits a large block and enters the unused half in the
AVAILJj] list which was empty). Go back to step 3.

Algorithm S (Buddy system liberation)

This algorithm returns a block of 2* locations starting in address
L to free storage, using the organization of the buddy system.

1. Set P « buddy,(L). If k = m or if TAG(P) = 0, or if TAG
(P)=1 and KVAL(P) #k, go to 3.

2, Set LINKF(LINKB(P)) «~ LINKF(P), LINKB(LINKF(P)) «
LINKB(P).

(This removes block P from the AVAIL[4] list).

Thenset ke k+ 1, andif P<L set L « P.

Return to 1.

3. Set TAG(L) « 1, LINKF(L) « AVAILF[4],
LINKB(AVAILF[k]) « L, KVAL(L) « k, LINKB(L) «
LOC(AVAIL[k]), AVAILF[k] « L.

(This puts block L in the top of the AVAIL[A] list).

We can prove an interesting phenomenon, the so-called ,,fifty-
percent rule™:

,,If algorithms A and C are used continually in such a way that
the system tends to an equilibrium condition, where there are N reserved
blocks in the system, on the average, each with an independent lifetime,
and where the quantity K in algorithm A takes on nonzero values (or
values 2 ¢ as in step 4°) with probability p, then the average number of

1
available blocks tends to approximately 5 pN”.

When the quantity p is near 1 — this will happen if ¢ is very small
and if the block sizes are not frequently equal to each other — we have
about half as many available blocks as unavailable ones.

57

https://biblioteca-digitala.ro / https://unibuc.ro

In order to deduce this rule consider the following memory map:

o By vy P ot B p By B B
/ 77” 2 v 7
/%/// . @ n .
ll//// 1 R B

The reserved blocks are divided into three types:

o : when freed, the number of available blocks will decrease
by one;.

f : when freed, the number of available blocks will not change;

Y : when freed, the number of available blocks will increase by
one.

Now let N be the number of reserved blocks, and let M be the
number of available ones; let 4, B and C be the number of blocks of the
types o, 3 and v, respectively.

We have

\\\\

N=4+B+C

1
M=—2' (24 + B +¢),

where € =0, 1 or 2 depending on conditions at the Jower and upper
boundaries.

To derive the fifty-percent rule, we set probability that M increases
by one = probability that M decreases by one (or the average change in
M is set to zero during equilibrium). This leads to

If € is assumed to be zero (when M and N are assumed to be

1
reasonably large), we get N—2M+ A= A+ (1 —p)N,or M= 5 pN and

the rule follows.

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 2

Sorting techniques

Sorting a set with respect to some ordering is a very frequently
occuring problem. IBM estimates that about 25% of total computing
time is spent on sorting in commercial computing centers. The most
important applications of sorting are (according to Knuth):

a) Collecting related things: In an airline reservation system one
has to manipulate a set of pairs consisting of passenger name and flight
number. Suppose that we keep that set in sorted order of passenger names.
Sorting according to flight number then gives us a list of passengers for
each flight.

b) Finding duplicates: Suppose that we are given a list of N
persons and are asked to find out which of them are present in a group of
M persons (M < N). An efficient solution is to create a list of the persons
in the group, sort both lists and then compare them in a sequential scan
through both lists.

c) Sorting makes searching simpler as we will scc later.

We give a formal definition of the sorting problem. Given is a set
of N objects (records) R ,R,,...,R,. Each object R, consists of a key (namc)
K. and some information associated with that name. An important fact is
that the keys are drawn from some linearly ordered universe U; we use
< to denote the linear order (e.g., the lexicographic order on words or
the usual order relation between real numbers). We want to find a rear-
rangement of the objects, or a permutation p(Dp(2)...p(N) such that

KPU) - KP(Z) <K)

In some cases we will want the records to be physically rear-
ranged in memory so that their keys are in order, while in other cases it
may be sufficient merely to have an auxiliary table of some sort which
specifies the permutation.

59

https://biblioteca-digitala.ro / https://unibuc.ro

If the records and/or the keys each take up quite a few words of
computer memory, it is often better to make up a new table of link
addresses which point to the records, and to manipulate these link ad-
dresses instead of moving the bulky records around. This method is
called address table sorting (see Fig. 1).

Rl Rz R] Rl Rz R]
33 14 19 | Key 33 14 19 | Key
. Satellite
.Satelhtcf information
information
‘\ \ f ! A .. | Link field
Auxiliary 1] Before \JV/ (after
Table sorting sorting)

List head

sorting

Fig. 1. Address table sorting. Fig. 2. List sorting.

If the key is short but the satellite information of the records is
long, the key may be placed with the link addresses for greater speed;
this is called key sorting. Other sorting schemes utilize an auxiliary link
field which is included in each record; these links are manipulated in
such a way that, in the final result, the records are linked together to
form a straight linear list, with each link pointing to the following record.
This is called list sorting (see Fig. 2).

After sorting with an address table or list method, the records can
be rearranged into increasing order as desired. There are several ways to
do this, requiring only enough additional memory space to hold one
record; alternatively, we can simply move the records into a new area
capable of holding all records. The latter method is usually about twice
as fast as the former, but it demands nearly twice as much storage space.
It is unnecessary to move the records at all, in many applications, since
the link ficlds are often adequate for subsequent addressing operations.

As an example of the first method we shall describe an efficient

algorithm which replaces the N quantities (R,,...,R,) by (R, ,...R),

60

https://biblioteca-digitala.ro / https://unibuc.ro

respectively, given the values of R ,...,R, and the permutation p(1)...p(N)
of {1,...,N}, obtained after an address table sort, without requining space
for storing 2N records.

Algorithm P

1. Do step 2 for 1 < i £ N, then terminate the algorithm.

2. Do steps 3 through §, if p(i) #i.

3.SettR,j i

4.Setkep(), R, <R, p() < j. j k.

If p(j) # i, repeat this step.

5. Set Rj —p() .

This algorithm is based on the cycle structure of the permutation
p; it changes p(i), since the sorting application lets us assume that p(7) is
stored in memory. On the other hand, there are applications such as
matrix transposition where p(i) is a function of i which is to be com-
puted (not tabulated) in order to save memory space. In such a case we
can use the following method, performing steps Bl through B3 for
1<i<N

B1. Set k < p(i)

B2.If k> i, set k < p(k) and repeat this step.

B3. If k<, do nothing; but if k=i (this means that i is smallest
in its cycle), we permute the cycle containing i as follows:

Set t < R; then while p(k) # i repeatedly set R, « Rp(k) and
k < p(k); finally set R, « ¢.

We will discuss sorting algorithms that are generally compari-
son-based, i.e. they make only use of the fact that the universe is
linearly ordered. They belong to the following classes: sorting by
counting, sorting by insertion, sorting by exchanging, sorting by selec-
tion, sorting by merging; finally we shall discuss minimum - compari-
son sorting (asymptotic behaviour).

§ 1. Sorting by counting

This simple method is based on the idea that the j-th key in the
final sorted scquence is greater than exactly j — 1 of the other keys. So
the idea is to compare each pair of keys, counting how many are less
than each particular one. We need merely to ((compare K. with K) for
1<j<i)for1<i<N. Hence we are led to the following algorithm.

61

https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm C (Comparison counting). This algorithm sorts
R,...,R,onthekeys K ,...,K, by maintaining an auxiliary table COUNT
[1],...,COUNT [N] to count the number of keys less than a given key.
After the conclusion of the algorithm, COUNT [j]+1 specifies the final
position of record R..

1. Set COUNT [1] through COUNT [M] to zero.

2. Perform step 3, for i = N,N — 1,...,2; then terminate the algorithm.

3. Perform step 4, forj=i-1,i-2,...,1.
4.1fK, <K, increase COUNT [j] by 1; otherwise increase COUNT
[{]by 1.

This algorithm involves no movement of records. It is similar to
an address table sort, since the COUNT table specifics the final arrange-
ment of records. But it is somewhat different because COUNT [/] tells
us where to move R instead of indicating which record should be moved
into the place of R; thus the ,,inverse” of the permutation p(1)...p(n) is
specified in the COUNT table. Note that algorithm C gives the correct
result no matter how many equal keys are present.

Since the number of pair comparisons made in step 4 is equal to

N NI-N
(2J= S the factor N? dominates the running time of this algo-

rithm. Hence this is not an efficient way to sort when N is large; we will
sec later that the average running time can be reduced to order N log N
using the ,,partition exchange” technique.

There is another way to sort by counting which is quite important
from the standpoint of efficiency; it is primarily applicable in the case
that many equal keys are present, and when all keys fall into the range
u< KJ < v, where v — u is small.

Algorithm D (Distribution counting). Assuming that all keys
arc integers in the range u < K<v for 1 < < N, this algorithm sorts the
records R,,...,R, by making use of an auxiliary table COUNT
[u],...,COUNT [v].

At the conclusion of the algorithm the records are moved to an
output area §,,....S, in the desired order.

1. Sct COUNT [u] through COUNT {v] all to zero.

62

https://biblioteca-digitala.ro / https://unibuc.ro

2. Perform step 3 for 1 < < N, then go to 4.
3. Increase the value of COUNT[K}.] by 1.
4. (At this point COUNT[{] is the number of keys which are
equal to 7). Set
COUNTI(i] &« COUNT][i] + COUNTIi-1]
fori=utl, ut2,. . v.
5. (At this point COUNT [i] is the number of keys which are less
than or equal to i; in particular COUNT [v] = N).
Perform step 6 for j =N, N —1,...,1; then terminate the algorithm.
6. Set | < COUNT [Kj]; S, «R,and
COUNT [K e i-1.
Under the conditions stated above, this sorting procedure is very fast.

§ 2. Sorting by insertion

Assume that 1 <j < N and that records Rl,...,Rj_1 have been rear-

ranged so that
K, <K, <.<K

We compare the new key K. with j-n’Kj—z""’ in turn, until disco-
vering that R, should be inserted between records R and R ; then we
move records R,,,,...,R, | up one space and put the new record into posi-
tion i+1.

Algorithm S (Straight insertion sort). Records R ,...,R,, are
rearranged in place; after sorting is complete, their keys will be in order,
K £.2K,

1. Perform steps 2 through 5 forj = 2, 3,...,N; then terminate the

algorithm.
2. Seti(—j—l,K(—K}.;R(—Rj.
3.IfK2K, go to step 5. (We have found the desired position for
record R).

4. Set R, < R, then i« i-1.1fi >0, go back to step 3. (If i=0,
K is the smallest key found so far, so record R belongs in
position 1).

5.SetR, « R

If we want to make improvements over straight insertion, we need
some mechanism by which the records can take long leaps instead of
short steps.

63

https://biblioteca-digitala.ro / https://unibuc.ro

Such a method was proposed by Donald Shell; we shall call it the
diminishing increment sort. Any sequence A,h, _ ,...,h, of increments
can be used, so long as the last increment 4, equals 1.

Algorithm D (Diminishing increment sort). Records R ,...,R,,
are rearranged in place; after sorting is complete, their keys will be in
order, K, <..< K. An auxiliary sequence of increments 4,k _,...,h, is
used to control the sorting process, where 4 =1; proper choice of these
increments can significantly decrease the sorting time. This algorithm
reduces to Algorithm S when =1.

1. Perform step 2 for s=¢,¢-1,...,1; then terminate the algorithm.

2. Set h « h_, and perform steps 3 through 6 for 2 <j < N. (We

will use a straight insertion method to sort elements that are A
positions apart, so that K, < K for 1 <i < N-h).

3 Seti(—j—h,K(—Kj,R<—Rj.

4. IfK2 K, go to step 6.

5.SetR,, < R, theni « i—h. If i > 0, go back to step 4.

6.SetR,, < R.

§ 3. Sorting by exchanging

We come now to the second family of sorting algorithms: ,,ex-
change” or ,,transposition” methods which systematically interchange
pairs of elements that are out of order until no more such pairs exist.

The bubble sort. We compare K| with K,, interchanging R, and
R, if the keys are out of order; then we do the same to R, and R,, R, and
R, etc. During this sequence of operations, records with large keys will
move up. Repetitions of the process will get the appropriate records into
positions R,, R, |, R, , etc., so that all records will ultimately be sorted.

The method is called ,,bubble sorting” because large elements
,,bubble up” to their proper position. After each pass through the file, it
is not hard to see that all records above and including the last one to be
exchanged must be in their final position, so they need not be examined
on subsequent passes.

Algorithm B (Bubble sort). Records R ,...,R, are rearranged in
place; after sorting is complete their keys will be in order, K| <...< K,

64

https://biblioteca-digitala.ro / https://unibuc.ro

1. Sct BOUND « N. (BOUND is the highest index for which the

record is not known to be in its final position).
2. Set t & 0. Perform step 3 for j=1,2...., BOUND -1, and then
go to step 4.

3 IfK > K ,» interchange R/ ¢ R, andset? ¢«

4. 1If r-O thc al;:,onthm tcrminates. ()thcrwrse set BOUND « ¢
and rcturn to step 2.

Quicksort. Consider the following comparison/exchange scheme:
Keep two pointers, i and j, with /=1 and j=N initially. Compare K : K,
and if no exchange is necessary decrease j by 1 and repeat the process
After an exchange first occurs, incrcase ¢ by 1, and continue comparing
and increasing / until another exchange occurs. Then decrease j again,
and so on, ,,burning the candle at both ends”, until i=j.

Each comparison will involve the original value of K, because it
keeps getting exchanged every time we switch directions. By the time
that i=j, the original record R, will have moved into its final position,
since there will be no greater keys to its left and no smaller keys to its
right. The original file will have becen partitioned in such a way that the
original problem is reduced to two simpler problems, sorting R,,...,R,_
and independently sorting R, ,...,R,. We can apply the same technique
to each of these subfiles.

Inside a computer, these subfiles can be represented by two vari-
ables / and r (the boundaries of the subfile currently under examination)
and a stack of additional pairs (/,,r,). Each time the file is subdivided,
we put the largest subfile on the stack and commence work on the other
one, until we reach trivially short files; this proccdure assures that the
stack will never contain more than about log,N entries. This sorting
procedure is due to C. Hoare and is called partition-exchange sorting.

The partition-exchange (or quicksort partitioning procedure) is
suitable for large N; therefore it is desirable to sort short subfiles in a
special manner as in the following algorithm.

Algorithm Q (Partition-exchange sort). Records R ,...,R, arc
rearranged in place; after sorting is complete their keys will be n order
K <.<K,

An auxrharv stack with at most log,N entries is needed for tem-
porary storage. This algorithm follows the qurckson partitioning proce-
dure described in the text above, with slight modifications for extra ef-
ficiency:

65

https://biblioteca-digitala.ro / https://unibuc.ro

a) We assume the presence of artificial keys K = —o0 and X, =00
such that K <K <K, forevery 1 </<N.

b) Subfiles of M or fewer elements are sorted by straight inser-
tion, where M 2> 1 is a parameter which must be initially chosen.

c¢) One or two extra comparisons are made during particular stages
(allowing the pointers i, j to cross), so that the main comparison loops
can be as fast as possible.

d) Records with equal keys are exchanged although it is not strictly
necessary to do so (This idea helps to split subfiles nearly in half when
equal elements are present).

1. Set the stack empty, and set/ « 1, r « N,

2. (We now wish to sort the subfile R,,...,R ; we have » > /-1, and

K, , <K <K, forl<i<r).Ifr-I<M, go to step 8. Otherwise
setie—Ljer, K« K,R<R,

3. If K <K, decrease j by 1 and repeat this step.

4.If j< i, set R, « R and go to 7. Otherwise set R, - R, and
increase i by 1.

5. If K, <K, increase i by 1 and repeat this step.

6. If j<i, set R <~ R and i « . Otherwise set Rj < R, decrease j
by /, and go to 3.

7. (Now the subfile R,...R ...R_has been partitioned so that K, < K
for/<k<iand K <K, fori<k<r).

If »—i 2 i1, insert (i+1,r) on top of the stack and set r « i-1.
Otherwise inscrt (/,i—1) on top of the stack and set / « i+1. (Each entry
(a,b) on the stack is a request to sort the subfile R ...R, at some futurc
time).

Now go back to step 2.

8. For j=/+1, [+2,..., until j > r do the following operations: Set
K«—K,R—R, i j-1,thensetR_ « R, i« i~ zeroor
more times until K, < K; then set R, | « R. (This is algorithm
of sorting by insertion, applied to a subfile of M or fewer
clements).

9. If the stack is empty, we arc done sorting; otherwise remove its
top entry (/', »"), set l « I', r « r’, and return to step 2.

Quicksort is an example for a very powerful problem solving
method: divide and conquer. A problem is split into several smaller

66

https://biblioteca-digitala.ro / https://unibuc.ro

parts (divide) which are then solved using the same algonthm recur-
sively (conquer). Finally the answer is put together from the answers to
the subproblems.

We have seen that a good solution encloses an array S[1...n] with
two addition elements S{0] and S[n+1] such that S[0] < S[i] < S[n+1] for
all i. Quicksort can be also written as a recursive procedure in a more
compact form as follows:

procedure Quicksort (1, r);
co Quicksort (/,7) sorts the subarray S[/],...,5[] into increasing order;

(1) begin i1 kertl, S SU;

(2) while i<kdo

(3) begin repeat i« i+1 until S[i] = S;

G)) repeat k « k-1 until S[k] £ S;

&) if k> i then exchange S[k] and S[i]
end;

(6) exchange S[/] and S[4];

(7) if I < k=1 then Quicksort (.k-1);

(8) if kt1 < r then Quicksort (k+1,r)
end

Although the maximal number OS(n) of key comparisons which
are necded on an array of n elements is quadratic (QS(n) = O(n?) and this
is achieved for example for the aray 1,2,...,n), the average case behaviour
is much better.

We analyse it under the assumption that keys are pairwise
distinct and that all pcrmutations of the keys are equally likely.

We may then assume w.l.0.g. that the keys are the integers 1,...,1.
Key S, is cqual to k£ with probability 1/n, 1 <k <n.

Then subproblems of size k-1 and n—k have to be solved recur-
sively and these subproblems are again random sequences, i.e. they
satisfy the probability assumption sct forth above. This can be seen as
follows.

If § =k, then array S looks as follows just prior to exccution of

line (6):
Kiydydy_y JeorJesaJn
Herc i,...i, | is a pcrmutation ofin‘-ccgcrs 1,....k-1 anFij'hl,...,/'" isa
permutation of integers £+1,...,n. FHlow did the array look like before the
partitioning step? If s interchanges occured in line (5) then there are s

67

https://biblioteca-digitala.ro / https://unibuc.ro

positions in the left subproblem, i.e. among array indices 2,...,k, and s
positions in the right subproblem, i.e. among k+1,...,n, such that the
entries in these positions were interchanged pairwise, namely the leftmost
selected entry in the left subproblem with the rightmost selected entry in
the right subproblem, and so on. Thus there are exactly

()0

arrays before partitioning which produce the array above by the parti-
tioning process.

The important fact to observe is that this expression only depends
on k but not on the particular permutations i ,...,i, , and j,,,,...,/,. Thus
all permutations are equally likely, and hence the subproblems of size

k-1 and n—k are again random.
Let OS, (n) be the expected number of comparisons on an input

of size n. Then

05,(0) = 0, (1) =0

and
0Sa(m) =Y (n+1+08, (k= 1)+ 05 (=)=
n
k=1
2 n—1
=n+1+=Y 08, (k)
=
forn 2 2.

We solve this recurrence as follows: Multiplication by n gives us:

n-1
MOSp () = n(n+ 1) +2) 0., (k)

k=0
Subtracting from this the equality for n—1 instead of n, yields

0S,(m) _ 2, 0S,(n=1)

n+1 n+1 n
S _(n
By denoting P(n) = Qna_:(l) we get

68

https://biblioteca-digitala.ro / https://unibuc.ro

P(n)=—2—+ P(n—1)=—2-+g+P(n—2) =,..
n+l n+l n

2(! +l+ +1) i

STl AT since P(1) = 0.

But L+ +1—H 2 h H., =1+—+ +—1— is the
U1 Ty e Ty WRETE e S T

(n+1)-th harmonic number (H, —Inn — Y= 0.57, Euler’s constant, as
n —). Hence

oS, (m)=2n+ l)(H,,+l - %) <2(n+1)In(n+1)

The run time of the partitioning phase is proportional to the num-
ber of comparisons and the total cost of all other operations is O(n).
Thus quicksort sorts n elements with run time O(n?) in the worst case
and it uses at most 2(n+1)In(n+1) comparisons and time O(n log n) on
the average.

Quicksort has quadratic worst case behaviour; the worst case
behaviour occurs on the completely sorted sequence. Also almost sorted
sequences, which occur frequently in practice, are unfavourable to
Quicksort. There is an interesting way out of this dilemma: randomized
Quicksort. We change the algorithm by replacing line (1) by:

(1a) begin i I; k& r+l;

(1b) J « arandom element of {0,...,r—/};
(1c) interchange S[/] and S[/+/];
(1d) S « S[I;

§ 4. Sorting by selection

Another important family of sorting techniques is based on the
idea of repeated selection: find the smallest key and move it into its
proper position by exchanging it with the record currently occupying
that position. Then we neced not consider that position again in future
selections. This idea yields our first selection sorting algorithm.

Algorithm 8. (Straight selection sort). Records R, ... R, are
rearranged in place; after sorting is complete, their keys will be in order,
K <..<K,.

69

https://biblioteca-digitala.ro / https://unibuc.ro

Sorting is based on the method indicated above, except that it
proves to be more convenient to select the largest elecment first, then the
second largest etc.

1. Perform steps 2 and 3 forj = N, N-1 ..., 2.

2. Search through keys K/ K] , »-» K, to find a maximal onc; let
itbe K.

3. Interchange records R, &> Rj. (Now records Rj ,---»R,, are in their
final position).

The number of comparisons needed for this algorithm is equal to

(N) _NW-))

2 > , regardless of the values of the input keys, but it

involves very little data movement.

Can this algorithm be improved upon the method for finding the
maximum ? The answer to this question is no, at least, if we restrict
oursclves to comparison-based algorithms. In comparison-based algo-
rithms there is no operation other than the comparison of two clements
which is applicable to elements of the universe from which the keys are
drawn.

Lemma. Any comparison-based algorithm necds at least n—1 com-
parisons to find the maximum of n elements.

Proof: Intcrpret a comparison S, < Sj ? as a match between S, and
S. If §, < S then S, is the winner and if § 2 §; we can consider that S, is
the winner. If an algorithm uses less than n—1 matches (comparisons)
then there are at least two players (keys) which are unbeaten at the end
of the tournament. Both players could still be best (the maximum), a
contradiction. [

This lemma implics that we have to look for a different sorting
mecthod if we want to inprove upon the quadratic running time of the
naive algorithm. A selection process which finds the largest element
must take at least n—1 steps; perhaps all sorting mcthods based on n
repeated selections require order »n? steps? Fortunately this lemma
applies only on the first selection step; subsequent selections can make
use of previously-gained information. Suppose that we want to sort the
sequence 4, 2, 3. 1.

70

https://biblioteca-digitala.ro / https://unibuc.ro

Fig. 1

If we use the complete binary tree 1a), each key being associated
to a terminal vertex of this tree, we shall associate to internal vertices
keys from this set such that the key of a vertex is equal to maximum of
the keys associated with its sons.

For this n—1 comparisons are necessary , since every binary tree
having n terminal vertices contains n—1 internal vertices. New key 4 is
the greatest and will be deleted from the tree; to obtain the second largest
key we need to compute only the keys associated to the vertices belong-
ing to the path from the root to the terminal vertex which was associated
to the current largest key. In our example, this path is encircled by a
dotted line in fig. 1a). 2 is moved up and will be compared at the level 1
with 3, giving the result 3 wich will be associated to the root of the tree
in fig. 1 b); thus 3 is the second largest clement (key) and so on.

In this way the number of key comparisons is equal to

3(la)y+1(1b)+1(lc)+0(1d)=5.
This tree structure has the following property: Whenever one considers
a path through this tree from the root to any terminal vertex then the
labels along that path are monotonically decreasing. This is also called
the heap property. Figures 1a) — 1d) are complete binary trees with 4
terminal vertices, and it is convenient to represent such a tree in
consecutive locations as shown in fig. 2. Note that the father of node

71

https://biblioteca-digitala.ro / https://unibuc.ro

o number £ is vertex | &/2 |, and its sons are
vertices 2k and 2k+1. This representat.on
6 e can be easily extended to complete binary
trees having a number of terminal vertices
which is not of the form 27(p € N).

° 9 e 0 Thus we can store the tree in a single

array and save the space for pointers.

Fig. 2

Definition. An array S[1 ... n] satisfies the hcap property if
S[L4/2]] = S[k] for every 2 < k < n. The array is a heap starting at /,
1<1<n, ifS[[k/2)]2 STk} for I < k2] < k< n. (|x] is the largest
integer < x).

Notice that every array S[1 ... n] is a heap starting at [n/2] 4 1.

Thearray 2,10, 9,5, 8,7, 3, 6,4, 1 is a heap starting at the second
position.

If an array S[1 ... n] is a heap starting at the first position (or
equivalently, satisfies the heap property) then the largest element
appears ,,on top of the heap”

S[1] = max (S[1], S[21,..., S[n]).
Indeed, let m 2 2; then S[m] < S[|m/2|]1 < S[LIm/2}/2]])<... < S[1] by
the heap property.

If we can somehow transform an arbitrary input file into a heap,
we can usc a ,,top-down” selection procedure like that described above
to obtain an efficient sorting algorithm. An cfficient approach to heap
crcation has been suggested by R. W. Floyd.

Let us assume that we have been able to arrange the file so that

S[y211= S for I < |ji2) <j< n, (D

where / is some number 2 1 (in the original file this condition holds for
/=1 n/2}, since no subscriptj satisfies the condition | n/2 | < j/2] <j<n).
It is not difficult to see how to transform the filc so that the inequalitics
in (1) are extended to the case | j/2 | = [, working entirely in the subtree
whose root is vertex /. Thereforc we can decrease / by 1, until heap
property is finally achieved. These ideas lead to the following clegant
algorithm: ‘

72

https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm H. (Hcapsort). Assume that N > 2.

Records R, ..., R, are rcarranged in place; after sorting is com-
plete, their keys will be in order, K, < ... £ K, First we rearrange the file
so that it forms a heap, then we repeatedly remove the top of the heap
and transfer it to its proper final position.

1.Set!/« |[N2]+1,re N

2.If/>1,set/{-1,R R, K& K,

Otherwisc set R <~ R, K« K, R « R, and r « r - 1; if this
makes r = [, set R, <~ R and terminate the algorithm. '

3. Setje [

4. Setiejandj« 2j. Ifj<r, gotostep S; if j =r, go to step 6,

and if j > r, goto 8.

5. Iij <K._, then setj «j + 1.

6.IfK 2> KJ then go to step 8.

7. Set R, « R, and go back to step 4.

8. Set R « R. Return to step 2.

Atstep 2 if | > 1then K ,..., K, is a heap starting at / (build-up
phase) (When » = N); otherwise / = 1 and the N — r largest elements are
stored in increasing orderin K, ,..., K, (selection phase). If /> 1 we
are building the heap and add key K| ; otherwisc we are in the selection
phase, K| is the maximum of X, ... K, we exchange K, and K and have
to restore the heap property on X, ..., K, |, by interchanging K| repea-
tedly with the larger of its sons.

In the build—up phase r = Nand / decreases to 1; in the selection
phase, / =1 and r decreases from N to 1.

We will evaluate the comparisons number in the case of sorting
by selection algorithm using a tree as in fig. 1.

If 27 < N <2 two cases may occur:

(1) N =27, and the tree has all terminal vertices on level r. In the
first phase we make N — 1 comparisons and after this we make N — 1
times comparisons at levels -2, 13, ..., 1, 0 (at most), hence the num-
ber of key comparisons is bounded above by

N=-1+(N=-1)r-1)=(N-1)r=(N-Dlog,N.

(i) 27 < N < 2™, In this case we like to build a tree having all
terniinal vertices on two consecutive levels, rand » + 1.

73

https://biblioteca-digitala.ro / https://unibuc.ro

If we denote by x the number of terminal vertices on level » and

by y this number for level r + 1, we obtain
x+y=N
Zx + y = 21"‘]

It follows that x = 27— N and y = 2N — 2"*!. In this case the total
number of key comparisons is at most

N-1+((N-l)r=({N-=1)r+1) <@ -1)log,N + 1) since
r= llog,N]|.

Hence the number of key comparisons is bounded above by
Nlog,N + O(N) in both cases.

It is not difficult to show that the number of key comparisons for
heapsort algorithm is also of the form O(NlogN).

§ 5. Sorting by merging

Merging means the combination of two or more ordered files into
a single ordered file. A simple way to accomplish this is to compare the
two smallest items, output the smallest, and then repeat the same pro-
cess. Some care is necessary when one of the two files becomes ex-
hausted; a detailed description of the process appears in the following
algerithm:

Algorithm M. (Two — way merge). This algorithm merges the
ordered files x, < x, < .. <x_andy <y, < ..<y into a single file
z,£z,£..5z__.

1.Setie 1,51, ke 1.

2.Ifx, <y, go tostep 3, otherwise go to §.

3.Setz, ¢« x, ke ktl,i i+1. If i <m, retum to 2.

4.Set(z,,..,z,)< (,,.,»,)and terminate the algorithm.

5.8etz, «y, ke k+l,j j+1.If j < n, return to 2.

6.Set(z,,...,z,,) < (x,,.., x) and terminate thc algorithm.

From a historical point of view, merge sorting is one of the very
first methods proposed for computer sorting; it was suggested by John
von Neumann as early as 1945.

In the worst case, each element comes in the sorted sequence
z, £..<z . asarecsult of akey comparison (cxcept the last). [ence the
number of key comparisons it at most equal to m+n—1.

74

https://biblioteca-digitala.ro / https://unibuc.ro

This number of comparisons is reached for example when
X S,\‘ZS...SX’" P SV Syzs"'S_yr:_<xm,' . .
Ifx,,...x,y .., », are pairwisc distinct keys and assuming that

m+n
each of the (") possiblc arrangements of m x's among n y's is

equally likely, we shall find the mean of the number of key comparisons
(i.e., of the number of times step 2 is performed during algorithm M).

Let C be the number of comparisons; we have C =m +n - §,
where S is the number of elements transmitted in step 4 or 6. The
probability that S > s is easily scen to be

m+n—s m+n-—s m+n
q.ﬁ{()+(H/(} for 1 £ s < m+n. llence
nt M n

the mean of S'1s
Spe =91 =92 +2q, —q3) +3(g3 —q4)+..=q, + ¢, + g3 +..=

IS () (nv+;-s)}=ﬁ[(::7)+[::?)J

s21
n

n m ..) . .
= +———, by writing cach binomial number as a difference of
m+l n+l
. . , n m
two binomial numbers. Hence C,, =m+n-— - .Form=n
m+1 n+l1

this average is asymptotically 2n — 2 + O(n™"); thus C is closc to its
maximum value.

Quicksort’s bad worst case behaviour stems from the fact that the
size of the subproblems created by partitioning is badly controlled. How
can wc achieve the splitting into two subproblems of size n/2 each?
There is a simple answer: Take the first half of the input sequence and
sort it, take the second half of the input sequence and sort it. Then merge
the two sorted subsequences to a singlc sorted sequence. These consid-
erations lead to the following algorithm.

75

https://biblioteca-digitala.ro / https://unibuc.ro

procedure Mergesort (S);
begin let n = |S]; split S into two subsequences S, and S, of
length [n/2] and | n/2], respectively;
Mergesort (S,);
Mergesort (S,);
suppose that the first recursive call produces sequence x, <x, <...<x(.,
and the second call produces y, <y, <...<y,,, ; merge the two sequences
into a single sorted sequence z, £z, < ... < z,
end
Note that the merge of the two sequences is performed with
algorithm M.

We will next compute the number of comparisons which Mergesort
uses on an input of length » in the worst case. We use M(n) to denote
that number. We have

M(1)=0 and

Mn)=n-1+M([n/21)+ M(|n/2]),if n> 1. We use induction
on n to show

M(n) =n[logn] = 2Ms1+ 1,

This is correct forn=1. Soletn > 1.

Case 1: n#2*+ 1. Then [log[n/2]] = [log|n/2]] = [logn] - 1
and therefore

Mn)=n—-1+[n2][log[n/2]] — 2Meeln211 4+ 7 +
+ [n/2) [logln/2) 1 = 21osb211 + 1= + ([logn]~ 1) - 2007 + 1=
= n[logn] — Dflognly 1.
Case 2: n=2%+ 1. Then [log|n/2]] =k-1=[log[n/2]] -1 =
= [logn] - 2 and therefore '
M(n)=n—-1+[n21([logn] —1) — 2Meen1 + 1
+ |n/2]([logn] —2) —2Me"1-2 + 1 = nflogn] —|n/2| — 2Mee1 +
+ 2MNogn1-2 + 1 = p[logn] — 2Meen! + 1 since for
n =2+ 1 we have | n/2] = 2M9#n1-2 (all logarithms are in the base 2).

We introduced Mergesort' by way of a recursive program. It is
easy to replace recursion by iteration in the case of Mergesort. Split the
input sequence into n sequences of length 1. A sequence of lenght 1 is

76

https://biblioteca-digitala.ro / https://unibuc.ro

sorted. Then we pair the sequences of lenght 1 and merge them. This
gives us | n/2 Jsorted sequences of lenght 2 and maybe one sequence
of length 1.

Then we merge the sequences of length 2 into sequences of length
4, and so on.

It is clear that the run time of this algorithm is proportional to the
number of comparisons and this is less than or equal to

n{logn] — 2Mee*l + 1 = O(nlogn).

§ 6. Optimum sorting

In this section we prove a lower bound on the number of compari-
sons required for sorting problems. We have seen several sorting meth-
ods which are based essentially on comparisons of keys, yet their run-
ning time in practice is dominated by other considerations such as data
movement. However we shall restrict our discussion to sorting tech-
niques which are based solely on an abstract linear ordering relation <
between keys. For simplicity, we shall also confine our discussion to
the case of distinct keys, so that there are only two possible outcomes of
any comparison between K, and K: either K, <K or K, > K.

The problem of sorting by comparisons can also be expressed in
other equivalent ways, e.g. : given a set of n players in a tournament,
we can ask for the smallest number of games which suffice to rank all
contestants, assuming that the strengths of the players can be linearly
ordered (with no ties).

All n-element sorting methods which satisfy the above constraints
can be represented in terms of an extended binary tree structure such as
that shown in fig.1.

77

https://biblioteca-digitala.ro / https://unibuc.ro

Each internal vertex (drawn as a circle) contains two indices i:j
denoting a comparison of K, versus K. The left subtree of this node
represents the subsequent comparisons to be made if K < K, and the
right subtree represents the actions to be taken when K, > K Each exter-
nal vertex of the tree (drawn as a box) contains a pcnnutatlon a,a,...a, of
{1,2,...,n}, denoting the fact that the ordering

K, <K, <.<K,

has been cstablished.

Thus fig.1 represents a sorting method which first compares X
with K; if K| > K, it goes on (via the night subtree) to compare K|, with
K, and then 1fK < K, it compares K| with K,; finally if K, > K| it
knows that K, < K < K and so on.

An actual somng algonthm will usually also move the keys around
in the file, but we are interested here only in the comparisons, so we
ignore all data movement. A comparison of K, with K in this tree
always means the original keys K, and K, not the keys which might
currently occupy the i-th position and j-th position of the filc after the
records have been shuffled around. It is possible to make redundant
comparisons; for example, in fig.1 on the left branch there is no rcason
to compare 3:1, since K, <K, and K, < K implies that K, < K,. Since
we are interested in minimizing the number of comparisons, we may
assume that no redundant comparisons are made; hence we have an
extended binary tree structure in which every external vertex corresponds
to a permutation.

All permutations of the input keys are possible, and every permu-
tation defines a unique path from the root to an external vertex; it fol-
lows that there are exactly n! external vertices in a comparison trce which
sorts n clements with no redundant comparisons.

Definition. A decision tree is a binary trec whosc vertices have
labels of the form K,Kl The two outgoing cdges arc labelled < and > .
Let K,,...K bc clements of universec U. The computation of decision
trec Ton input K ,...,K is defined in a natural way. We start in the root
of the trce. Supposc now that we reached vertex v which is labelled
K:K. We then compare K with X and procced to one of the sons of v
dn,pcndmg on whether K <K (orK < K} in the casc of pairwise differ-
ent keys) or K > K/

78

https://biblioteca-digitala.ro / https://unibuc.ro

The leaves of a decision trec represent the different outcomes of
the algorithm,

Definition. Let T be a decision tree. T solves the sorting problem
of size n if there is a labelling of the leaves of T by permutations of
{1,...,n} suchthat for every input K ,...,K : if the leaf reached on X ,,....K
is labelled by = then K <K s <K, . Wecan now define the

x(2)
worst case and average case complexity of the sorting problem. For a

decision tree T and permutation 7t let /] be the depth of the leaf which is

reached on input K ,....K with K < KI(2 <..<£ Km) (the number of
comparisons needed to sort file K ,...,K). Define

= min max J7
Sm) T n l"

T
= min 1 l
A(n) = min. o zn‘ n
where T ranges over all decision trees for sorting n elements and 1t ranges

over all permutations of n clements. Since /T is the number of compari-

sons used on input 7t by decision trce T, or the depth of the terminal

vertex with label &, it follows that mmax II = h(T), the height of T. Thus

S(n) is the minimum worst case complexity of any algorithm and 4(n) is
the minimum average case complexity of any algorithm. We prove lower
bounds on S(n) and 4(n).
Supposc S(n) < k. A tree of depth < k has at most 2*leaves. A
decision trce for sorting n elements has at least n! leaves. Thus
25> pt or S(n) 2 [log n!] (1)
Note that by Stirling ’s approximation,

nl~ 2nn(§)"or log n! =(n+—;)logn—ﬁ+0(1) =

= nlogn —143n+O(logn).
Relation (1) is often called the ,.information theoretic lower
bound”. An upper bound for S(n) comes from the analysis of sorting

79

https://biblioteca-digitala.ro / https://unibuc.ro

algorithms. In particular, we infer from the analysis of sorting by selec-

. S(n)
- lim =
tion that S(n) < nlogn+O(n), and hence 1M nlogn

I 2)

Although we know that S(n) ~ nlogn only few values of S(n)
were found (e.g. S(3)=3, S(4)=5, S(5)=6, etc.). In order to find a lower
bound on A(n) consider once again the decision tree T representing a
sorting procedure, as shown in fig.1. The average number of compan-

243+3+3+3+2

sons in that trce is P =266, averanging over all

permutations.In general, the average number of comparisons in a
sorting method is E(T)/n!, where E(T) denotes the external path length
of the tree, defined as the sum of the distances from the root to each of
the external nodes (leaves) of the tree.

Lemma. If T is a binary tree having N external vertices then E(T)
is minimum if and only if all external vertices of T belong to at most two
consecutive levels (when there are 27 — N external vertices at level q -1
and 2N-2¢ at level q, where q =[1og, N, the level of the root being 0).

Proof. Suppose that T contains terminal vertices « and v on level
L yandzonlevel /, suchthat L -1 >2.

We shall define another binary tree T (sce fig.2) by transfering u
and v on level / + 1 as sons of y, x becomes an extcrnal vertex and y an
intcrnal one. It follows that E(7) — E(T)) = 2L—(L - 1)+ [=2(/ + 1) =

80

https://biblioteca-digitala.ro / https://unibuc.ro

= L—{-121 and T cannot have a minimum cxternal path length. lence
T has all external vertices on a single level if N is a power of 2 or on two
consecutive levels: g —1 and ¢ otherwise, where ¢ =[log,N].

The number of vertices on cach level can be obtained in the same
way as on pp. 73-74.

It follows that

A(n) > _,%[(q —DQ2% - N)+¢(2N - 2‘7)] = %[(q +1)N =24] where

N=n!.

If we set g =logN+0, where 0 < 8 < 1, the formula for minimum
extemnal path length becomes

N(log N+ 1+ 6 - 2%
The function 1 + 6 — 2° for 0 < 8 < 1 is positive but very small,

1+Inln?2

never exceeding 1- Tz = 0.0861 and vanishes for8 =0 and 0 =

1. In this way we get a lower bound for the average number of compari-
sons in any sorting scheme, of the form

logn!4 1+ 6-2°% =nlogn - i+ O(logn)

In general, the problem of minimizing the average number of com-
parisons turns out to be substantially more difficult than the problem of
determining S(n).

For example, when n = 7 it has becn shown that no sorting method
can attain this lower bound on external path length, but it is possible
to construct procedures which do achieve the lower bound (g +1)N-2¢
when n =9 or 10.

§ 7. Sorting by distribution

1. Sorting words. Let £ be a finite alphabet of size m and <bc a
linear order on X£. We may assume w.l.o.g. that ¥ = {1,2,....m} with the
usual ordering relation. The ordenng on X is cxtented to an ordering on
the words over X as usual.

Definition. Let x = x,..x, and y = y,...y, be words over X , t.e.
x.y, € L. Then x is smaller than y in the alphabetic ordering (denoted

]

https://biblioteca-digitala.ro / https://unibuc.ro

vl a x<y)ifthereisani, 0 < i<k
* .= such that x=y, for I<; <iand

xz citheri=k</lori <k, i</and

X, <), For example, we have

x mT ADBABCD| x4BCE< 4D = ybecause x, =y,
and x,< y,.

We treat the following

Fig. 1 problem in this section: Given

n words x!,x%,....x" over alphabet
X ={1,...,m} sort them according to alphabetic order. There are many
different ways of storing words. A popular method stores all words in a
common storage area called string space. The cha-racters of any word
are stored in consecutive storage locations. Each string variable then
consists of a pointer into the string space and a location containing the
current length of the word. The figure 1 shows an example for
x' = ABCD, x* = ADB and x* = T. The basic idea of bucketsort is most
easily explained when we consider a special case first: all words x' ... x”
have length 1, i.e. the input consists of # numbers bctween 1 and m.
Bucketsort starts with m empty buckets. Then we process word by word,
throwing x' into the x’-th bucket. Finally, we step through the buckets in
order and collect the words in sorted order. Buckets are linear lists, the
heads of the lists are stored in array K[1 ... m]. Initially, we have to
create m empty lists. This is easily done in time O(m) by initializing
array K. In order to process x' we have to access K[x'] and to insert x' into
the list with head K[x']. This can be done in time O(1) if we insert x' at
the front end of the list or at the back end of the list. In the latter case
K[x'] must also contain a pointer to the end of the list. Thus we can
distribute n words in time O(n). Finally we have to collect the buckets.
We step through array KT1 ... m] and concatenate the front of the (+1)-st
list with the end of the j-th list. This takes time O(m), if array K also
contains pointers to th back ends of the lists, and time O(n + m) other-
wise. Note that the total length of all m lists is n. In either case total
running time is O(n + m). Should we add x' to the front or to the rear end
of the x'-th list? If we always add to the rear, then the order of elements
X, ¥ with X = ¥ is unchanged, i.c. bucketsort is stablc. This will be
important for what follows. We proceed to a slightly more difficult case

82

https://biblioteca-digitala.ro / https://unibuc.ro

next. The x''s. 1 £4 < n, are proper words and suppose that all of them
havc equal length, say & Thenx' xix) ... x; with x} e £. Now one sorts
according to the last lctter first. After having done so we sort the entire
list of n words, which is sorted according to the last letter, according to the
next to last letter. The words are sorted according to the last two letters
now, because bucketsort is stable. Next we sort according to the (£ --2)-th
letter, and so on.

This approach requires & passcs over the set of # words, each pass
having a cost of O(n ' m) time units. Thus total running time is O(k(n +
m)). Let us consider an example with m = 4, n = 5 and k& = 3. The words
are: 124, 123,324, 223, 321. The first pass vields:

Bucket 1 321 The imput sequence for the second
2 O pass is 321, 123, 223, 324, 124
3 123,223
4 324,124

Bucket 1 O The input sequence for
2 321,123,223.324, 124 the third pass is: 321,
3 O 123, 223,324, 124
4 @ The third pass vields:

Bucket 1 123, 124 and hence the final result
2 223 sequence is
3 321,324 123, 124, 223, 321, 324
4 @

Notice that we collected a total of 3-4 = 12 buckets, but only 7
buckets wherc non-empty altogether. It would improve running time if we
knew ahead of time which buckets to collect in each pass. Let us assume
that s buckets are non-cmpty in the j-th pass, 1< < k. If we could
avoid fooking at empty buckets then the cost of the j-th pass were onlv
O(SJ + n). Since s <n. the cost of a pass would be only O(n) instead of
O+ m).

There is a very simple method for determining which buckets are
non-empty in the j-th pass, i.c. which letters occur in the j-th position.

Create set {(j. x)). | <j<k 1<i<n} ofsize nk and sort it by bucket-

83

https://biblioteca-digitala.ro / https://unibuc.ro

sort according to the second component and then according to the first.
Then the j-th bucket contains all characters which appear in the j-th posi-
tion in sorted order. The cost of the first pass is O(n - k + m), the cost of
the second pass is O(n - k + k). Total cost is thus O(nk + m).

In order to extend to words of arbitrary length let x' = x)x;.. .x}i ,

1 <i<n; [isthe length of x,. We basically proceed as above, however
we have to make sure that x’ has to be considered for the first time when
we sort according to the / -th letter. This leads to the following algorithm.

Let L=i L 2n.

i=]

1. Determine the length of x', 1 <i <», and create pairs (/, pointer
to x*).

2. Sort the pairs (/, pointer to x7) by bucketsort according to the
first component. Then the £-th bucket contains all words x* with
I, =k, i.e. all these strings are contained in a linear list. Call this
list length [£] (1 <k <max (/, ... 1)).

3. Create L pairs (j, X}), 1<i<n, 1<j</ and sort them according

to the second and then according to the first component. Let
Nonempty [f], 1 €j </ =max (/, ...) be the j-th bucket
after the second pass.

Nonempty [j] contains all letters which appear in the j-th position

in sorted order. Delete all duplicates from Nonempty [/].

4. We finally sort words x' by distribution. All lists in the following
program are used as queues; the head of each list contains a
pointer to the last element. Also x is a string variable and x, is
the j-th letter of string x. ’

(1) W « empty queue;

(2) for k from 1 to m do S[k] < empty queue od;

(3) forjfrom!l _ tol

(4) do add length [;] to the front of ¥ and call the new queue W;

(5) while W £ O

(6) do let x be the first element of W, delete x from W,

(7) add x to the end of S[xj];

84

https://biblioteca-digitala.ro / https://unibuc.ro

od

(8) while Nonempty [j] # &
(9) do let k be the first element of Nonempty [/];
(10) delete k from Nonempty [/].
(11) add S[k] to the end of W;

(12) set S[k] to the empty queue;

od
od

By a careful analysis of the cost of each line of this algorithm we .
deduce that bucketsort sorts » words of total length L over an alphabet of

size m in time O(m + L).

For our example, before step 4) we have:

length [1] =&
length [2] =&
length [3] =

and Nonempty is: |

2
3

\

\

B
s
\S}i

=N

¥ ¥ . K ¥

1124 123324 223321 |

After the first pass we have (now j = 3):

1,2,3 NONEMPTY (1)

2 NONEMPTY (2)

1,3,4 NONEMPTY (3)
85

https://biblioteca-digitala.ro / https://unibuc.ro

1 _
S(1] N EIE
St21 || I 3 TN\
S[3] —3{’/ GO 0
S[4] | P A3] | 124 123 324 223 321
Sl e
OO

N\ o
S

(by performing steps(1) - (6)). Now the content of W coincides to
that of length [3].
After steps (8) - (12) the content of W will be:

\

— RS

w
=2 - u_Jj
iL_ _‘_L; _\\ 7 _\\’ - D]
\ S~ \“LJT
— 3]

86

E

—i
T e

\ \». }
T—‘q\\

124 123 324 223 321

4

f‘l24 123 324 223 321
/’

/.
- -

*[E “l_ e T

https://biblioteca-digitala.ro / https://unibuc.ro

[124 123 324 223 321 —|

2. Sorting reals by distribution. We briefly descnbe distribution
sort applied to real numbers. We assume that we are given a sequence x,
1 £ < n, of reals from the interval (0,1]. We use the following simple
algorithm, called Hyvbridsort.

o is some fixed real and k is equal to [o |.

1. Create k empty buckets. Put x, into bucket l—lcx,.-l forl<i<n

2. Apply Heapsort to every bucket and concatenate the buckets.

The correctness of this algorithm is obvious.

Theorem. a) Worst case running time of Hybridsort is O(n log n).
b) If the x," 5 are drawn independently from a uniform distribution
over the interval (0, 1], then Hybridsort has expected running time O(n).

Proof: a) Running time of the first phase is clearly O(n). Let us
assume that 7, elements end up in the i-th bucket, 1< i < k. Then the cost

of the second phase is O(z t log ,_], where by definition 0 log 0 = 0

and 2 t=n.

But Z 1, log!t, Sz t;logn=nlogn
b) Let B, be the random variable representing the number of cle-

n n-h
(k1)
ments in the i-th bucket after pass |. Then P(B, = h) = \h) = =

https://biblioteca-digitala.ro / https://unibuc.ro

k k
bility 1/k.
Expected running time of phase 2 is

T S i

e

Z‘n(r/zcz—l)(z:ili)hd(l_;)’*" n(n D (h ZI)h 2(_;l)n..;.
n(n 1 2 n(n IX) 1[1_%),.;.=%

k
It follows that E[Z B,-IOgB,-JSk(n(Z 1) k) O(n) since

i=l

h n—h
1 1 . , o .
= (:][—) (1 - —] since any single x_ is in the i-th bucket with proba-

k=fan]. O
§ 8. The linear median algorithm

Selection is a problem which is related to but simpler than sorting.
We are given a sequence S, ..., S of pairwise distinct elements and an
integer i, 1 <7 < n, and want to find the i-th smallest element of the
sequence, i.e. an § such that there are i— 1 keys S, with S, < § and n—i
keys S, with §, > SJ Fori=|n2]suchakeyis called medlan éfcourse
selectlon can be reduced to sorting. We might first sort scquence S, ..., S,
and then find the /-th smallest element by a single scan of thc sortcd
sequence. This results in an O(n log n) algorithm.

However, there is a linear time solution. We describe a simple,
linear expected time solution (procedure Find) first and then extend it to
a linear worst case time solution (procedure Select).

g8

https://biblioteca-digitala.ro / https://unibuc.ro

Procedure Find is bascd on the partitioning algorithm used in
Quicksort. We choose some clement of the sequence, say S, as partition-
ing element and then divide the sequence into the elements smaller than S
and the elements larger than S,. We then call Find recursively on the
appropriate subsequence.

(1) procedure Find (M, 1),

co finds the i-th smallest element of set M;
begin

(2) S « some element of M,

COM e« {me M; m< S}:

WM.« {me M: m>§};

(3) case IM,| of

6) <i~1:Find M,, i - M| -1)
V)] =i —1: return S
(8) >j—1:Find (M, i)
(9) esac
end

When set M is stored in an array then lines (2) - (4) of Find are
best implemented by lines (2) - (6) of Quicksort. Then a call of Find has
cost O(IM| + the time spent in the recursive call). The worst case running
time of Find is clearly O(n?) (consider the case i = | and |M|| = M| -1
always). Expected running time of algorithm Find is linear as we show
next. We use the same randomness assumption as for the analysis of
Quicksort, namely the elements of M are pairwise distinct and each per-
mutation of the elements of M is equally likely. In particular, this implies
that element S chosen in line (2) is the k-th largest element of M with
probability 1/]M]. It also implies that both subproblems M, and M, again
satisfv the randomness assumption (cf. the analysis of Quicksort). Let
T(n, i) be the expected runnig time of Find (M, /) where |M| = n and let
T(n) = max T(n, /). We have T(1) = 0 and

i—1

. 1 . Z .
T(n,z)Scn+;[z T(n—kji-k)+ Y T(k—l,:)]

k=1 k=i+]

for some constant ¢, since the partitioning process takes time c» and the
rccursive call takes expected time 7(n — k. i —k) if k= |M |+] < i and
time 7(k — 1, 7) ifk = M|+ 1>

89

https://biblioteca-digitala.ro / https://unibuc.ro

Thus

-1

1 n—l1 :
T(n)<cn+ ;mfm[z T(n—k)+, T(k)J

k=1 k=i

We show 7(#1) < 4 cn by induction on n. This is true forn = 1. Forn > |
we have

n i

n-1 n—l
T(n)Scn+lmax[z 4ck+2 4ck}$cn+

k=n—i+1 k=i

+£max[n(n—l)—(n—i)(n—i+ 1)/2-i(i—1)/2]< 4en,
n i

. . : : _n+l1 :
since the expression in square brackets is maximal for / = - (notice

that the expression is symmetric in / and » —i + 1) and then has value

2
nn-1)-n(n-1)/14< % We have thus shown:

Theorem 1. Algorithm Find has linear expected running time.

The expected lincarity of Find stems from the fact that the ex-
pected size of the subproblem to be solved is only a fraction of the size of
the original problem. However, the worst case running time of Find is
quadratic because the size of the subproblem might bc only one smaller
than the size of the original problem. If one wants a linear worst case
algorithm one has to choose the partitioning element more carefully. A
first approach is to take a reasonable size sample of M, say of size |M}/5,
and to take the median of the sample as partitioning element.

However, this idea is not good enough vet because the sample might
consist of small elements only. A better way of choosing the sample is to
divide M into small groups of say 5 elements cach and to make the sample
the set of medians of the groups. Then it is guaranteed that a fair fraction
of clements are smaller (larger) than the partitioning clement.

This leads to the following algorithm.

90

https://biblioteca-digitala.ro / https://unibuc.ro

(1) procedure Select (M. 1),
co finds the i-th smallest clement of set M,
begin

2Q)ne|M|:

(3) ifn <100 then sort M and find the /-th smallest clement dircctly
else

(4) divide M in [75] subsets M, .., M of5 elements cach (the
last subset may contain less that 5 elements);

(3)sortM; 1<j<[n5l;

(6) let m, be the median of M,

(7) call Select ({m,, .. m_}, [n10]) and determine 7 , the
median of the medians;

B letM ={me M- m< m}andM,={me M. m <m};

) if i< M|

(10) then Select (M|, 1)

(11) else Select (M., i — M,])
fi
fi
end

It is very helpful to illustrate algorithm Select pictorially. In line

(4) M is divided into groups of 5 elements each and the median of each
group is detcrmined 1n lines (5) and (6).

r———""""—""—""=-="" i
o o o | o o o |
o o o : o 0 o :
Om| Omz Omnw !- oﬁ o 0 Jl
o o o
o o o
o o o o o o

At this point we have n-5 lincar orders of 5 elements each. Next we

find m , the median of the medians. Assume w.l.o.g. thatm,...m , < m
and 7 <m_,,, m_,. Inthe diagram representing this situation each
of the groups is represented by a vertical line of 5 elements, largest element

91

https://biblioteca-digitala.ro / https://unibuc.ro

at the top. Note that all elements in the solid rectangle are smaller than 7

and hence belong to M, and that all points in the dashed rectangle are at
least as large as & and hence belong to M,. Each rectangle contains 3n/
10 points, provided that 10 divides n.

Lemma 1. We have |M||, M| < 8n/11.
Proof: Note that from the discussion above we have M| + |M,|=n

and Ml |1V12| 2 — 1f 10 divides ». If 10 does not divide » then |M,|,

M, 2 — for n 2 100. Indeed, if 10 does not divide » then there is a

numberm 1 £ m <9, such that 10j» — m and in this case
Y n—m) S 3(n-9) > 3n

[Mil,|M;] 2 2 2=
10 10 11
since the last inequality is equivalent to n 2 99. It follows that M| < » -
3n 8
1:’ 1’; and a similar inequality holds for |M|. O

Let T(n) be the maximal running time of algorithm Select on any
set M of n elements and any i.

Lemma 2. There are constants a, b such that

T(n) <an , forn <100

T(n) < TR1n/100) + T(8/11) + bn , for n2100.

Proof: The claim is obvious for n < 100. So let us assume » = 100.
Select is called twice within the body of Select, once for a set of

n+4 2l1n
[ns]< 5 < ﬁ elements and once for a set of size at most 8»/11.

Furthermore, the total cost of Select outside recursive calls is clearly
Om). O

Theorem 2. Algorithm Select works in linear time.

Proof: We show T(n) < cn where ¢ = max (a, 1100 5/69) by induc-
tion on n. For n £ 100 there is nothing to show. For »n > 100 we have

T(n) < T(211/100) + T(8n/11) + bn
<c¢21n/100+c 8 n/11 + bn<cn,

by definition of ¢.

92

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 3

SEARCHING TECHNIQUES

We are concemed with the process of collecting information in a
computer’s memory, and with the subsequent recovery of that informa-
tion as quickly as possible. Sometimes we are confronted with more data
than we can really use, and it may be wisest to forget and to destroy most
of it; but at other times it is important to retain and organize the given
facts in such a way that fast retrieval is possible.

Most of this paragraph is devoted to the study of a very simple
search problem: how to find the data that has been stored with a given
identification. For example, in a numerical application we might want to
find Ax), given x and a table of the values of £, in a nonnumerical applica-
tion, we might want to find the English translation of a given Romanian
word.

In general, we shall suppose that a set of N records has been stored,
and the problem is to locate the appropriate one. As in the case of sorting,
we assume that each record includes a special field called its key.

We generally require the N keys to be distinct, so that each key
uniquely identifies its record. The collection of all records is called a
table or a file. A large group of files is frequently called a data base.

Algorithms for searching are presented with a so-called argument,
K, and the problem is to find which record has X as its key. After the
search is complete, two possibilities can arise: Either the search was
successful, having located the unique record containing K, or it was un-
successful, having determined that is nowhere to be found. After an
unsuccessful search it is sometimes desirable to enter a new record, con-
taining K, into the table; a method which does this is called a “search and
insertion” algorithm.

93

https://biblioteca-digitala.ro / https://unibuc.ro

Although the goal of searching is to find the information stored in
the record associated with K. the algorithms in this section generally 1g-
nore ¢vervthing but the kevs themselves. Searching is the most time -
consuming part of many programs, and the substitution of a good scarch
method for a bad one often leads to a substantial increase in speed.

Sometimes it is possible to arrange the data structure so that scarch-
ing is ehminated entirely, i.c., so that we always know just where to find
the information we need. For example, if we are allowed to choosc the
kevs freelv, we might as well let them be the numbers {1.2, ..., N }; then
the record containing K can simply be placed in location TABLE + K.

However, there are many cases when a search is necessary, so it is
important to have efficicnt algorithms for searching.

Search methods might be classified in scveral ways; for example
we might divide search methods into static vs. dynamic scarching, where
“’static”’ means that the contents of the table are essentially unchanging
(so that it 1s important to minimize the search time without regard for the
time required to set up the table), and *’dynamic’ means that the table is
subject to frequent insertions (and perhaps also deletions). We might also
divide searching into those methods which use the actual kevs and thosc
which work with transformed kevs (by some hashing methods).

There 1s a certain amount of interaction between searching and
sorting, as we shall see later. A number of interesting ncw search proce-
dures based on tree structures were introduced, and research about search-
ing is still activelv continuing at the present time.

§ 1. Sequential searching

Algorithm S (Sequential search). Given a table of records R,.
R .. R, whoserespectivekevsare K|, K,, ..., K,.. thisalgorithm searches
for a given K. We assume that N = 1.

1. Setie1

2. If K = K, the algorithm terminates successfully.

Jieit]

4 1fi € N goto 2. Othenvise the algorithm terminates unsuccess-
fully.

Note that this algorithm can terminate in two different ways,
successfully (having located the desired kev) or unsuccesstully (having

94

https://biblioteca-digitala.ro / https://unibuc.ro

cstablished that the given argument is not present in the table). The same
will be true of most other algoritlims in this chapter.

If every input keyv occurs with cqual probability, the average value
of (', the number of kev comparisons, in a successful search will be

1+2+. +N N+1

N g . A straightforward change makes the algorithm

faster, unless the list of records is quite short:

Algorithm Q (Quick sequential search). This algonthm is the
same as Algorithm S, except that it assumes the presence of a *’dummy ™
record R, , | at the end of the file.

1.Seti¢« l,andsetK, K

2.IfK =K, goto 4.

3.i« i+ 1andretunto 2.

4. If i £ N, the algorithm terminates successfully; otherwise it
terminates unsuccessfullv (7 = N + 1).

A slight variation of the algorithm is appropriate if we know that
the keys are in increasing order:

Algorithm T (Sequential secarch in ordercd table). Given a
table of records R, R, ... R, whose kevs are in increasing order K| <X,
< .. <K,, this algonthm searches for a given argument K. For conve-
nience and specd, the algorithm assumes that there is a dummy record K| | |
whose key valueis K, | = > K

1. Seti 1.

2 IfK<K, goto4.

3.i¢ i+ 1andretumto 2.

4.1f K = K, the algorithm terminates successfully. Otherwise it
terminates unsuccessfully.

If all input kevs are equally likely, this algorithm takes essentially
the same average time as Algorithm Q, for a successful scarch. But
unsuccessful searches are performed about twice as fast. The samc search
procedures can be used for tables which have a linked representation
since the data are traversed sequentially. Now suppose that key K| will
occur with probability p,, where p, + p, + ... + p,. = 1. The time required
to do a successful search is essentially proportional to the number of
comparisons, C, which now has the average value

Cy=p+2p,+ +Np,

95

https://biblioteca-digitala.ro / https://unibuc.ro

If we have the option of putting the records into the table in anv
desired order this quantity C, is smallest whenp 2p. 2. 2p ic.
when the most frequently used records appear near the beginning. If p, =

1 ~ N+l _

Py= =Py this formula reduces to Cy = 5 A more typical
e ¢ c ¢ [

distribution is “’Zipf’s law”, p, = T,Pz = 5,...,pN = N wherec= —.

N

This distribution was formulated by G. Zipf, who observed that the »-th
most common word in natural language text seems to occur with a fre-
quency inversely proportional to n. If Zipf’s law governs the frequency

) .) = N)
of the keys in a table, we have immediately C,, =——-; searching such a
N

1
file is about 5 In N times as fast as searching file with randomlv-ordered

records.
The above calculations with probabilities are nice, but in most

cases we do not know the probabilities are. In the next section we discuss
sclf-organizing linear lists.

§ 2. Self-organizing linear lists

The 1dea of self—organization is quite simple. Suppose that we
have a data-structure for set § = {x,,....x,}. Whenever we access an
clement of S, say x,, then we move x, closer to the entry point of the data
structure. For linear lists this means that whenever a record has been
successfully located, it is moved to the beginning of the table. This
procedure is readily implemented if the table is a linked linear list, espe-
cially because the record being moved to the beginning often has to be
substantially updated anyway. This procedure will make subsequent
accesses to x, cheaper. In this way the elements of § compete for the
"good" places in the data structure and high-frequency elements are more
likely to be there. Notice however, that we do not maintain any explicite

96

https://biblioteca-digitala.ro / https://unibuc.ro

frcquency counts or weights; we hope that the data structure self-
organizes to a good data structure. For an average casc analysis we
nced to have probabilities for the various operations.

The data structure then leads to a Markov chain whose states are
the different configurations of the data structure. We can then use prob-
ability theory to compute the stationary probabilities of the various states
and use these probabilities to derive bounds on the expected behaviour
of the data structure.

LetS= {x,,....x,}. We consider operations Access (x), wherex € §
is assumed, Insert (x), where x ¢ S is assumed, and Delete (x), where
x € Sis assumed. We always organize § as a linear list which may be
realized as either an array or a linked list. We use pos(i) to denote the
position of clement x, in the list. We assume that the cost of operations
Access (x) and Delete (x,) is pos(i) and that the cost of operation Insert
(x)1s|S|+ 1.

A popular strategy is the Move-to-Front rulc.

Move-to-Front Rule (MFR): Operations Access (x) and Insert (x)
make x the first clement of the list and leave the order of the remaining
elements unchanged; operation Delete(x) removes x from the list.

Example: We give an cxample for the MF rule:

Insert(2) Access(4)

134 52134 »4213Delete) , 4og

The cost of this sequence is4 +4 +3 =11,

For the cxpected case analysis we consider only sequences of
Access operations. If S= {x,,...,x, } let B, be the probability of an Access
to element x, 1 <i<n. We assume w.l.o.g. thatf, 2f8,>.. 2B . The
frequency decreasing rulc (FDR) arranges S as list x x, ... x, and has

n

minimum expected access time Py, = 2 iB:. The expected access
i=l

time of the frequency decreasing rule is easily seen to be optimal. Con-
sider a sequence ... xx, ... in which x; is directly in front of x and j > i.
Exchanging this pair ‘of clements changes the expected access time by B
- P, . a non-positivec amount. This shows that the expected access time
of the FD- rule is optimal.

For the analysis of the MF rule we use Markov chains. The following
diagram illustrates the move-to-front rule for a set of three elements, {1, 2, 3}.

97

https://biblioteca-digitala.ro / https://unibuc.ro

The diagram has 3! = 6 states.
In this diagram 123 denotes linear list x,x.x,. If x, is accessed
(probability B,) then list x x,x, is changed into list XX, X,

B, -

B, L
B,

3
B

The move-to-front rule for n elements induce a Markov chain
with n! states. The states correspond to the n! linear arrangements of set
S, i.e. permutation 7 represents a linear list where x, is at position n(i).
Furthermore, there is a transition from state 7 to state p if there is an ;
such that p(¥) = 1, p(y) = n(j) + 1 forj such that n(y) < n(i) and p(j) = n(y)
otherwise. This transition has probability B,. This Markov chain is irre-
ducible (the corresponding digraph is strongly connected) and aperiodic
and in these conditions stationary probabilities y, exist. ¥, is the asymp-
totic (limiting) probability that the chain is in state 7, i.e. that x, is at
position (i) for 1 <i<n.

Then
Pyrr =Z 'Ynz Bim())
T i
is the asymptotic expected search time under the move-to-front rule.

98

https://biblioteca-digitala.ro / https://unibuc.ro

Lemma 1. Let 8(j, i) be the asymptotic probability that x, is in
front of x. Then

2) Porr =z B{HZ S(j,i))
Bi +ﬁj '
Proofa) Letp, =2, Tx™0). ThenP,.. = B.p andp,is

the expected position of element x .
Furthermore,

= Y 1) = 3 Ye(HURG) <) =1+ 3 Y {yem() <70)} =
4 . d J#

b)8(J.1) =

=1+) 8(;,)
I
since Z{y, : 7i(j) < m(i)} is the asymptotic probability that X, is in front
of x.
b) x; is in front of x, asymptotically if there is a & such that the last
k+1 accesses are: an access to x, followed by & accesses to elements
different from x; and x,. Hence

1 B,

BT E B BB,

5.0 =8; 3 (1- (B, +B,))"

k20

Theorem 1. Let B, 2B, > ... 2 . Then

BB,
PMFR = 1+ 2 J
a) IsziSn Bi + Bj
b) Arr < 2Pmpg — 1
Proof: a) We have by lemma 1,

99

https://biblioteca-digitala.ro / https://unibuc.ro

i)

Prrr —Zﬂ [HZS(; ,)J ZB(

J#l

B BB
RNy . ZB vy

i J#
B
b) Since Bi+B, we deduce from part a)

This theorem gives a closed form expression for P, which is
rcadily evaluated for particular distributions [and usually shows that
the expected cost of the MF — rule is only a few percent above the
optimum. It also shows that P, . is never more than twice the opti-
mum.

1
Ifp = N for 1 <i < N, the self — organizing table is always in

N+1
completely random order, and this formula reduces to P, = 5

derived above. When the key probabilities obey Zipf's law one can prove
easy, using harmonic numbers, that P, .. ~ 2N/log,N. This is substan-

1
tially better than 5 N | when N is reasonably large, and it is only about

In 4 = 1.386 times as many comparisons as would be obtained in the
optimum arrangement (P).

Computational experiments involving actual compiler symbol
tables indicate that the self-organizing method works even better than
the above formulas predict, because successive searches are not inde-
pendent (small groups of keys tend to occur in bunches) (cf. D. Knuth).

Tape searching with unequal-length records. Suppose the table
we are searching is stored on tape, and the individual records have
varying lengths. Let L be the length of record R, and let p, be the
probability that this record will be sought. The running time of the search
method will now be approximately proportional to

100

https://biblioteca-digitala.ro / https://unibuc.ro

pL+p (L +L)+. +pfL, +L,+. +L).
The optimum arrangement of programs on a library tape may be
determined as follows.
Theorem 2. Let L and p, be as defined above. The arrangement
of records in the table is optimal if and only if

PPy P8 1
LoL 7L, @
Proof: Suppose that R, and R, are interchanged on the tape; the
cost changes from

wtphy et g + L) + (et L)+
to .. +p (Li+.+L_ + L,)+ p(L+. +L,)+. witha difference of

.o Pi _Pin1 . .
— p,.,L,. Therefore if Z'< lal+1 the given arrangement is not
] i+

pl

i+l

optimal. It follows that if the arrangement is optimal then (1) holds.

Conversely, assume that (1) holds; we need to prove that the
arrangement is optimal. We know that any permutation of the records
can be sorted into the order R\R, ... R, by using a sequence of inter-
changes of adjacent records. Each of these interchanges replaces ... RlR‘.
..by... RR, ... for some i <J, so it decreases the search time by the non-
negative amount p‘Lj -pL.

If the initial arrangement was optimum, it follows that all arrange-
ments obtained in this way must be optimum also; therefore the order
R R, ... R, must have minimum search time.

§ 3. Searching by comparison of keys

In this section we shall discuss search methods which are based
on a lincar ordering of the keys. After comparing the given argument K
to a key K, in the table, the search continues in three different ways,
depending on whether K < K, K=K, or K> K.

With so many sorting methods at our disposal, we will have little
difficulty rearranging a file into order so that it may be searched conve-
niently. Of course, if we only need to search the table once, it is faster to

101

https://biblioteca-digitala.ro / https://unibuc.ro

do a sequential search than to do a complete sort of the file; but if
we need to make repeated searches in the same file, we are better off
having it in order. Therefore in this section we shall concentrate on
methods which are appropriate for searching a table whose keys are in
order, K| < K, <... <K,, making random accesses to the table entries.
After comparing X to X, in such a table, we either have: * K <X, [R,
R, ,,..,R, are eliminated from consideration]; or * K = K| [the search is
done]; or * K> K [R, R,, ..., R, are eliminated from consideration].

In each of these three cases, substantial progress has been made,
unless is near one of the ends of the table; this is why the ordering leads
to an efficient algorithm.

Let § = {K, < K, <.. <K} be stored in array K[1...n], i.e.
K[il= K, and let @ € U. In order to decide @ € S, we compare a with
some table element and then proceed with either the lower or the upper part
of the table.

This idea leads to the following general algorithm from which
various algorithms can be obtained by replacing lines (2) and (7) by
specific strategies for choosing next:

(1) low « 1; high « n;

(2) next « an integer in [low, high];

(3) while a # K [next] and high > low

(4) do if a < K [next]

(5) then high < next -1

(6) elselow < next + 1 fi;

(7) next &« an integer in [low, high]

(8) od;

(9) if a = K [next] then ,,successful” else ,,unsuccessful”.

Linear search is obtained by next «— low; binary search by next
« | (low + high)/2] (or next « [(low + high)/2)]) and interpolation

a - Kllow ~1]
search by: next ¢ low -1+ ’V Klhigh+1]— Kllow —1]
We discuss binary search in greater detail below.

The correctness of the program is independent of the particular
choice made in line (2) and (7). If @ = K [next] then the search is
successful. Suppose now that a # K [next]. We know that a € S implies
a € {K[low] ,..., KThigh]}. If high < low then certainly a ¢ S. If
high = low then next = high and hence a ¢ S. In either case the search is
unsuccessful.

102

(high—low + 1)]'

https://biblioteca-digitala.ro / https://unibuc.ro

Finally, the program terminates because high — low is decreased
by at least one in each execution of the loop body.

Note that for interpolation search it is assumed that positions X[0]
and KTn+1] are added and filled with artificial elements. The worst case
complexity of interpolation search is clearly O(n); to see this consider

1 .
the case that K[0] =0, K[n+1]=1,a= il and S < (0,a). Then next

= low always and interpolation search deteriorates to linear search.
Average case behaviour is much better. We shall rewnte the binary search
algonithm as follows:

Algorithm B (Binary search). Given atable ofrecords R, R,,...

R, whose keys are in increasing order K| < K <...<K,, this algonthm
searches for a given argument XK.

1.Set] « 1, ueN.

2. If u <, the algorithm terminates unsuccessfully. Otherwise,
set i « (I + u)/2] , the approximate midpoint of the relevant
table area.

3J.IfK<K,goto4;if K> K, goto5; and if K= K, the algorithm
terminates successfully.

4. Setuei—1andretumto 2.

5.Set! « i+ 1andretumnto 2.

Note that if u </ at step 2, then u =/ — 1 in all cases.

ﬂllﬂﬂﬂ

12] (i3] [9] @9
T 15

Fig ! A binary tree which corresponds to binary search when N = 16.

103

https://biblioteca-digitala.ro / https://unibuc.ro

In order to understand what is happening in Algorithm B, it is
best to think of it as a binary decision tree, as shown in fig. 1 for the case
N=16.

When N =16, the first comparison made by the algorithm is
K : K,; this is represented by the root node in the figure. Then if
K <K, the algorithm follows the left subtrce, comparing X to K ; simi-
larly if K > K, the right subtree is used. An unsuccessful search will
lead to one of the ,,external”” square nodes numbered 0 through N ; for
example, we reach node (6]if and only if K, <K<K,

The binary tree corresponding to a binary search on N records can
be constructed as follows:

If N=0, the tree is simply[0] Otherwise the root node is
the left subtree is the corresponding binary tree with [N/21- 1 vertices,
and the right subtrcc is the corresponding binary tree with In2] ver-
tices and with all vertex numbers incrcased by [N/2]. Here we have
counted only internal vertices corresponding to a successful search.

In an analogous fashion, any algorithm for searching an ordered
table of length N by means of nonredundant comparisons can be repre-
sented as a binary trec in which the internal vertices are labelled with the
numbers 1 to N and extemnal vertices with 0 to N.

Conversely, any binary trec corresponds to a valid method for
searching an ordered table; we simply label the vertices @ @ L—L]

@ @ in symmetric order, from left to right,

if the tree has N internal vertices and consequently, N + 1 external ones.
If the search argument input to Algorithm B is K , the algorithm
makes comparisons K> K, K < K., K= K . This corresponds to the

path from the root @ to vertex in fig. 1. Similarly, the behaviour
of Algorithm B on other keys corresponds to the other paths lcading
from the root of the tree. The method of constructing the binary trees
corresponding to Algorithm B therefore makes it easy to prove the fol-
lowing result by induction on N:

Theorem 1. /f2¥' < N < 2% a successful search using Algorithm
B requires at most k comparisons. If N = 2* — 1, an unsuccessful search
requires k comparisons; and if 2! < N <2* — 1, an unsuccessful search
requires either k— 1 or k comparisons. This means that for N=2"—1 all
terminal vertices of the binary trec associated to Algorithm B are on
level kand for 2% ' < N <2k — 1 terminal vertices are on levels k— 1 and k.

104

https://biblioteca-digitala.ro / https://unibuc.ro

Proof: The property is true for
k=1.Let k 2 2 and suppose that the
property is true for all 24! S N< 2% If
2k < N <21 we shall distinguish two
cases: A. Nisodd, N=2p+1;B.Nis
cven, N=2p, whercpe N,p= 1.

A. In this case the root of the
binary tree T corresponding to Algo-

N+1
2

the left subtree 7, and the right subtree T contain each exactly p
vertices. Since

>

rithm B has the label p+ 1= [

2k<2p+1<2¥

1
it follows that p > 2+ — 5 hence p = 2*1, since p is an integer and also

l
p<2t-— 5 hence p < 2% Because 2¥! < p < 2% we can apply the

induction hypothesis for both T, and T,: A(T)) = h(T,) = k, hence
A(T) = k+ 1, the height of T being equal to the maximum number of key
comparisons performed by Algorithm B for a successful search. If
p = 2% — 1 all terminal vertices of T, and T, are on level 4, hence if
N=2p+1=2% _1all terminal vertices of T are on level &£ + 1.
If 2¥1 < p <2¥— 1, which implies that 2*< N <2%! —] since N=2p + 1
is odd, both T, and T, have terminal vertices on levels k— 1 and £, hence

T has all terminal vertices on two con-
secutive levels, kand £+ 1. G
B. In this case the root of the bi-
N+1 /
nary tree has label p = 2 and 7,

and 7, have not equal sizes: T, has p — 1
vertices and T, p vertices. Since 2*<2p
< 201 it follows that 2% < p < 2% We T T

105

https://biblioteca-digitala.ro / https://unibuc.ro

have also 2*' < p — 1 < 2*unless p = 2%, or N = 2% But in this case the
tree T is similar to the tree in fig. 1, p. 103 for every k£ = 1: it has
h(T)=k+ 1, N— 1 terminal vertices on level k and two terminal vertices
on level k + 1, and the theorem is proved directly in this case (N = 2¥),

It remains to consider the case 2* < N < 2**! only. By the induc-
tion hypothesis we deduce that h(T)) = h(T) = k, hence A(T) = k + 1 and
Algonthm B requires at most k+ 1 comparisons for a successful search.

Since N is even, N # 2° — 1 for every s = 1, hence we must prove
that the terminal vertices of T are on two consecutive levels kand £+ 1.
This follows also by the induction hypothesis for trees 7, and T, which
correspond to the same algorithm applied for a set of p — 1 and p keys,
respectively. For T, we have p — 1 # 2* — 1 since N is not a power of 2.
It follows that terminal vertices of 7, belong to two consecutive levels
k—1and k. For T all terminal vertices belong to level k (for p = 2* - 1)
or to levels £ — 1 and k. It follows that T has its terminal vertices on two
consecutive levels, k and &k + 1 and the proof is complete. O

It follows that the number of key comparisons in a successful
(or an unsuccessful) search by binary search algorithm is at most
LlogzN] + 1. We have defined on p- 80 E(T7), the external path length of
a binary tree T, as the sum of the lengths (number of edges) of the paths
from the root to all external vertices of 7. In a'similar manner, /(T), the
internal path length of T'is defined as the sum of the lengths of the paths
from the root to all internal vertices of 7.

106

https://biblioteca-digitala.ro / https://unibuc.ro

For example, for tree 7'in fig. 2 we have E(T) =2+2+3+3 +2
=12and (T)=1+2+1=4; E(T) - (T) =2 * 4, twice the number of
internal vertices of T. This property holds for any binary tree:

Lemma 2. For any binary tree T which is complete we have

E(T)=T)+2N,
where N denotes the number of internal vertices of T.

Proof: Suppose that a complete binary tree has a, internal verti-
ces and b, external vertices at level &, for k= 0,1... (the root is at level
zero). Thus in fig. 2 we have (a,, a4, a,,...) = (1, 2, 1, 0, 0,...) and
by b,,..)=(0,0,3,2,0,0,..).

Consider the generating functions associated with these sequences:

A(2)=), a,z* and
k=0

B(z)=), bz*
k=0

where only a finite number of terms are non—vanishing. We have
2a, ,=a, +b,

for every k2 O since all @, | internal vertices on level £ — 1 have exactly

two sons on level & and the number of vertices on level £ is equal to

a, + b,. We deduce

A(2)+ B(2) =i(ak +b,)z" =a, +b, +i(a,, +b,)z* =

k=0 k=1

=1+ 22 a2 =1+ 222 a, 2" =1+ 222 a,z" =1+2z4(2),
k=1 k=1 k=0

We have
A(Z)+ B(z) = 1 + 2z4(2) 1

For z = 1 one obtains B(1) = 1 + 4A(1); but B(1) = Zbk is the
k=0

number of external vertices of T, 4(1) = zak is the number of internal
k=1

107

https://biblioteca-digitala.ro / https://unibuc.ro

vertices of T, hence the number of external vertices is one more than the
number of internal vertices.)

By differentiating (1) one gets

A(2)+ B'(z) =2 A(z) + 2 z24'(2). If A(1) = N, then for z = 1 this

equality yields: B(1) = 4°(1) + 2 N. But 4°(1) = 2,% = I(T) and
k=1

B'(1)= D,kby = E(T), hence E(T) = KT)+2N. 00
k=1

The tree representation of algorithm B shows us also how to com-
pute the average number of comparisons in a simple way.

Let C, be the average number of comparisons in a successful
search, assuming that each of the N kays is an equally likely argument;

and let C,, be the average number of comparisons in an unsuccessful

search, assuming that each of the N+ 1 intervals between keys is equally
likely. Then we have

c 11D, o (EM
T ON+1
From E(T) = I(T) + 2 N we deduce
1)~
Cy = (1 + W)CN -1 2

This formula holds for search methods which correspond to
binary trees, i.e., for all methods which are based on nonredundant com-
parisons. It follows that C, is minimum if and only if €, is minimum,
or by lemma on p. 80 if and only if all external vertices of T belong to at
most two consecutive levels. By theorem 1 this is the case for binary
search which minimizes the average number of companisons in both
cases of a successful or an unsuccessful search.

§ 4. Binary tree searching

We proved in the preceding section that for a given value of n, the
tree corresponding to binary search achicves the theoretical minimum
number of comparisons that are necessary to search a table by means of

108

https://biblioteca-digitala.ro / https://unibuc.ro

key comparisons. But the methods of the preceding section are appro-
priate mainly for fixed — size tables, since the sequential allocation of
records makes insertions and deletions rather expensive. If the table is
dynamically changing, we might spend more time maintaining it than
we save in binary searching it. The use of an explicit binary tree struc-
ture makes it possible to insert and delete records quickly, as well as to
search the table efficiently.

As aresult, we essentially have a method which is useful both for
searching and for sorting. This gain in flexibility is achieved by adding
two link fields to each record of the table.

Techniques for searching a growing table are often called symbol
table algorithms, because assemblers and compilers and other system
routines generally use such methods to keep track of user ~ defined
symbols.

By representing the tree explicitely by pointers and not implicitely
by an array the operations Insert and Delete can also be executed fast as
we will see shortly.

This leads to the following definition:

A binary search tree for set § = {x <x, <..<x } is a binary
tree with »n internal vertices {v ,...,v }. These vertices are labelled
with the elements of §, i.e. there is an injective mapping CONTENT:
Vv, } 285,

The labelling preserves the order, i.e. if v(v) is a vertex in the left
(right) subtree of the tree with root v, then CONTENT [v]<CONTENT
[v] < CONTENT [v].

An equivalent definition is as follows: a traversal of a search tree
for § in symmetric order reproduces the order on S. We will mostly
identify internal vertices with their labellings, i.e. instead of speaking of
vertex v with label x we speak of vertex x and write x. Vertex x corre-
sponds to the test: if a < x then go to the left son else if a = x then
terminate search else go to the right son fi fi. The n + 1 leaves represent
unsuccessful access operations. It is not necessary to store leaves
explicitely. Each leaf represents one of the n + 1 open intervals of the
universe U generated by the elements of S. We draw the leaf corre-
sponding to interval x, <a <x_, as . An example of a binary
search tree for n = 6 is the following:

109

https://biblioteca-digitala.ro / https://unibuc.ro

P CIN

G x,) I(xl, x,) [(xz, xJ)I [(xg, x4)| I(x4, xﬂ (x5 X0

and it corresponds to a binary search algorithm when at step
2i [(1 +u)2] instead of i &= L(! + u)/2] (see p. 103).

Leaf (, x,) represents all a € U with a <x,. If a searching algo-
rithm terminates in vertex v then a = CONTENT [v], if we perform
operation Access (g, S) in T, a binary search wee for set S.

Otherwise it terminates in a leaf, say (x, x,,,). Thenx, <a<x_,.

Operation Insert (a, S) is now very easy to implement. We only have to
replace leaf (x, x,,,) by the tree

[(x, a) | l (@x,,) I

Deletion is slightly more difficult. A search for a yields internal
vertex v with content a. We have to distinguish two cases.

Case I: At least one son of v is a leaf, say the left. Then we
replace v by its right son and delete v and its left son from the tree.

Case 2: No son of v is a leaf. Let w be the rightmost vertex in the
left subtree of v (the last internal vertex produced by traversing the
left subtree of v in symmetric order). Vertex w can be found by follo-
wing the left pointer out of v and then always the right pointer until a
leaf is hit.

110

https://biblioteca-digitala.ro / https://unibuc.ro

We rcplace CONTENT {v] by CONTENT [w] and delete w as
described in case 1. Note that w’s right son is a leaf.

The following figure illustrates both cases. The vertex with con-
tent 4 is deleted, leaves are not drawn.

$od

Case 2

Of course, the height of the search tree playé a crucial role for the
efficiency of the basic operations.

The following algorithm spells out the searchmg and insertion
processes in detail.

Algorithm T. (Tree search and insertion). Given a table
of records which form a binary tree as described above, this algorithm
searches for a given argument XK.

If K is not in the table, a new vertex contammg K is inserted into
the tree in the appropriate place.

The vertices of the tree are assumed to contain at least the follo-
wing fields:

111

https://biblioteca-digitala.ro / https://unibuc.ro

KEY (P) = key stored in NODE (P)

LLINK (P) = pointer to]eft subtree of NODE (P)

RLINK (P) = pointer to right subtree of NODE (P).

Null subtrees are represented by the null pointer A. The variable
ROOT points to the root of the tree. We assume that the tree is not
empty (i.e., ROOT # A).

1. Set P <~ ROOT.

2. If K < KEY (P), go to 3; if K > KEY (P), go to 4; and if
K = KEY (P), the search terminates successfully.

3. If LLINK (P) # A, set P « LLINK (P) and go back to 2.

Otherwise go to 5.
4. If RLINK (P) # A, set P « RLINK (P) and go back to 2.

5. (The search is unsuccessful; we will now put X into the tree).
Set 0 < AVAIL, the address of a new node. Set KEY (Q) « K, LLINK
(Q) « RLINK (Q) « A. If K was less than KEY (P), set LLINK (P) «
0, otherwise set RLINK (P) <~ Q and terminate the algorithm. It can be
proved that the average height of a randomly grown trec is O (log) and
that tree search will require only about 2 In N = 1.386 log,N compari-
sons, if the keys are inserted into the tree in random order. Hence well-
balanced trees are common, and degenerate trees are very rare.

There is a simple proof of this fact.

Let us assume that each of the M! possible orderings of the N keys
is an equally likely sequence of insertions for building the tree. The
number of comparisons needed to find a key is exactly one more than
the number of comparisons that were needed when that key was entered
into the tree. Therefore if C,, is the average number of comparisons

involved in a successful search and), is the average number in an
unsuccessful scarch, we have
’ ? \74
C,+Cl+. . +Cy,

Cy =1+
N N ey
But the relation betwecn internal and external path length implies
. Py~
Cy =(1+W)CN—I 2)

112

https://biblioteca-digitala.ro / https://unibuc.ro

This is Eq. (2) p. 108. Putting this together with (1) yields
(N+DC, =2N + O+ Cl+.+Cf;
Subtracting the equation
NC,,=2N-1)+C,+Cl+. . +C,_,
we obtain

’ A4 AV v o__ ’ 2
(N+D)C}, = NC,_, =2+ C,_,. or Cr=Cy +‘N+—1.

Since ¢ = 0, this means that

(":V = 2H.'v+| -2
Applying (2) and simplifying yields the desired result

1
CN = 2(] +_\F}{N —-3~2InN)

§ 5. Weighted trees

In this section we consider operation Access applied to weighted
sets S. We associate a weight (access probability) with each element of
S. Large weight indicates that the element is important and accessed
frequently; it is desirable that these elements are high in the tree and can
therefore be accessed fast.

Let us now explore the problem of finding the optimum tree. When
N = 3, for example, lct us assume that the keys K, < K, < K| have
respective probabilities p, g, r. There are five possible binary trees with

Ip+29+r 2p+3q+r 2p+gq+2r

113

https://biblioteca-digitala.ro / https://unibuc.ro

pt3q+2r p+2q+3r

We obtain in this way five algebraic expressions for the average
number of comparisons in a search.
When N is large. the number of binary trees having N internal

1 (2N
vertices (the N—th Catalan number Cy =ﬁ(N)) is asymptoti-

cally equal to 4" /(NN) by Stirling’s formula, so we cannot try

them all and see which is best.

So far we have considered only the probabilities for a successful
search; in practice, the unsuccessful case must usually be considered as
well. Therefore let us set the problem up in the following way:

Let §={K <K, <..<K } and let p, (qj) be the probability
of operation Access (a, S) where a =K (K, <a<K_) for1<i<n(0<;<n).
By convention, g, is the probability that the search argument is less than
K, and g is the probability that the search argument is greater than K .

Thenp, 4,20 and 2 2 +Z q,=1.

=1 Jj=0

The (2n + 1) - tuple (q,, p,. 4,,----P,» 9,) is called access
(probability) distribution.

Let T be a search tree for set S, let o] be the depth (level) of
internal vertex i (the i—th intermal vertex in symmetric order) and let
Bj be the depth of leaf j (the (j + 1) — st external vertex or leaf
(K, K,..).

114

https://biblioteca-digitala.ro / https://unibuc.ro

Consider a search for element a of the universe. If g = K, then we

compare @ with o + 1 elements in the tree; if K, <a <K, then we

compare a with Bf elements in the tree. Hence

n n
Pt =Z Pi(_1+air)+2 ‘1,-55
i=1 j=0

is the average number of comparisons in a search. PTis called weighted
path length of tree T (or the cost of T relative to the given access
probability distribution).

We take PT as our basic measure for the efficiency of operation
Access; the expected number of comparisons in the search is propor-
tional to P7.

We will suppress index T if tree T can be inferred from the
context.

For example the expected number of comparisons (or the weighted

path length) for the binary tree T is

2q,+2p, +3q,+3p, +3q,+p, +q,, Q
sincea, =1,0,=2,0,=0,

B,=2.B,=3,B,=3,8,~ 1. OWNE

We associated with every search n e
tree for set S a real number, its weighted
path length (or shortly, its cost). We can n)
therefore ask for the tree with the mini-
mal weighted path length (cost). This
tree will then also optimize average T
access time.

If (9, P)» 9,5---sP, 4,) 15 @ fixed access distribution for
§={K <K,<..<K}, tree Tis said to be an optimum binary search
trec for set § if its weighted path length is minimal among all search
trees for set S. In this definition there is no need to require that the p’s
and ¢’s sum to unity, we can ask for a minimum - cost tree with any
given sequence of “weights” (q,, p,, 4,,---.P,, 4,)-

115

https://biblioteca-digitala.ro / https://unibuc.ro

We use dynamic programming, i.c. we will construct in a sys-
tematic way optimal solutions for increasingly larger subproblems
to show that an optimum binary search tree for set § and distribution
of weights (q,, p,, 4,,.--.p,, q,) can be constructed in time O(n*) and
space O(n?).

A search tree for set S has internal vertices 1, 2,...,n and external
vertices 0, 1,..., n (or (, K)), (K|, K,) ..., (K, ,)). A subtree might havc
intemnal vertices i + 1,...,j and leaves i,...,j for 0 <, j<n, i</ - 1. Such
a subtree is a search tree for set {K_ <... < Kj}.

If we denote w(i, j)=p,,, +...+ ptgt.tg, the cost of such a
subtree by P(i, j), and if its root is k(i < k < j), then the cost of this
subtree is related to the costs of its subtrees (left and right) by:

P@, j) =w(, j) + P(i, k-1) + P(k, j)

Indeed, the left subtree of the root khas leaves i, i + 1,..., A—1; the
right subtree has leaves &, k + 1,..., j and the level of each vertex in the
left or right subtree of k is less by 1 than the level of that vertex in the

trec having root k. Let c(i, j) be the cost of an optimum subtree with

weights (P, -.P, 454 and suppose that c(i, j) and w(i, j) are defincd
for 0 <i<j<n. It follows that
i, =0
(i, j) = w(i, j) + min (c(i, k=1) + c(k,)
i<k<j
fori<j ¢))

since both left and rnight subtrees of root & must be optimum.
When i < j, let R(, j) be the set of all £ for which the minimum is
achieved in (1); this sct specifies the possible roots of the optimum trees.
Eq. (1) makes it possible to cvaluate c(i, j) forj —i =1, 2,....n;

ny 1 -
there are (2)~5” such values, and the minimization operation is

carried out

n-1 k)

2 ith—i)= Ty Oiny
3

times. 1=l

116

https://biblioteca-digitala.ro / https://unibuc.ro

This means we can detenmine an optimum tree in O(n?) units of
time, using O(n?) cells of memory. [However, time complexity can be
decreased to O(n?) using a monotonicity property of R(i,).

Example:

Letn=4,9,=4,p =1,9,=0,p,=3,49,=0,p,=3,¢,=3,p,=0,
q,=10. We get: ¢(0,1) =w(0,1) =g, + p, + q,=5; c(1,2) =w(], 2) =3,
c(2,3)=w(2,3)=6,c(3,4) = 13.

Now we compute c(i, j) forj —i=2, i.e.,

c(0,2) = w(0,2) + min (c¢(0,k— 1) + c(k, 2)) =
k=1,2
8+min(3,5)=11(k=1)

c(1,3) =w(1,3) + min (¢(1, k-1) + c¢(k, 3)) =
k=273
= 94 min (6,3)=12(k=13)
c¢(2,4) =w(2,4) + min (¢(2, k1) + ¢(k, 4)) =

k=3,4
16 + min (13, 6) = 22 (k= 4).
The values of k in parentheses indicate the points where mini-
mum was reached. Further, letj —i=3:
¢(0,3) = w(0,3) + min (c(0, k-1) + c(k,3)) =
k=1,2,3
=14+ min (12, 11, 11) =25 (k= 2, 3).

c(1,4) = w(l, 4) + min(c(1, k= 1) + c(k, 4)) =
k=2,3,4
= 19 + min (22, 16, 12) = 31 (k= 4).
Numbers w(i, j) can be computed by recurrence since w(i, j+ 1) =
= W(l,_]) +pj+| + qj+ N
Finally,
¢(0,4) = w(0,4) + min(c(0, k- 1) + c(k, 4)) =
k=1,2,34
=w (0,4) + min(31, 27, 24, 25) (k= 3).

It follows that the root of the mini-
mum search tree is 3, hence the root of the
right subtree of 3 is 4 and the right subtree
of 3 is completely determined.

117

https://biblioteca-digitala.ro / https://unibuc.ro

The left subtree of 3 has leaves 0, 1, 2; it corresponds to i = 0 and
J =2. The cost of a minimum subtree of this type is precisely ¢(0,2) =11
and its root is 1. It follows that optimum search tree for this distribution
of weights is represented as above.

Of course, we can transform our initial access weight distribution
into an access probability distribution by dividing each component by 24.

§ 6. Balanced trees

The tree insertion algorithm will produce good search trees, when
 the input data is random, but there is still the annoying possibility that a
degenerate tree will occur.

A solution to the problem of maintaining a good search tree was
discovered in 1962 by G.M. Adelson-Velskii and E.M. Landis. Their
method requires only two extra bits per node, and it never uses more
than O(log N) operations to search the tree or to insert an item.

In fact, we shall see that their approach also leads to a general
technique that is good for representing arbitrary linear lists of length N,
so that each of the following operations can be done in only O(log N)
units of time:

i) Find an item having a given key.

11) Find the k-th item, given k.

iii) Insert an item at a specified place.

1v) Delete a specified item.

If we use sequential allocation for linear lists, operations (i) and
(i1) are efficient but operations (iii) and (iv) take order N steps; on the
other hand, if we use linked allocation, operations (iii) and (iv) are effi-
cient but operations (i) and (ii) take order N steps. A tree representation
of linear lists can do all four operations in O(log N) steps. And it is also
possible to do other standard operations with comparable efficiency, for
example list concatenation.

The method for achieving all this involves what we shall call
,,balanced trees” (or AVL - trees).

However in applications which do not involve all four of the above
operations, we may be able to get by with substantially less overhead
and simpler programming. Furthermore, there is no advantage to use
balanced trees unless N is reasonably large. Balanced trees are appro-

118

https://biblioteca-digitala.ro / https://unibuc.ro

priate chicfly for intemal storage of data; since internal memories
seem to be getting larger and larger as time goes by, balanced tree are
becoming more and more important.

A binary tree is called balanced if the height of the lelf subtree of
every vertex never differs by more than £1 from the height of its night
subtree. The balance factor within each vertex is by definition the height
of the right subtrce minus the height of the left subtree. If a binary tree is
balanced, then the balance factor in each vertex is 1, 0 or —1.

An important class of balanced trees is the class of Fibonacci
trees, defined as follows:

Consider first the sequence (F))_,, of Fibonacci numbers, defined
by F,=F,=1and

F_=F, +F, foreveryn21. (1)

In order to find an exphut formula for Fibonacci numbers, we
shall find a solution for recurrence (1) of the form F, = r". It follows
that r verifies the quadratic equation:

r—r-1=0

1£4J5

2
Hence general solution of (1) is

F :(‘ rln +C‘ rzn
where constants C|, C, will be determined from initial conditions F =1
and F,=1. IIcnce by solvmg 1 the linear system of equations

QI+J§+C1_J§

having solutions # , =

=1
2)

(;3+J§+(13'J§=1
2 2775

. 1 -
we get G :f and (2 = N hence

l+f5 I—J—S—Y'
ST

This is the so-called Binet's formula for Fibonacci numbers.

-

119

https://biblioteca-digitala.ro / https://unibuc.ro

The first terms of Fibonacci sequence are:

1,1,2,3,5,8, 13, 21, 34, 55, 89,

Fibonacci trees, denoted by F7,; k=0, 1, 2,... are labelled binary
trees defined by recurrence as follows: FT, and FT, consist each of a
single (external) vertex:

Now for every k 2 2, Fibonacci tree of order &, FT, has a root
having label F; the left subtree of the root is T, | and the right subtree
is FT, , having all labels of the vertices (internal and external) increased
by F,, the label of the root of FT,.

0] [9]
FT, FT, [9 (1

FT,(+5)

The basic properties of such kind of trees are contained in Lemma
1; an extremal property of Fibonacci trces will be proved in Theorem 2.

Lemma 1. Forevery k21, Fibonacci tree FT, is a balanced tree
having height W(FT)) =k -1, F,, external vertices and F, —1 inter-
nal vertices.

120

https://biblioteca-digitala.ro / https://unibuc.ro

Proof: For k=1 and k=2 the property is verified. Suppose that
it is true for all Fibonacci trees FT, with k" < k and let FT, a Fibonacci
tree of order & (k 2 3). Then from the recursive definition we get
W(FT)=h(FT,_)+ 1=k- 1, the number of external vertices of F7 is
equalto F, + F, =F, ,hence the number of internal vertices is equal to
F., -1

The balance property is verified by the inductiof hypothesis for
all vertices different from the root of F7,. For the root of FT, its left
subtree has height & — 2 and the right subtree height & — 3, hence FT, is
a balanced tree also . [3

This definition of balance represents a compromise between opti-
mum binary trees (with all external vertices required to be on two
adjacent levels) and arbitrary binary trees (unrestricted). It is therefore
natural to ask how far from optimum a balanced tree can be.

The answer is that its search paths will never be more than 45
percent longer than the optimum.

Theorem 2. The height of a balanced tree T with N internal ver-
tices always lies between log,(N + 1) and 1.4404 log,(N + 2) - 0.328.

Proof: A binary tree of Aeight h cannot have more than 2" exter-
nal vertices; so N + 1 < 2"Dthat is, #(T) 2 log, (N + 1).

In order to find the maximum value of 4, let us turn the problem
around and ask for the minimum number of intemmal vertices possible in
a balanced tree of height 4.

Let T, be such a tree with fewest possible vertices; the one of the
subtrees of the root, say the left subtree, has height 4 — 1, and the other
subtree has height A — 1 or h — 2.

Since we want 7, to have the minimum number of vertices, we
may assume that the left subtree has height 4 — 1, and the right subtree
has height # — 2. So we may suppose that the left subtree of the root is
T, ,» and that the right subtree is 7, ,. This argument shows that it can
be proved by induction that the Fibonacci tree of order 4 + 1, FT,,, has
the fewest possible vertices among all balanced trees of height 4 and

this minimum number of vertices is 7, ,~ | by Lemma 1. Thus

h+2 h+2
1(1+5)" 1 (1-45)"
N2F,-1=—0—2¥2 _ L{IZvoh
N Jslo2

121

https://biblioteca-digitala.ro / https://unibuc.ro

1-4s
2

In this expression, € (-1,0), hence

1 {1-45

h+2
1
_f[T) 2-1 and Nzﬁ(Ph+2 =2, where ¢ =

1+45

2

>1,

1
It follows that log,(N +2) 2> (h+2)log, ¢ —Elogz 5, hence

log, (N +2)+ 2825 _5

0g, 2log, ¢

h=hI)<;

log, 5

1
Now —— <14404 , 4 ~2<-0328.

log, ¢ 2log, ¢

The proof of this theorem shows that a search in a balanced tree

will require more than 25 comparisons only if the tree contains at least
F,,—1=196, 417 vertices.
Consider now what happens when a new vertex is inserted into a
balanced tree using tree insertion. The problem arises when we have a
vertex with a balance factor of 1 whose right subtree got higher after the
insertion; or, dually, if the balance factor is — 1 and the left subtree got
higher, when some adjustment will be needed. It is not difficult to see
that there are essentially only two cases which cause trouble:

h

Case |

https://biblioteca-digitala.ro / https://unibuc.ro

Two other essentially identical cases occur if we reflect these
diagrams, interchanging left and right. In these diagrams the rectangles
o, B, v, & represent subtrees having the respective heights shown.
Case 1 occurs when a new element has increased the height of vertex
B’s right subtree from 4 to 4 + 1, and Case 2 occurs when the new
element has increased the height of B's left subtree. In the second case,
we have either = 0 (so that X itself was the new vertex), or else vertex
X has two subtrees of respective heights (h—1,) or (h, h-1).

Simple transformations will restore balance in both of the above
cases, while preserving the symmetric order of the tree vertices and the
height of the subtree which is rebalanced:

il

Case 1 Case 2

In Case 1 we simply rotate the tree to the left, attaching 3 to 4
instead of B and changing the root from A4 to B. This transformation is
like applying the associative law to an algebraic formula, replacing oY)
by (oB)y.

In Case 2 we used a double rotation, first rotating (X, B)
right, then (4, X) left; in this case X is the new root of the tree under
consideration. '

In both cases only a few links of the tree need to be changed (3 in
the first case and 5 in the second one). Furthermore, the new trees have

123

https://biblioteca-digitala.ro / https://unibuc.ro

height 4 + 2, which is cxactly the height that was present before the
insertion; hence the rest of the tree (if any) that was originally above
vertex 4 always remains balanced.

The following algorithm avoids the need for a stack in order to
keep track of which vertices will be affected by the rebalance process.

Algoritm A. (Balanced trce search and insertion).
Given a table of records which form a balanced binary tree as described
above, this algorithm searches for a given argument K.

If K is not in the table, a new vertex containing X is inserted into
the tree in the appropriate place and the tree is rebalanced if necessary.

The vertices of the tree are assumed to contain KEY, LLINK, and
RLINK fields as in Algorithm 7 (Trec search and insertion).
We also have a new field:

B(P) = balance factor of NODE(P), the height of the right subtree
minus the height of the left subtree; this field always contain 1, 0
or — 1. A special header vertex also appears at the top of the tree, in
location HEAD; the value of RLINK (HEAD) is a pointer to the root of
the tree, and LLINK (HEAD) is used to keep track of the overall height
of the tree. We assume that the tree is nonempty, i. e., that RLINK
(HEAD) = A.

For convenience in description, the algorithm uses the notation
LINK(a, P) as a synonym for LLINK(P) if a = — 1, and for RLINK(P)
if a=1.

1. Set T« HEAD, S « P « RLINK (HHEAD).

(The pointer variable P will move down the tree; S will point to the
place where rebalancing may be necessary, and T always points to the
father of S).

2. If K < KEY(P), goto 3; if K > KEY(P), go to 4; and if
K = KEY(P), the scarch terminates successfully.

3. Set Q «— LLINK(P). If 0 = A, set Q <= AVAIL and LLINK(P)
« QO and go to step 5. Otherwise if B(Q) # 0, set T« P and S « Q.
Finally set P « Q and return to step 2.

4. Set O « RLINK(P). If Q= A, set Q &« AVAIL and RLINK(FP)
& (@ and go to step 5. Otherwise if B(Q) # 0, set T <~ P and S « Q.
Finally set P <~ Q and return to step 2.

124

https://biblioteca-digitala.ro / https://unibuc.ro

5. Set KEY(Q) « K. LLINK(Q) « RLINK(Q)¢ A, B(Q) « 0
(The fields of NODE((Q) arc initialized).

6. If K <KEY(S), sct R « P « LLINK(S), otherwise set R « P
« RLINK(S). Then repecatedly do the following operation zero or more
times until P = Q.

IfK<KEY(P)set B(P) « — 1 and P « LLINK(P); if K > KEY(P),
set B(P) « | and P « RLINK(P). (If K=KEY(P), then P=Q and we
may go on to the next step).

(The balance factors on vertices between S and O have been
changed from zero to + 1).

7. If K <KEY(S)seta « -1, otherwise set g « 1. Several cases
now arisc:

1) If B(S) = O (the trce has grown higher), set B(S) « a,
LLINK(HEAD) « LLINK(HEAD) + 1, and terminate the algorithm.

1) If B(S) = — a (the tree has gotten more balanced), set B(S) « 0
and terminate the algorithm.

i) If B(S) = a (the tree has gotten out of balance), go to step 8 if
B(R)=a, orto 9 if B(R) = —a. (Case (1ii) corresponds to Cases 1 and 2 on
p- 122 when a = 1; S and R point, respectively, to vertices A and B, and
LINK(-a,S) points to o, LINK(—4,R) points to B (or to X in Case 2) etc.).

8. Sct P « R, LINK(qa,S) < LINK(~a,R), LINK(-4,R) « S, B(S)
& B(R) « 0. Go to 10. (Single rotation).

9. Set P « LINK(-a,R), LINK(—a,R) « LINK(a,P), LINK(q,P)
« R, LINK(a,S) « LINK(—q,P), LINK(-a,P) « S. Now set
(-a,0) if B(P)=a.
(B(S).B(R)) «<(0.0) ifB(P)=0,
(0,a) if B(P)=-a:
and then sct B(P) « 0. (Doublc rotation).

10. If § = RLINK(7) then set RLINK(7) « P, otherwisc set
LLINK(T7) « P (P points to the new root and T points to the father of
the old root).

125

https://biblioteca-digitala.ro / https://unibuc.ro

This algorithm is rather long, but it divides into three simple parts:
Steps 1—4 do the search, steps 5—7 insert a new vertex, and steps 8—10
rebalance the tree if necessary.

This algorithm takes about C log N units of time, for some con-
stant C, by theorem 2.

An example is considered below. After step 7, @ « 1 since
K >KEY(S), B(S)=a=1 and the tree has gotten out of balance;

Insertion of a new vertex QO Changing the balance fac-
at steps 3 or 4 plus 5. T is the tors on vertices between S and
father of S; B(S) # 0 but all bal- Q from Oto+ 1 at step 6 and
ance factors on vertices between defining the pointer R to the root
S and Q are equal to zero. of the right (left) subtree of

S, depending on whether
K >KEY(S) or K <KEY(S).

now a double rotation is necessary since B(R) = —1 = —g etc.

Note that if B(S) = 0 at step 71) then § points to the root of the tree,
i.e. §=RLINK (HEAD) and all vertices between .S and Q have a balance
factor equal to zero.

Linear list representation. Balanced trees can be used to repre-
sent linear lists in such a way that we can insert items rapidly (overcom-

126

https://biblioteca-digitala.ro / https://unibuc.ro

ing the difficulty of sequential allocation), yet can also perform random
accesses to list items (overcoming the difficulty of linked allocation).
The idea is to introduce a new field in each vertex, called the RANK
field. This ficld indicates the relative position of that vertex in its subtree,
i.e., one plus the number of internal vertices in its left subtree. The fig-
ure below shows the RANK valucs for a binary tree, as well as the
balance factor in each internal vertex.

We can eliminate the KEY field entirely; or, if desired, we can
have both KEY and RANK fields, so that it is possible to retrieve items
either by their key value or by their relative position in the list. Using
such a RANK field, retricval by position is a straightforward modifica-
tion of the search algorithms we have been studying.

127

https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm B. (Tree search by position) Given a linear list
represented as a binary tree, this algonthm finds the A—th element of the
list (the k—th vertex of the tree in symmetric order), given 4. The binary
tree is assumed to have LLINK and RLINK ficlds and a header as in
Algorithm A, plus a RANK field as described above.

1. Set M « k, P « RLINK(HEAD).

2. If P=A, the algorithm terminates unsuccessfully. (This can
happen only if k was greater than the number of vertices in the tree, or
k < 0). Otherwise if M < RANK(P), go to 3; if M > RANK(P), go to 4;
and if M = RANK(P), the algorithm termiinates successfully (P points to
the k—th vertex).

3. Set P « LLINK(P) and return to 2.

4, Set M « M-RANK(P) and P « RLINK(P) and return to 2.

We can modify the insertion procedure in a similar way:

Algorithm C. (Balanced trec insertion by position). Given
a linear list represented as a balanced binary tree, this algorithm inserts
a new vertex just before the k—th element of the list, given & and a pointer
Q to the new vertex. If &—=N+1, the new vertex is inserted just after the
last element of the list.

The binary tree is assumed to be noncmpty and to have LLINK,
RLINK, and B fields and a header, as in Algorithm A, plus a RANK
field as described above. This algorithm is merely a transcription of
Algorithm A; the difference is that it uses and updates the RANK fields
instead of the KEY fields.

1. Set T~ HEAD, S ¢~ P «~ RLINK(HEAD), U ¢« M « k.

2. If M < RANK(P), go to 3, otherwisc go to 4.

3. Set RANK(P) « RANK(P) + I (we will be inserting a new
vertex to the left of P). Set R « LLINK(P).

If R=A, set LLINK(P) «- Q and go to 5. Otherwise if B(R) # 0 set
T« P,S5 R, and U « M. Finally set P « R and return to 2.

4. Set M &« M-RANK(P), and R « RLINK(P).

If R=A, sct RLINK(P) <~ Q and go to 5. Otherwise if B(R) # 0 set
T« P,S« R, and U « M. Finally set P « R and return to 2.

128

https://biblioteca-digitala.ro / https://unibuc.ro

5. Set RANK(Q) « 1, LLINK(()) < RLINK(Q) « A, B(Q) « 0.

6. Set M « U. (This restores the former value of M when P was §;
all RANK fields are now properly set).

If M < RANK(S), sct R «~ P « LLINK(S), otherwise set R « P «
RLINK(S) and M « M — RANK(S). Then repeatedly do the following
operation until P=Q:

If M < RANK(P), set B(P) « -1 and P « LLINK(P); if
M>RANK(P), set B(P) « 1 and M « M — RANK(P); P « RLINK(P).
(If M=RANK(P), then P=0 and we may go on to the next step).

7. If U<RANK(S), sct a & —1, otherwise set g « 1. Several cases
now arise:

1) If B(8)=0, sct B(S) « a, LLINK(HEAD) « LLINK(HEAD) + 1,
and terminate the algorithm.

1) If B(S) = —a, sct B(S) « 0 and terminate the algorithm.

i) If B(S) = a, go to step 8 if B(R) = a, and to 9 if B(R) = —a.

8. Set P« R, LINK(a,S) « LINK(~a,R), LINK(-a,R) < S, B(S)
« B(R) « 0. If a=1, set RANK(R) « RANK(R) + RANK(S); if
a =1, set RANK(S) « RANK(S) —- RANK(R).

9. Do all the opcrations of step 9 (Algorithm A).

Then if a=1, set RANK(R) « RANK(R) - RANK(P), RANK(P)
« RANK(P) + RANK(S); if a = -1, set RANK(P) « RANK(P) +
+ RANK(R), then RANK(S) « RANK(S) — RANK(P).

10. If § = RLINK(T7) then set RLINK(7) « P, otherwise sct
LLINK(T) «- P.

All known classes of balanced trees can be divided into two groups:
height — balanced and weight — balanced trees. In height — balanced
trees one balances the height of the subtrees, in weight — balanced trees
one balances the number of vertices in the left and right subtrees.

AVL — trees are an cxample in the class of height — balanced trees.
We will discuss a representative of weight — balanced trees.

129

https://biblioteca-digitala.ro / https://unibuc.ro

§ 7. Weight - balanced trees
J2

1
Let o be a fixed real number, ik < l——2— =0.2928 .

Definition: a) Let T be a binary tree with left subtree 7, and right
subtree 7. Then

oy =1y I

n i

is called the root balance of T. Here |T] denotes the number of leaves of

tree 7.
b) Tree T is of bounded balance o, if for every subtree 7" of T one

has:
asp(T)<sl-a
¢) BB[a] denotes the set of all trees of bounded balance o.
In the following tree the subtrees with internal root 1 have root

1
balance writen near u. The tree is in BB[a] for o0 < 3
5/14

4/9

2/5

1/2
2/3
1/2 1/2 1/2
172

Trees of bounded balance have logarithmic depth and logarithmic
average intcrnal path length.

Let ()= ; o be the internal path length of T, where o denotes
the depth (or level) of internal vertex i in tree 7.

130

https://biblioteca-digitala.ro / https://unibuc.ro

Theorem 1. Let T € BB[] be a tree with n internal vertices. Then

nur

2) (1)
n

where entropy H(o,,1-0) = —o log o = (1~0)log(1-o0);

b) A(T) £ 1 + (log(n+1)-1)/1og(1/(1-ov)).

Proof: We show I(T) < (n+1)log(n+1)/H(ot,1-0t) — 2n by induction
on n. For n=1 we have I(T)=0. Since 0 < H(o,1—0t) < 1 this proves the
claim for n=1. So let us assume n > 1.

T has a left (nght) subtree with /(r) vertices and internal path length
I(I). Then n =1+ r+1 and (T) = I+ I+ n—1. Since T € BB[a] we can
write

1
<1+)logln+1)/H(a,1-a) -2
n

a<_1il_<l_
n+l

Applying the induction hypothesis yields

1
I(D=n-1+1;+1, <—————[(I+ Vlog(l+1) +(r +1)log(r+1)] -n+1=

H(al—a)
n+l1 1+1 1+1 r+l r+1]
l_log(n+1 log log J—n+1=
o,1—a) n+ n+l n+ n+
H(1- 1 1 1
I+1 r+l)
. R
=("+1)l°g("+)-n+1_(n+1) ntln+l)
H(OL,] —OL) H(ol-a)
< (n+1)log(n+1) _
H(o,1-o) ’
(l+l r+1)
H —-,—
since MZI-
H(a,l-o)

. . . 1
Indeed, H(x,1-x) is monotonically increasing in x for 0 <x =3

1
since by denoting f{x) = H(x,1-x) = H(1-x,x), - (0, E] — R, we have
131

https://biblioteca-digitala.ro / https://unibuc.ro

, 1-x 1
J(x)=log——— 20 foreveryxe (0,= .
x 2
I+1 1 . L
If Tl < 5 (2) follows from this property of the function f'and
from (1).

r+l1 1

. +1 1 o .
Otherwise, -———>— but in this case we have Tl < 3 since
n

I+1 r+1

their sum ——+
n+l n+l

=1 and (1) implies also

r+1
o——=<1-a 3
n+l (3)

I+1 r+1 r+1 l+1
Now , = : > H(o,1-at) and (2) is
n+l n+l n+l n+l

1 11
- — |=H|=,— =1
proved. Notice that /| (2) ”(2 2) .

b) Let T € BB[a] be a tree with n vertices, let /=height(T), and let
VgoV)s..»V,, bE a path from the root to a vertex v, of depth (level) k-1.
Let w, be the number of leaves in the subtree with root v, 0 < i < A-1.

Thenw, =2 and w, < (1-o)w, for 0 £ i < k-1, since T is of
bounded balance 0.

Indeed, since 7€ BB[o] it follows thatboth |[T|/|T1and [T |/ |T] are
bounded above by 1—o.. We deduce

2=w,_ <(1-0)w,_, < <(1-a)*! W, =(1-0)*(n+1).

Taking logarithms finishes the proof since log(l-o) =
=-log(1/(1-a)) < 0. [
Foro = 1-y2/2=02928,

1
Hr)<].15(1 + ;Jlog(n +1)~2 and WT) <2logln+1)-1.

https://biblioteca-digitala.ro / https://unibuc.ro

Hence a comparison with binary search algorithm shows that the

average search time in trees in BB [1-4/2 /2] is at most 15% and that
the maximal search time is at most by a factor of 2 above the optimum.
Operations Access, Insert and Delete are performed usually as for
binary search trees.
However, insertions and deletions can move the root balance for
some vertices on the path of search outside the permissible range (o, 1 -]
As for AVL trees, there are two transformations for remeding such
a situation: rotation and double rotation. In the following figures inter-
nal vertices are drawn as circles and subtrees are drawn as triangles.
The root — balances are given beside each vertex. The figures show
transformations ,,to the left”. The symmetrical variants also exist.

rotation Y, =p +p.(1-py)

P:
Vo= ——
Popitpy(1-py)

Yi=p+(-p)p2p;

p.(1-p4)

Y= 70—

P 1-pypy

The root balances of the transformed trees can be computed from
the old balances p,, p, and p, as given in the figure. Let a, b, ¢ be the

133

https://biblioteca-digitala.ro / https://unibuc.ro

number of leaves in the subtrees shown. Then for the rotation we have

a b

pl=a+b+c’pzzb+c

and

a b b+c at+b

= + 1- = + . = :
nE=h p2(pl) a+b+c b+c a+b+c a+b+c’

for double rotation the computation is similar.

Let us consider operation Insert first. Suppose that vertex a is added
to the tree. Let v,v,,...,v, be the path from the root to vertex v,= a. Op-
eration Insert (@) creates the following subtree with root — balance 1/2.

We will now walk back the path towards the root and rebalance all
vertices on this path. So let us assume that we reached vertex v, and that
the root balances of all proper descendants of v, are in the range [, 1-0t].

Then 0 < i < k-1. If the root — balance of vertex v, is still in the
range [o,1—-0¢] then we can move on to vertex v_,. If it is outside the
range [0, 1—0] we have to rebalance as described in the following lemma.

Lemma 1. Forall o€ (1/4, 1 —ﬁ/Z] there are constants d €

[o,1-00) and § 2 0 (if < 1= ¥2 /2 then &> 0) such that for T a binary
tree with subtrees T,and T and
(1) T,and T, are in BB[0/];
(@) T}/ |N < o and either
@.DIT|/ (N =1) 20 (i.e. an insertion into the right subtree of
T occured) or
(2.2) T+ 1)/ (N + 1) 2 o (i.e. a deletion from the left subtree

occured),

134

https://biblioteca-digitala.ro / https://unibuc.ro

() p, is the root balance of T ,

we have:

(i) if p, < d then a rotation rebalances the tree, more preciselyy,, ¥,
€ [(1+8)o, 1-(1+8)at] where y,, Y, are as shown in the figure describing
rotation.

(ii) if p, > d then a double rotation rebalance the tree, more pre-
cisely ¥,,Y,,Y, € [(1+8)o, 1-(1+d)a] where ¥,, ,, Y, are as shown in the
figure describing double rotation.

A complete proof is long and unelegant.

Notice only that one can find expressions for 8 and d as functions of ot.

Lemma 1 implies that a BB[ot] — tree can be rebalanced after arg‘
insertion by means of rotations and double rotations. The transforma-
tions arc restricted to the vertices on the path from the root to the
inserted clement. Thus height (T7) = O (log n) transformations suffice;
each transformation has a cost of O(1).

We still have to clarify how to find the path from the inserted cle-
ment back to the root and how to determine whether a vertex is out of
balance. The path back to the root is easy to find. Notice that we traversed
that very path when we searched for the leaf where the new clement had
to be inserted. We only have to store the vertices of this path in a stack;
unstacking will lead us back to the root. This solves the first problem.

In order to solve the second problem we store in each vertex v of
the tree not only its content, the pointers to the left and right son, but
also its size, 1.e. the number of leaves in the subtree with root v. So the
format-of a node representing a vertex is:

CONTENT | LLINK | RLINK | SIZE

The root balance of a vertex is then easily computed. Also the SIZE
field is easily updated when we walk back the path of search to the root.

Theorem 2. Let o € (1/4, 1~ [2/2]. Then operations Access

(a,S), Insert (a,S), Delete (a,S) and Min (S) take time O (log n) in BB[al]
— trees, where n = |S|.

135

https://biblioteca-digitala.ro / https://unibuc.ro

Proof: An operation Insert (a,S) takes time O (log |S]). This is also
truc for operation Delete (a,S). Delete (a,5) removes one vertex and one
leaf from the tree as described for binary search trees. (The vertex re-
moved 1s not necessarily the vertex with content a). Let v,...,v, be the
path from the root v, to the father v, of the removed vertex. We walk
back to the root along this path and rebalance the tree as described above.
The minimum of S can be found by always following left pointers star-
ting at the root; once found the minimum can also be deleted in time
O (logn). O

§ 8. Hashing

So far we have considered search methods based on comparing the
given argument K to the keys in the table. Another possibility is to
avoid this by doing some arithmetical calculation on K, computing a
function fAK) which is the location of K and the associated data in the
table.

With direct addressing, an element with key X is stored in slot K.
With hashing, this element is stored in slot A(K); that is, a hash function
A 1s used to compute the slot from the key K.

Here & maps the universe U of keys into the slots of a hash table
170...m-1}:

h:U—- {0,1,..., m-1}

We say that an element with key K hashes to slot 4(K); we also say
that A(K) is the hash value of key K. The point of the hash function is to
reduce the range of array indices that need to be handled. Instead of |U]
values, we need to handle only m values. Storage requirements are cor-
respondingly reduced. Two keys may hash to the same slot, or K # K
hash to the same value A(K) = h(Kj).

Such an occurrence is called a collision, and there are effective
techniques for resolving the conflict crcated by collisions.

Figure 1 illustrates the basic idea.

These search methods are commonly known as hashing or scatter
storage techniques; the idca in hashing is to chop off some aspects of the
key and use this partial information as the basis for scarching. The valuc
of hash function A(K) is the address where the search for key K begins.

136

https://biblioteca-digitala.ro / https://unibuc.ro

0 = h(K,)
y h(K
(universe of kevs) (3)
(Actual Ko
keys) K3 h(K)) — h(K4)

Ks

Kg
h(K,) = h(K) = h(K.)

m—1

Fig. 1

In order to use a scatter table, a programmer must take two almost
independent decisions: he must choose a hash function A(K), and he
must select a method for collision resolution. We shall consider these
two aspects of the problem in turn.

Of course, the ideal solution would be to avoid collisions altogether.
We might try to achieve this goal by choosing a suitable hash function 4.

One idca is to make 4 appear to be ,,random”, thus avoiding colli-
sions or at least minimizing their number. Of course, a hash function A
must be deterministic in that a given input K should always producc the
same output 4(K).

If|U] > m, however, therc must be two keys that have the same hash
value; avoiding collisions altogether is therefore impossible.

Thus, while a well-designed hash function can minimize the num-
ber of collisions, we still need a method for resolving the collisions that
do occur.

§ 9. Hash functions

In this section, we discuss some issues regarding the design of good
hash functions and then present threc schemes for their creation: has-
hing by division, hashing by multiplication, and universal hashing.

137

https://biblioteca-digitala.ro / https://unibuc.ro

Let us assume that our hash function 4 takes on at most m different
vaiues, or A(K) € {0,1,..., m—1} for all keys K. A good hash function
sat sfies (approximately) the assumption of simple uniform hashing: each
ke is equally likely to hash to any of the m slots.

More formally, let us assume that each key is drawn independently
frem U according to a probability distribution P; that is, P(k) is the
probability that kis drawn. Then the assumption of simple uniform hash-

ing is that
S k)=
= forj =0,1,...,m—1 1
k:h(k):j m J ()
Unfortunately, it is generally not possible to check this condition,
since P is usually unknown. Sometimes we do know the distribution P.
Fo -example, suppose the keys are known to be random real numbers K,

in¢ ependently and uniformly distributed in the range 0 < K < 1.

In this case, the hash function A(K) = { Km| can be shown to
sat sfy equation (1).

In practice, heuristic techniques can be used to create a hash func-
tio that is likely to perform well. Qualitative information about P is
soraetimes useful in this design process.

For example, consider a compiler’s symbol table, in which the keys
are arbitrary character strings representing identifiers in a program. It is
coramon for closely related symbols, such as X1, X2 and X3, to occur in
the same program.

A good hash function would minimize the chance that such vari-
ants hash to the same slot.

A common approach is to derive the hash value in a way that is
expected to be independent of any patterns that might exist in the data.

For example, the ,,division method” computes the hash value as
the remainder when the key is divided by a specified prime number.

We note that some applications of hash functions might require
stronger properties than are provided by simple uniform hashing. For
ex: mple, we might want keys that are ,,close” in some sense to yield
hash values that are far apart.

13¢.

https://biblioteca-digitala.ro / https://unibuc.ro

Most hash functions assume that the universe of keys is the set
N = {0,1,2,...} of natural numbers. Thus, if the keys are not natural
numbers, a way must be found to interpret them as natural numbers. For
example, a key that is a character string can be interpreted as an integer
expressed in suitable radix notation.

Thus, the identifier pf might be interpreted as the pair of decimal
integers (112, 116), since p = 112 and 7 = 116 in the ASCII character set;
then, expressed as a radix — 128 integer (an integer in basis 128), pt
becomes 112¢128 + 116 = 14452, It is usually straightforward in any
given application to devise some such simple method for interpreting
each key as a natural number. In what follows, we shall assume that the
keys are natural numbers.

§ 10. The division method

In the division method for creating hash functions, we map a key K
into one of m slots by taking the remainder of K divided by m. That s,
the hash function is #(K) = K (mod m). Since it requires only a single
division operation, hashing by division is quite fast. When using the
division method, we usually avoid certain values of m. For example, m
should not be a power of 2, since if m = 27, then A(K) is just the p
lowest—order bits of K. Unless it is known a priori that the probability
distribution on keys makes all low-order p-bit patterns equally likely, it
is better to make the hash function depend on all the bits of the key.

Good values for m are primes not too close to exact powers of 2.

For example, suppose we wish to allocate a hash table, to hold
roughly n = 2000 character strings, where a character has 8 bits.

We don’t mind examining an average of 3 elements in an unsuc-
cessful search, so we allocate a hash table of size m = 701.

The number 701 is chosen because it is a prime near 2000/3 but not
near any power of 2. Treating each key X as an integer, our hash func-
tion would be 4#(K) = K (mod 701).

§ 11. The multiplication method

The multiplication method for creating hash functions operates in
two steps. First, we multiply the key K by a constant 4 in the range
0 <4 <1 and extract the fractional part of K4. Then, we multiply this

139

https://biblioteca-digitala.ro / https://unibuc.ro

value by m and take the integer part of the result. In short, the hash
function is A(K) = Lm(K4 mod 1) J, where K4 mod 1 means the frac-
tional part of K4, that is, K4 - | KA |.

We typically choose m to be a power of 2, i.e., m = 27 for some
integer p, since we can then easily implement the function on most com-
puters as follows. Suppose that the word size of the machine is w bits
(p < w) and that X fits into a single word (K < 2*-1).

Referring to figure 2, we first multiply K by the w — bit integer
A+2" (suppose that 4 « 2* € Z). The result is a 2w — bit value r 2%+ r,,
where r| is the high-order word of the product and r, is the low-order
word of the product. The

w bits
Ao

x]
]
® []

H_J
p bits

’ |

Fig. 2
desired p — bit hash value consists of the p most significant bits of r,.
Indeed, suppose that the binary representation of 4K is:

AK = rl , ro cee.

—
re
Then AK mod 1 is 0, s_r,_a .and 24K 1s | ., ... and
0 P
h(K) is the binary word consisting of the p most significant bits of r.
p bits
, e , . A (]
Since A*2* is an integer, it follows that AK2* = (42")K = T~
ry 1)

as is represented in the last line in figure 2. If L 4+2*] # 442~ then the
method represented in figure 2 is not longer valid.

140

https://biblioteca-digitala.ro / https://unibuc.ro

For example,let A=2%+2° p=2, w=4, K=2%
Then A(K)=|22(2" +2°) =L 2+ 1=3;

K-|4-2"]|=81+27"|=8= 1000 , hence £ =00 =1000 and
h2) 210, =2, -

Although this method works with any value of the constant 4,
it works better with some values than with others. The optimal choice
depends on the characteristics of the data being hashed. For example, if

Js

A =@ =—-—— =0.618034, the golden ratio, then this choice of func-

tion A is callcd the Fibonacci hashing and it works reasonably well for
sets of keys in arithmetic progressions.
An interesting technique is based on algebraic coding theory; the
idea is analogous to the division method above, but we divide by a
polynomial modulo 2 instead of dividing by an integer. For this method,
m=2¢, and we make use of an s-th degree polynomial P(x)=x"+p_x'+ ...
+ p,. An n - digit binary key K= (k,_, ... k,k;), can be regarded as the
polynomial K(x)=k x""‘ +...+ k x + k;, and we compute the remainder

K(x) mod P(x) = 4.+ h x + h, using polynomial arithmetic
modulo 2.
Then h(K) = (h_, ,..., b}, h),.

If P(x) is chosen properly, this hash function can be guaranteed to
avoid collisions between nearly-equal keys. For example, if n = 15,
s=10,and P(x) =x""+x®+ x* + x* + x2 + x + 1, it can be shown that
h(K,) # h(K,) whenever K| and K, are distinct keys that differ in fewer
than seven bit positions.

§ 12. Universal hashing

For a fixed hash function we can choose » keys that all hash to the
same slot, yielding an average retrieval time of O(n).

Any fixed hash function is vulncrablc to this sort of worst-case
behaviour; the only effective way to improve the situation is to choose
the hash functions randomly in a way that is independent of the keys
that are actually going to be stored.

141

https://biblioteca-digitala.ro / https://unibuc.ro

This approach, called universal hashing, yields good performance
on the average, no matter what keys are chosen.

The main idea behind universal hashing is to select the hash func-
tion at random at run time from a carefully designed class of functions.
As in the case of quicksort, randomization guarantees that no single
input will always evoke worst-case behaviour. Because of the rando-
mization, the algorithm behave differently on each execution, even for
the same input. This approach guarantees good average-case performance,
no matter what keys are provided as input. Retumning to the example of
a compiler’s symbol table, we find that the programmer’s choice of
identifiers cannot now cause consistently poor hashing performance.

Let # be a finite collection of hash functions that map a given
universe U of keys into the range {0, 1, ..., m—1}. Such a collection is
said to be universal if for each pair of distinct keys x, y € U, the number
of hash functions 4 € # for which A(x) = h(y) is precisely | |/m. In
other words, with a hash function randomly chosen from # the chance
of a collision between x and y when x # y is exactly 1/m, which is exactly
the change of a collision if (x) and A(y) are randomly chosen from the
set {0, 1,..., m—1}.

The following theorem shows that a universal class of hash func-
tions gives good average-case behaviour.

Theorem 1. If h is chosen from a universal collection of hash func-
tions and is used to hash n keys into a table of size m, where n <m, the
expected number of collisions involving a particular key x is less than 1.

Proof: For each pair y, z of distinct keys, let ¢_ be a random vari-
able that is 1 if A(y) = h(2) (i.e., if y and z collide using k) and 0 other-
wise. Since, by definition, a single pair of keys collides with probability
1/m, we have E[c_] = 1/m. Let C, be the total number of collisions
involving key x in a hash table T of size m containing » keys. We deduce

n-1
E[C]= ZE[CI,.] = Since n <m, we have E[C]< 1.0
yeT
y#x
But how easy is it to design a universal class of hash functions? Let
us choose our table size m to be prime, as in the division method. We
decompose a key x into r +1 bytes (i.e.. characters, or fixed-width

142

https://biblioteca-digitala.ro / https://unibuc.ro

binary substrings), so that x == < .x ,..., x, >; the only requiremen 1is
that the maximum value of a bytc should be less than m. Let a =< g,
a,,...,a, > denote a sequence of r +1 elements chosen randomly from he

set {0, 1,..., m—1}. We define a corresponding hash function 2 € 7 :
h(x)= 2 ax, (modm) (")
i=0

With this definition, H = U{”a} has »™! members.

Theorem 2. The class H defined by equation (2) is a univer.al
class of hash functions.

Proof: Consider any pair of distinct keys x, y. Assume that x # y,.
(A similar argument can be made for a difference in any other positioa).

Forany fixed values ofa , a,, ..., a , there is exactly one value o1 4,
that satisfies the equation A(x) = A(y); this a is the solution to

r

ay(xy = ¥y) == za,(-‘i - y,) (mod m))

Indeed, since m is pn'm'e_,1 the nonzero quantity x, — y, has a mu ti-
plicative inverse modulo m, and thus there is a unique solution for a,
modulo m.

Therefore, each pair of keys x and y collides for exactly m” valies
of a, since they collide exactly once for each possible value of < 2,
a, ..., a > (i.c., for the unique value of a, determined from (3)). Since
there are m™! possible values for the sequence a, (hence for hash firic-
tions h, €) keys x and y collide with probability m/ m™ = L,m.
Therefore, # is universal. (]

§ 13. Hashing with chaining

In chaining, we put all the clements that hash to the same slotiia
linked list, as shown in figure 3. Slot j (0 < < m—1) contains a pointer
to the head of the list of all stored clements that hash to j ; if there are no
such elements, slot j contains NIL. In general, if there are # keys anc m
liked lists, the average list size 1s n/m; thus hashing decreases the amoimt
of work needed for sequential searching by roughly a factor of m.

A set S Uis represented as m lincar lits; the { —th list contains all
elements x € S with A(x) = . Operation Access (x, .S) is realized by ihe
following program:

143

https://biblioteca-digitala.ro / https://unibuc.ro

U A
(universe of keys) | X Ke | A
A
Ky | Ky | > Ks | A
K7 Kg | A
> K4 Kg A
Fig. 3

1) compute A(x)

2) search for element x in list TThA(x)].

Operations Insert (x, S) and Delete (x, S) are implemented simi-
larly. We only have to add x to or delete x from list 7Th(x)].

It is often a good idea to keep the individual lists in order by key, so
that insertions and unsuccessful searches go faster. Altematively we can
make use of the ,,self-organizing file’’ concept; instead of keeping the
lists in order by key, they may be kept in order according to the time of
most recent occurrence.

For the sake of speed we would like to make m rather large. But
when m is large, many of the lists will be empty and much of the space
for the m list heads will be wasted. This suggests another approach,
when the records are small: we can overlap the record storage with the
list heads, making room for a total of m records and m links instead of
for n records and m+n links. The following algorithm is a convenient
way to solve the problem.

Algorithm C. (Chained scatter table search and in-
s ¢ rtion) This algorithm searches an m-node table, looking for a
given key K. If K is not in the table and the table is not full, X is inserted.

The nodes of the table are denoted by TABLE [{], for 0 <i<m, and
they are of two distinguishable types, empty and occupied. An occupied
node contains a key field KEY [i], a link field LINK [/], and possibly
other fields. The algorithm makes use of a hash function A(K). An

144

https://biblioteca-digitala.ro / https://unibuc.ro

auxiliary variable R is also used, to help find empty spaces; when the
table is cmpty, we have R = m + 1, and as insertions are made it will
always be true that TABLE [j] is occupied for all j in the range R<j < m.
By convention, TABLE [0] will always be empty.

1. Seti e A(K)+ 1 (now 1 <i<m).

2 If TABLE [i] is empty, go to 6. (Otherwise TABLE [{] is occu-
pied; we will look at the list of occupied nodes which starts here).

3. If K=KEY [/], the algorithm terminates successfully.

4, IfLINK [i] # A, set i «~ LINK [{] and go back to 3.

5. (The search was unsuccessful, and we want to find an empty
position in the table). Decrease R one or more times until finding a
value such that TABLE [R] is empty. If R = 0, the algorithm terminates
with overflow (there are no empty nodes left); otherwise set LINK [i] «
R, i< R.

6. (Insert a new key). Mark TABLE [/] as an occupied node, with
KEY [i] « K and LINK [i] «A.

This algorithm allows several lists to coalesce, so that records need
not be moved after they have been inserted into the table.

Forexample, sce fig. 4, where A
m = 7 and keys TABLE [1] 42
5,19,42, 75,23, 18, 50 50 A
were inserted in this order, for A(K) TABLE [2] A
=K (mod 7). TABLE [3] 23

So 18 appears in the same list 8 A
as 5, 19 and 75, but we have A(5) = TABLE [4])
h(19) = h(75)=5, and A(18) = 4. 75 o

We shall make some com- TABLE [3)
plexity considerations in the case TABLE [6] 5 .
when no two lists coalesce. ‘

The time complexity of hash- TABLE [7] 19 A
ing with chaining is casy to deter-
mine: the time to evaluate hash Fig. 4.

function 4 plus the time to search through list T [A(x)].
We assume in this section that A can ve evaluated in constant
time and therefore define the cost of an operation referring to key x as

145

https://biblioteca-digitala.ro / https://unibuc.ro

O(1 + d,(x, 8)) where S is the set of stored elements and

Lif x# yand
8,(x.8) = 2.8,(x,¥).and 8,(x.3)={ A(x)=h(»)
ves 0,otherwise

The worst case complexity of hashing is easily determined. The
worst case occurs when the hash function 4 restricted to set S is a con-
stant, i.c. i(x) = i, for all x € S. Then hashing deteriorates to searching
through a lincar list; any one of the three operations costs O(|S]) time
units.

Theorem 1. The time complexity (in the worst case) of operations
Access (x, 5), Insert (x, §) and Delete (x, S) is O(]S)).

Average case behaviour is much better. We analyse the complexity
of a sequence of n insertions, deletions and accesses starting with an
empty table, i.c. of a sequence Op (x)) ,..., Op (x,), where Op, € {Insert,
Delcte, Access} and x, € U, under the following probability assump-
tions:

1) Hash function 4 : U — {0, 1, ..., m—1} distributes the universe
uniformly over the interval {0, ..., m~1}, i.e. forall i, i"e {0, ..., m—1}:
()] = A7 (L.

2) All elements of U are equally likely as argument of any one of
the operations in the sequence, 1.e. argument of the k- th operation of
the sequence is equal to a fixed x € U with probability 1/ |U].

Our two assumptions imply that value 4(x,) of the hash function on
the argument of the k—th operation is uniformely distributed in {0, 1,...,
m=1},1.e. P(h(x,)=i)=1/mforallke {1,.,n}andi€ {0,.,m-1}. We
call this the assumption of simple uniform hashing.

Theorem 2. Under the assumption of simple uniform hashing, a
sequence of n insertions, deletions and access — operations takes time
O(n(1+ B/2)) where 3 = n /m is the load factor of the table.

Proof: We will first compute the expected cost of the (k+1)—st op-
cration. Assume that A(x,) = i, i.e. the (k+1)-st operation accesses the
i-th list. Let P([(i) = /) be the probability that the i-th list has length j
after the /-th operation. Then

146

https://biblioteca-digitala.ro / https://unibuc.ro

ECI:+1 < ZP([I((I) =J)(J+1) ’

720
where EC,, | is the expected cost of the (k+1) — st operation. Notice that

k
(Jm_l)k-j k
P(lk(i)=j)s',—k—=[_}(1/m)j(1—l/m)k_j
m J

with equality if the first k operations are insertions. (see also pp. 87-88
for a similar formula).

Hence
k 7 .
ECp, <1+ . (1/,,,)!(1_1/"‘)/:—_,'].
520 J
b~k _ |
=l+= (1/m) " (1-1/ m)*~
m o J-1
k k L k-1
=1+—, si -
m,smce Jj i)

Thus the total expected cost of » operations is

¥ ke, - z(1+_)]=

=0(n+"(;;1’]=o[n+n5 - O[n(H]

We will next discuss the probability assumptions used in the
analysis of hashing. The first assumption is easily satisfied. Suppose
U= {0,...,N-1}, and m|N. Then h(x) = x (mod m) will satisfy the first
requirement: hash function 4 distributes the universe U uniformly over
the hash table for the division method. If m does not divide N but N
is much larger than m then the division method almost satisfies
assumption 1).

147

https://biblioteca-digitala.ro / https://unibuc.ro

The second assumption is more critical because it postulates a cer-
tain behaviour of the user of the hash function. In general, the exact
conditions of latter use are not known when the hash function is designed
and therefore one has to be very careful about applying theorem 2.

We discuss one particular application now and come back to the
general problem.

Symboltabels in compilers are often realized by hash tabels. Iden-
tifiers are strings over the alphabet {4, B, C, ...}, 1.e. U= {4, B, C, ...} *.

The usage of identifiers is definitely not uniformly distributed over
U. For example, identifiers /1, 12, I3, J1, J2, ... are very popular and
XYZ is not. We can use this nonuniformity to obtain even better behaviour
than predicted by theorem 2.

Inside a computer identifiers are represented as bit-strings; usually
8 bits (a byte) is used to represent one character.

In other words, we assign a number num(C) € {0, 1,...,28 - 1=255}
to each character of the alphabet and interpretastring CC ... C as a

r

number in base 256, namely Z num (C,) 256' ; moreover, consecutive

numbers are usually assigned to characters 1, 2, 3,... Then strings /0, /1,
I2, and X0, X1, X2 lead to arithmetic progressions of the form (a+i) and
(b+i) respectively, where i =0, 1, 2,... and 256 | a—b. Because identifiers
of the form 10, /1, /2, and X0, X1, X2 are used so frequently, we want
that.
h(ati) # h(b+) for 0 < i, j <9 and 256| a-b.
If A(x) = x (mod m) then we want
(b-a) + (j—i) # 0 (mod m).

Since 256]b—a we should choose m such that m does not divide
numbers of the form 256 ¢+d, where |d| < 9. In this way on¢ can obtain
even better practical performance than predicted by theorem 2.

§ 14. Hashing with open addressing

Another way to resolve the problem of collisions is to do away
with the links entirely, simply looking at various entries of the table one
by one until either finding the key K or finding an empty position. The
1dea is to formulate some rule by which every key K determines a ,,probe

148

https://biblioteca-digitala.ro / https://unibuc.ro

sequence’’, namely a sequence of table positions which are to be in-
spected whenever X is inserted or looked up. If we encounter an open
position while searching for K, using the probe sequence determined by
K, we can conclude that K is not in the table, since the same sequence of
probes will be made every time K is processed. This general class of
methods was named open addressing by W. W. Peterson [IBM J.
Research & Development 1 (1957), 130 — 146].

Thus, in open addressing all elements are stored in the hash table
itself; the hash table can ,fill up’’ so that no further insertions can be
made. The load factor B can never exceed 1.

The advantage of open addressing is that it avoids pointers alto-
gether. Instead of following pointers, we compute the sequence of slots
to be examined. The extra memory freed by not storing pointers
provides the hash table with a larger number of positions for the same
amount of memory, potentially yielding fewer collisions and faster re-
trieval.

The simplest open addressing scheme, known as linear probing,
uses the cyclic probe sequence

h(K), (K)-1,..,0,m-1,m-2, ., (K)+1 (1)

as in the following algorithm.

Algorithm L. (Open scatter table search and in-
s ertion). This algorithm searches an m— node table, looking for a
given key K. If K is not in the table and the table is not full, K is inserted.
The nodes of the table are denoted by TABLE [{], for 0 <i < m-1, and
they are of two distinguishable types, empty and occupied. An occupied
node contains a key, called KEY [i], and possibly other fields. An aux-
iliary variable n is used to keep track of how many nodes are occupied,
this variable is considered to be part of the table, and it is increased by 1
whenever a new key is inserted.

This algorithm makes use of a hash function A(K) and it uses the
linear probing sequence (1) to address the table.

1. Set i « A(K). Now 0 <i < m-1).

2. If TABLE [i] is empty, go to 4. Otherwise if KEY [i] = X, the
algorithm terminates successfully.

3. Seti ¢ i-1;if now i <0, seti « i + m. Go back to step 2.

149

https://biblioteca-digitala.ro / https://unibuc.ro

4. (The search was unsuccessful).Ifn=m-1, the
algorithm terminates with overflow. (This algorithm considers the table
to be full when n = m — 1, not when n = m). Otherwise set n « n+1,
mark TABLE [i] occupied, and set KEY [i] « K.

For example, see fig. 1 where m = 7 and keys 5, 19, 42, 75, 23, 18
were inserted by Algorithm L in this order with hash function

h(K) = K(mod 7)

Now n=m — 1= 6 and the table is TABLE [0] 42
full; no other insertion can be made.

Experience with linear probing TABLE [1] 18
shows that the algorithm works fine
until the table begins to get full; but TABLE (2] 2
eventually the process slows down, with TABLE [3] 75
long drawn — out searches becoming
increasingly frequent. Consequently the TABLE [4] 19
performance of linear probing degrades
rapidly when n approaches m since sepa- TABLE [5] 5
rate lists are combined into long lists
where the search is slow. TABLE [6)

In fact, when n =m-1, there is only
one vacant space in the table, so the Fig. 1
average number of probes in an unsuc-
cessful search is (m+1)/ 2.

A way to protect against the consecutive hash code problem is to
use the following idea:

instead of being fixed in the order (1) implying consecutive posi-
tions of the table, the sequence of positions probed depends upon the
key being inserted.

To determine which positions to probe, we extend the hash func-
tion to include the probe number (starting from 0) as a second input.
Thus, the hash function becomes

hUx{0,1,...,m—1} - {0,1,....m—1}.

With open addressing, we require that for every key K, the probe

sequence < A(K,0), h(K, 1),...,A(K, m—1) > be a permutation of <0, 1,

150

https://biblioteca-digitala.ro / https://unibuc.ro

,-.., m=1 >, so0 that every hash - table position is eventually considercd
as a slot for a ncw key as the table fills up. Following this strategy for
insertion and searching the algorithm L becomes:

Algorithm L1. (Open scatter table search and
insertion using a two variable hash function).

1. Seti ¢ 0.

2. Setj « h(K, i).

3. If TABLE [j] is empty, go to 5.

Otherwise, if KEY [/] = K, the algorithm terminates successfully.

4. If i = m—1, the algorithm terminates with overflow. Otherwise
set { « /+1] and go back to step 2.

5. Mark TABLE [j] occupied, and set KEY [j] - K. (The key K
was inserted into the table).

Since the algorithm for searching for key K probes the same se-
quence of slots that the insertion algorithm examined when key K was
inserted, the search can terminate (unsuccessfully) when it finds an empty
slot, since K would have been inserted there and not later in its probe
sequence. (Note that this argument assumes that keys are not deleted
from the hash tablc).

Delction from an open — address hash table is difficult. When we
delete a key from slot i, we cannot simply mark that slot as empty.
Doing so might make it impossible to retrieve any key K during whose
insertion we had probed slot i and found it occupied. For this reason
chaining is more commonly selected as a collision resolution technique
when keys must be deleted.

Three techniques are commonly used to compute the probe
scquences required for open addressing: linear probing, quadratic
probing, and double hashing. These techniques all guarantec that
<hK,0), (K, 1),..., (K, m—1)>is a permutation of <0, 1, ..., m—1 >
for each key K.

Linear probing. Given an ordinary hash function #”; U —{0, 1, ...,
m—1}, the method of linear probing uses the hash function A(X, /) =
= h'(K) + i (mod m) for i = 0, 1,..., m—1. Note that (1) corresponds to
h(K, ©) = h'(K) — i (mod m).

Given key X, the first slot probed is 714" (K)].

151

https://biblioteca-digitala.ro / https://unibuc.ro

We next probe slot 7T4°(K) + 1], and so on up to slot Tm-1].
Then we wrap arround to slots 770], 7T1],..., until we finally probe slot
nr(K) - 11

Linear probing is easy to implement, but it suffers from a problem
known as primary clustering. Long runs of occupied slots build up,
increasing the average search time.

Quadratic probing uses a hash function of the form

WK, i) = h'(K) + ci + c,i* (mod m),
where 4’ is an auxiliary hash function, ¢ c, # 0 are auxiliary constants,
andi=0,1, ..., m—-1.

The initial position probed is 774’ (K)]; later positions probed are
offset by amounts that depend in a quadratic manner on the probe num-
ber i. This method works better than linear probing, but to make full use
of the hash table, the values of ¢, ¢, and m are constrained.

Also, if two keys have same initial probe position, then their
probe sequences are the same, since (K|, 0) = 4(K,, 0) implies /(K , i) =
= h(K,, i) for any i. This leads to a milder form of clustering, called
secondary clustering.

As in linear probing, the initial probe determines the entire scquence,
so only m distinct probe sequences are used.

One way to select parameters ¢, and c, is to impose that ¢,i + ¢,i* =

ili+1)

1?

=1+2+. +ijie,ci+ci®= , which implies that ¢, = ¢, =

1
E.
Lemma 1. [f m = 2* for an integer s 2 1 and
1 1,
h(K,i)=h(K)+ 51‘ + 51* (mod 2),

where h'(K) is an auxiliary hash function, then for each key K, < h(K, 0),
h(K. 1),..., (K, m—1) > is a permutation of <0, 1, ..., m—1> .
Proof: We shall prove that for each i =0, 1,..., m—1 all values
1.1
h'(K) +§i+§i2 (mod 2°) are pairwise different, which will prove

the assertion. Suppose, to the contrary. that there cxist two indices

A 1 1, 1 L,
i,j€ {0,..., m—-1},i>j, such that #’(K)+ 5-1’ + Ei‘ =h(K)+ E‘j + E/

(mod 2¢). This implies that there exists an integer p > 0 such that

152

https://biblioteca-digitala.ro / https://unibuc.ro

1
3 E=pri==p2orli=))i+j+1)=p2", 2)

In this equality i— and i+; have the same parity, since their diffe-
rence is 2/, an cven number. FHence the greatest power of 2 in the prime
number factorization of (i —j)(i +j + 1) is less than or equal to that in the
prime number factorization of the numbers in the set {1, ..., i+ + 1}.
Buti+j+1<m-1+m-=2+1=2m-2=2" -2 1It follows that this
greatest power of 2 is 2¢, which contradicts (2).

The property is proved. L)

Double hashing is one of the best methods available for open
addressing because the permutations produced have many of the charac-
teristics of randomly chosen permutations.

Double hashing uses a hash function of the form:

h(K, i) = h (K) + ih(K) (mod m),

where 4, and A, are auxiliary hash functions and 4,(K) € {I,..,
m~1} for every K. The initial position probed is T{4 (K)]; successive
probe positions arc offset from previous positions by the amount 4.(K)
modulo m.

Thus, unlike the case of linear or quadratic probing, the probe
sequence here depends in two ways upon the key K, since the initial

probe position, the offset, or both, may vary. T
Figurc 2 gives an example of insertion by

double hashing. 42
Let m = 7 (a prime number), 1 50
h(x) = x (mod 7) and
h,(x) =1+ (x (mod 4)). 2 19
[f we insert S, 19, 42, 75, 23, 18, 50 in

that order, we obtain 3 23

h(5,i)=5+ 2i(mod 7), i = 0 works

h(19,)= 5+ 4i (mod 7), i = | works ~ * I8
h(42, i) = 3i (mod 7), i = 0 works 5 5
h(75,1)= 5+ 4i (mod 7), i = 2 works

h(23,i) =2+ 4i (mod 7), i = 2 works 6 75
h(18,i) =4+ 3i/ (mod 7), i = 0 works

h(50,i)=1 + 3i (mod 7), i = 0 works Figure 2

153

https://biblioteca-digitala.ro / https://unibuc.ro

The value 4.(K) must be relatively prime to the hash-table size m
for the entire hash table to be scarched. Otherwise, if m and h,(K) have
greatest common divisor d > 1 for some key K, then a search for key K
would examine only (1/d) th of the hash table.

Lemma 2. If A(K,i) = h (K)+ ih,(K) (mod m) where h,(K) € {1,...,
m—1} for every key K and the greatest common divisor (h,(K), m) = 1,
then for each key K, < h(K,0), h(K,1),..., h(K, m—1) > is a permutation
of <0, 1,.., m-1>

Proof: As for Lemma 1 we shall show that foreach i =0,1,..., m—1,
all values & (K) + ih(K) (mod m) are pairwise different. If there exist
two indices i,j € {0,1,..., m—1}, i > j, such that

h(K) + ih,(K) = h,(K) + jh,(K) (mod m),
then there exists an integer p > 0 such that
(i=)hy(K) = pm 3)

But (3) cannot hold since 1<i—j<m—1 and (h(K), m)= 1.0}

A convenient way to ensure these conditions on 4, is to let m be a
power of 2 and to design A, so that it always produces an odd number.
Another way is to let m be prime and to design 4, so that it always
retums a positive integer less than m. For example, we could choose m
prime and let

h,(K)=K (modm)
h(K) =1+ (K(mod m")),
where m’ is chosen to be slightly less than m (say, m — 1 or m — 2).

By summarizing the discussion above, hashing with open address-
ing does not require any additional space. However, its performance
becomes poorly when the load factor is nearly one and it does not
support deletion.

Analysis of open — address hashing. Our analysis of open
addressing, like our analysis of chaining, is expressed in terms of the
load factor 3 of the hash table, as n and m go to infinity. Recall that if
n elements are stored in a table with m positions (slots), the average
number of elements per slot is B = n/m.

Of course, with open addressing, we have at most one element per
slot, and thus #n < m, which implies B <1.

154

https://biblioteca-digitala.ro / https://unibuc.ro

We assume that uniform hashing is used. In this idealized scheme,
the probe sequence < A(K,0), h(K, 1), ..., h(K, m—1) > for each key K is
equally likely to be any permutation on < 0,1,..., m—1 >, or this probe
sequence is a random permutation of the set {0,1,... m—1}. That is, each
possible probe sequence is equally likely to be used as the probe se-
quence for an insertion or a search. Of course, a given key has a unique
fixed probe sequence associated with it; what is meant here is that,
considering the probability distribution on the space of keys and the
operation of the hash function on the keys, each possible probe sequence
is equally likely.

We now analyse the expected number of probes for hashing with
open addressing under the assumption of uniform hashing, beginning
with an analysis of the number of probes made in an unsuccessful search.

Theorem 3. Given an open—address hash table with load factor
B =n/m <1, the expected number of probes in an unsuccessful search

1
is at most 1-p assuming uniform hashing.

Proof: In an unsuccessful search, every probe but the last accesses
an occupied slot that does not contain the desired key, and the last slot
probed is empty.

Let us define p, = P {exactly { probes access occupied slots} for
i=0,1, ... For i > n, we have p, = 0, since we can find at most 7 slots
already occupied. Note that p, does not depend on the probe sequence by
our assumption of uniform hashing. Thus, the expected number of probes

is 1+ iip,. We define also g, = P {at least i probes access occupied
i=0
slots} fori=0, 1, 2,... Since p, = ¢, — q,,, it follows that

2m=§%

i=0
Now we will evaluate the value of g, fori > 1. The probability that
n
the first probe accesses an occupied slot is n/m; thus, g, = pogt
With uniform hashing, a second probe, if necessary, is to one of

the remaining m — 1 unprobed slots, n — 1 of which are occupied. We

155

https://biblioteca-digitala.ro / https://unibuc.ro

make a second probe only if the first probe accesses an occupied slot;

n n-1

thus, ¢, =—- .
m m-1

In general, the i—th probe is made only if the first i — 1 probes

access occupied slots, and the slot probed is equally likely to be any of

the remaining m —i + 1 slots, n — i + 1 of which are occupied.

'n—lu n—i+1 <(£'j ___B,.

m-1"m—-i+1 \m

Thus, g, =

I

J.r .
->— ifn<m andj2=0.
-j m

fori=1, 2, ..., n, since

After n probes, all n occupied slots have been seen and will not be
probed again, and thus g,= 0 for i > n. Given the assumption that § <1,
the average number of probes in an unsuccessful search is

1+ Zip, =1+ Zq,. < 1+B+Bz+...=% 0

i=0 i=1 -B

The last equation has an intuitive interpretation: one probe is
always made; with probability approximately B a second probe is needed;
with probability approximately [3? a third probe is needed, and so on.

If B is a constant, Theorem 3 predicts that an unsuccessful search
runs in O(1) time.

For example, if the hash table is half full (§ = 0.5), the average
number of probes in an unsuccessful search is 1/(1- 0.5) = 2; if it is 90
percent full, the average number of probes is 1/(1 —0.9) = 10.

The cost of operation Insert (K) is 1 + min {i: T[(h(K,i)] is not
occupied}. Theorem 3 gives us the performance of the insertion proce-
dure almost immediately.

Corollary 4. Inserting an element into an open-address hash table

1
with load factor [requires at most 1-p probes on average, assuming

uniform hashing.
Proof: An element is inserted only if there is available space in the
table, and thus < 1.

156

https://biblioteca-digitala.ro / https://unibuc.ro

Inserting a key requires an unsuccessful search followed by place-
ment of the key in the first empty slot found. Thus, the expected number

1
of probes is]_—B .3

Theorem 5. Given an open-address hash table with load factor
B <1, the expected number of probes in a successful search is at most

assuming uniform hashing and assuming that each key in the table is
equally likely to be searched for.

Proof : A search for a key K follows the same probe sequence as
was followed when the element with key K was inserted. By Corollary
4, if K was the (i+1) - st key inserted into the hash table, the expected

1 m

number of probes made in a search for X is at most — =
1-i/m m—i

Averaging over all n keys in the hash table gives us the average number
of probes in a successful scarch:

il
where H = 27 1s the i-th harmonic number. Using the bounds
j=1

Ini<H <Ini+ 1, we obtain

%(Hm ~-H_)<—(Ilnm+1-In(m-n))

m

In +

m_

|- ™= |—
S

PRI
1-p

157

https://biblioteca-digitala.ro / https://unibuc.ro

for a bound on the expected number of probes in a successful search.0

Corollary 4 and Theorem 5 state that Insert and Access time will
go up steeply as B approaches 1, and that open addressing works fine as
long as B is bounded away from one, say [<0.9.

p
0.5 09 095 099 0999
1
1-p 2 10 20 100 1000
11 1
RRTRE S 338 366 420 566 1.9
B 1-B B

For example, it follows that if the hash table is half full, the
expected number of probes is less than 3.387; if the hash table is
90 percent full, the expected number of probes is less than 3.670.

§ 15.d - heaps

A heap (or, a priority queue) is a data structure for efficiently stor-
ing and manipulating a collection H of elements (or objects) when each
element i € H has an associated real number, denoted by key (/). We
want to perform the following operations on the elements in the heap H:

create (H). Create an empty heap H.

insert ({,H). Insert an element i in the heap.

find-min (i,H). Find an element i with the minimum key in the

heap.

delete-min (i, H). Delete the element / with the minimum key from

the heap.

delete (i,H). Delete an arbitrary element / from the heap.

decrease-key (i, value, H). Decrease the key of element i to a smaller

value, denoted by value.

increase-key (i, value, H). Increase the key of element i to a larger

value, denoted by value.

158

https://biblioteca-digitala.ro / https://unibuc.ro

In this section we discuss the d-heap and binary heap data struc-
tures (the binary heap is a well-known special case of the d-heap with
d=2). In the next section we describe a more efficient (and also more
complex) heap known as the Fibonacci heap. In our discussion of heaps,
we shall usc the word ,,clement’” and ,,node” interchangeably.

Heaps find a varicty of applications: Two such applications are
Dijkstra’s algorithm for the shortest path problem and Prim’s algorithm
for the minimum spanning trec problem.

We have secn another important application of heaps in the sorting
of n numbers in a nondecreasing order: First, we create an empty heap.
Then, one by one, we add » numbers to the heap by performing » insert
operations, letting the key for the / — th entry be one of the numbers we
wish to sort. Next, we repeat the following step iteratively: Select an
element { with the minimum key using the operation find-min and then
delete it from the heap using the operation delete-min. We terminate
this procedure when the heap is empty. It is easy to see that we dclete
the elements from the heap in a nondecreasing order of their values.

Definition and properties of a d-heap. In a d - heap, we store the
nodes of the heap as a rooted tree whose arcs represent a predecessor-
successor (or parent-child) relationship.

We store the rooted tree using predecessor indices and sets of suc-
cessors, as follows:

pred (¢): the predecessor (or the parent) of node i in the d-heap. The

root node has no predecessor, so we set its predecessor equal
to zero.

succ (i): the set of successors (or children) of node / in the d-heap.

In the d-heap we definc the depth of a node i (or its level number,
the root having level zero) as the number of arcs in the unique path from
node i to the root. For example, in the d - heap shown in Figure 1, nodc
5 has a depth of 0 and nodes 9, 8, and 15 have a depth of | ctc.

Each node in the d-heap has d successors (with eventually a single
exception on the last level) and these successors we assume to be or-
dered from left to right. We add nodes to the heap in an increasing order
of depth values, and for the same depth value we add nodes from left
to right, and this property we maintain inductively. We refer to this

159

https://biblioteca-digitala.ro / https://unibuc.ro

T
@@@@@@@@@@é@@

Figure 1: Example of a d-heap ford = 3

property as the contiguity property. In the example given in Figure | we
assume for convenience that key (i) = i for each / = 1 to 52 (in this
particular example we have stored only a subset of the nodes in the
heap). Note that nodes 12, 48 and 8 have the predecessors 9, 18, and 5,
respectively. , B

The contiguity property implies the following results:

Property 1

(a) At most d* nodes have depth k.

(b) At most (d*'-1) / (d—1) nodes have depth between 0 and .

(c) The depth of a d-heap containing 7 nodes is at most | log N J+1

If we denote by 4 the height of the d - heap, then for each level
k, 0 < k< h—1 we have d* nodes and on the level & we have at most &"
nodes, hence (a) is verified; the number of nodes having depth between

k+l—l

0 and k is at most 1+d+d*+.. .+d* = 71 ; we get n 2 d"!, hence

h< l_logdn_] +1.

For the d-heap in Figure 1 this inequality is an equality since
3= Llog,26] +1.

Storing a d-heap. The structure of a d-heap permits us to store it as

an array and manipulate it quite efficiently, We order the nodes in the
increasing values of their depths, and we order the nodes with the samc

160

https://biblioteca-digitala.ro / https://unibuc.ro

depth from left to right. We then store the nodes, in order, in an array
DHEAP. For example, if we apply this method to the 4 - heap shown in
Figure 1, then

DHEAP={5,9, 8, 15,23, 12,16, 18, 29, 10, 31, 22, 27, 28, 36, 32,
14, 13, 20, 38, 17, 41, 52, 42, 48, 39}.

We also maintain an array position that contains the position of
each node. For this cxample, position (8) =3 and position (23) = 5. We
maintain an additional parameter last that specifies the number of nodes
stored in the array DHEAP. For this example, last = 26. This storage
scheme has one rather nice property that permits us to easily access the
predecessors and successors of any node:

Property 2

(a) The predecessor of the node in position / is contained in posi-

tion [(i-1)/d 1.

(b) The successors of the internal node in position { are contained

in positions id— d+2, id— d+3,...,min (id+1, last).

For example, node 18 is in position 8, so its predeccssor is in posi-
tion | (8=1)/3 1= 3 and its successors are in positions 3+ 8 — 3 + 2 = 23
to3+ 8+ 1=25.

This property implies that if we maintain the array DHEAP, we
need not explicitly maintain the predecessor index and the set of succes-
sor indices of a node. We can compute these when required during the
course of an algorithm. A heap always satisfies the following property,
which we subsequently refer to as the heap order property.

Property 3. The key of node 7 in the heap is less than or equal to the
key of each of its successors. That is, for each node i, key (i) < key(j) for
every j € SUCC (i).

We notice that we might violate this property while performing
a heap operation but will always satisfy it at the end of any heap
operation.

The example shown in Figure 1 satisfies the heap order property if
for every node in the heap we assume that key (i) = 7.

The following result is an immediate consequence of the heap or-
der property.

Property 4. The root node of the d-heap has the smallest key.

In the d - heap data structurc, we reduce each heap operation into a
sequence of a fundamental operation, each called swap (i,5). The opera-

161

https://biblioteca-digitala.ro / https://unibuc.ro

tion swap (i, j) swaps (or interchanges) nodes i and . Figure 2 gives an
example of a swap. In terms of the array used to store a d-heap, as a
result of applying swap (i), we store node i at the position where node
J was stored, and store node ; at the position where node i was stored.
For example, if we perform swap (4,6) in the DHEAP = {5, 6, 7, 4, 8,
11, 12, 9}, as shown in Figure 2, then the new array representation of
the d - heap becomes DHEAP = {5, 4, 7, 6, 8, 11, 12, 9}. Clearly, the
swap operation requires O (1) time.

®
ON
gONNG

VAN VAN

® 2)) b)

Figure 2. Example of swap (4,6): a) heap before the swap; b) heap after the swap.

Restoring the heap order property. In the course of applying an
algorithm, we will frequently change the value of some key and so
temporarily violate the heap order property. How can we restore this
property?

Suppose that we decrease the key of some node i. Let j = pred (i).
If after the change in the value of key (i), key (/) < key (i), the heap still
satisfies the heap order property and we are done. However, if key
(/) > key (i), we need to restore the heap order property.

The procedure siftup (i) accomplishes this task.

procedure siftup (i);
begin
while i is not a root node and key (7) < key (pred (i)
do swap (i, pred (?));
end,

An inductive argument shows that at the termination of the siftup

procedure, the heap satisfies the heap order property. The procedure

162

https://biblioteca-digitala.ro / https://unibuc.ro

siftup requires O (log,n) time because each execution of the while loop
decreases the depth of node i by one unit and, by Property 1, its original
depth is O(log, n).

Suppose next that we increase the key of some node i. If after the
change in the value of key (i), key (i) < key (j) for all j € SUCC (i), the
heap still satisfies the heap order property and we are done; otherwise,
we need to restore the heap order property.

The procedure siftdown (i) described below accomplishes this task.
In the descniption we let minchild (i) denote the node with smallest key
in SUCC (i).

procedure siftdown (i);

begin
while i is not a leaf node and key (i) > key (minchild (i) do
swap (i, minchild (i));
end;

An inductive argument will again show that at the termination of
the siftdown procedure, the heap satisfies the heap order property. The
procedure requires O(d log, n) time because each execution of the while
loop increases the depth of node i by one unit and each execution re-
quires O (d) time to compute minchild (7).

Performing heap operations. We are now in a position to describe
how we can perform various operations in the d-heap.

— find-min (i,H). The root node of the heap is the node with the
minimum key and it is located at the first position of the array DHEAP.
Therefore, this operation requires O(1) time.

—nsert (i,H). We increment last by one and store the new node i at
the last position of the atray DHEAP. Then we execute the procedure
siftup (¥) to restore the heap order property. Clearly, this operation re-
quires O (log, n) time.

— decrease-key (i, value, H). We decrease the key of node i and
execute the procedure siftup (i) to restore the heap order property. This
operations requires O(log,, n) time.

—delete- min (i, H). Clearly, node i is the root node of the heap. Let
node j be the node stored at the last position of the array DHEAP. We
first perform swap (i, j) and then decrease last by 1. Next, we perform
siftdown (j) to restore the heap order property. Clearly, this heap opera-
tion requires O (d log, n) time.

163

https://biblioteca-digitala.ro / https://unibuc.ro

The remaining two heap operations, delete (i, H) and increase-key
(i, value, H) can be performed in a similar way in O(d log, n) time. We
summarize our discussion as follows:

Theorem 1. The d-heap data structure requires O (1) time to per-
form the operation find-min, and O(log n) time to perform the opera-
tions insert and decrease-key, and O (d log n) time to perform the op-
erations delete-min, delete, and increase-key.

A binary heap is a d-heap with 4 = 2. For binary heaps, this theo-
rem assumes the following special form.

Theorem 2. The binary heap data structure requires O(1) time to
perform the operation find - min, and O (logn) time to perform each of
the operations insert, delete, delete-min, decrease-key, and increase-key.

As an example of applying heaps, consider a sorting algorithm;
while sorting » numbers, we perform » inserts, n find-mins, and »
delete-mins. Consequently, the running time of the sorting algorithm
using d-heaps is O (nd log, n), which is O (n log n) for any fixed value
ofd.

§ 16. Fibonacci heaps

The Fibonacci heap is a data structure that allows the heap opera-
tions to be performed more efficiently than d-heaps. This data structure
performs the operations insert, find-min, and decrease-key in O(1) am-
ortized time and the operations delete-min, delete, and increase-key in
O(log n) amortized time. Recall that the amortized complexity of an
operation is the average worst-case complexity of performing that
operation.

In other words, the amortized complexity of an operation is O(g(n))
if for a sequence of k (sufficiently large) operations, the total time re-
quired by these operations is O (kg(n)). Fibonacci heaps were developed
by Fredman and Tarjan in 1984.

Some properties of Fibonacci numbers. Researchers have given
the Fibonacci heap data structure its name because the proof of its time
bounds uses properties of the well-known Fibonacci numbers. Before
discussing the data structure, we first discuss these properties.

164

https://biblioteca-digitala.ro / https://unibuc.ro

The Fibonacci numbers are defined recursively as F(1) = 1,
F(2) =1, and F(k) = F(k — 1) + F(k — 2), for all £ = 3. These numbers
satisfy the following properties:

Proposition 1. The following properties hold:

(a) For k2 3, F(k) 2 2¢-1)2

(b) F(k) = 1+ F() + FQ2) +...+ F(k - 2).

Proof: The facts that F(k) = F(k-1) + F(k-2) and F(k—1) = F(k-2)
imply that F(k) = 2F(k-2).

Consequently, if k is odd, F(k) 2 2F(k—-2) 2 2?°F(k-4) 2
22 F(k—6) 2..22%V2F(1)= 2%V If kis even, we argue by induc-
tion. The claim is true if k = 4. Suppose it is true for even numbers less
than 4. We have

Flk)=Fk-1) + F(k—2) 2 2®&22 4 20372

by the result for £ odd and the induction hypothesis. But then
F(k) 2 2®&3»2[22+1] > 2%D2 and so by induction the conclusion is
true forall k2 3.

To prove part (b) let us observe that 1+ F(1) = F(2) + F(1) = F(3);
F3)+F2)=F@4);..; F(k-1) + F(k—2)=F(k). C

Proposition 2. Suppose that a series of numbers G(k) satisfies the
properties that G(1) = 1, G(2) = 1, and G(k) = 1+ G(1) + G(2) +...
+ G(k—-2) forall k= 3. Then G(k) =2 F(k).

Proof: We prove inductively that G(k) = F(k) for all k. This claim
certainly is true for £ =1 and £ =2. Let us assume that it is true for all
values of k£ from 1 through g — 1. Then G(g) 2 1+ G(1)+ G(2) +...+ G(g
-2)2 1+ F(1)+ F(2) +...+ F(q —2)=F(g), the equality following from
Proposition 1(4). O

Defining and storing a Fibonacci heap. As we noted earlier, a
heap stores a set of elements, each with a real-valued key. A Fibonacci
heap is a collection of directed rooted in-trees; each node / in the tree
represents an element i and each arc (ij) represents a predecessor-suc-
cessor (parent-child) relationship: node j is the predecessor (parent) of
node i . Figure 1 gives an example of a Fibonacci heap.

To represent a Fibonacci heap numerically (i.e., in a computer) and
to manipulate it effectively, we need the following data structure:

165

https://biblioteca-digitala.ro / https://unibuc.ro

SN L
® © O ® @
@%\

® @

pred (#): the predecessor (or the parent) of node i in the Fibonacci
heap;

We refer to a node with no parent as a root node and we set its
predecessor to zero. This convention permits us to determine whether a
node is a root node or a nonroot node by looking at the node’s predeces-
sors index.

We also need the following data structures: SUCC (i): the set of
successors (or children) of node i . We maintain this set as a doubly
linked list.

rank (i): the number of successors of node i (i.e., rank (i) =
=|SUCC (@))).

minkey: the node with the minimum key.

Below is given this data structure for the rooted trees given in
Figure 1.

i 1| 2 3 4 6|7 |8{9]10]11]12]13
pred () | 0| © 2 2o |slo [2]s5|7]4]3]3
succ ()] @ |3.84(13,12){ (11} |{6,9}| @ |{10} | @ | @ 2 2|
rank (i) | 0 | 3 2 [1]2]o]1 Jololofofo]o

We need additional data structures to support various heap opera-
tions; we will introduce these data structures later, when we require
them.

A subtree hanging at any node i of any rooted tree is the subtree
with root i; it contains the node i, its successors, successors of its suc-
cessors, and so on.

166

https://biblioteca-digitala.ro / https://unibuc.ro

For example, in Figure 1, the subtree hanging at node 5 contains
the nodes 5, 6, and 9.

Linking and cutting. In using the Fibonacci heap data structure,
we reduce each heap operation into a sequence of two fundamental
operations: link (i,/) and cut (i).

We apply the operation link (i,/) to two (distinct) root nodes i and j
of equal rank; it merges the two trees rooted at these nodes into a single
tree. The operation cut (f) cuts node 7 from its predecessor and makes i a
root node.

* link (i). If key () < key (i), then add arc (i) to the Fibonacci
heap (thus making node j the predecessor of node i).

If key () > key (i), then add arc (j,) to the heap.

* cut (i). Delete arc (i, pred (i)) from the heap (thus making node i
a root node).

We illustrate these two operations on the examples shown in

Figure 2. For simplicity, we assume that for every node i, key (i) = i.

S /i\

@/\@/®< ° e s
@ @

@ v /

©@ O

@ / ®)
& @ @

@ Figure 2: lustrating link and cut
operations: (a) original heap; (b)
heap after the operation link (3,6);
(c) @ (c) heap after the operation cut (10)

167

https://biblioteca-digitala.ro / https://unibuc.ro

Notice that the link operation increases the rank of node 7 or of
node j by 1. Moreover, each of these operations changes the pred and
SUCC and rank information for at most two nodes; consequently, we
can perform them in O(1) time. Later in this section we describe the
additional data structures that we maintain to manipulate the Fibonacci
heap cffectively; we can also modify them in constant time as we
perform a link and a cut operation. We have deduced the following
property.

Proposition 3. The operations link(i,j) and cut(i) require O(1) time
to execute.

Whilc manipulating the Fibonacci heap data structure, we perform
a scquence of links and cuts. There is a close relationship between the
number of links and cuts. To obscrve this relationship, consider a func-
tion ¢ defined as the number of rooted trees in Fibonacci heap. Each
link operation decreases ¢ by 1 and each cut operation increases ¢ by 1.

Initially we have n trees, each consisting of the root. The following
result holds:

Proposition 4. The number of links is at most n —1 plus the number
of cuts.

Invariants in Fibonacci heaps. The Fibonacci heap data structure
maintains a set of rooted trees that change dynamically as we perform
various linking and cutting operations. These rooted trecs satisfy certain
invariants that are essential for deriving the claimed time bounds for the
heap operations. The nodes of the Fibonacci heap always satisfy the
heap order property (which states that the key of a node is less than or
cqual to the keys of its successors).

The Fibonacci heap also satisfies the following two properties:

Property 1. Each nonroot node has lost at most one successor
after hecoming a nonroot node.

Property 2. No two root nodes have the same rank.

As before, although we might violate these invaniants at intermedi-
ate steps of some heap operations, the heap will satisfy them at the con-
clusion of cach heap operation.

One important consequence of properties 1 and 2 is that the maxi-
mum possible rank of any node is 2logn + 1. We establish this result
next.

168

https://biblioteca-digitala.ro / https://unibuc.ro

Proposition 5. Any node in the Fibonacci heap with n nodes fas
rank at most 2logn + 1.

Proof: Let G(k) denote the minimum number of nodes contained in
a subtree hanging at a node of rank & in a Fibonacci heap. We shall
prove that G(k) > F(k).

Indeed, let w be a node in a Fibonacci heap with rank 4. Arrange
the successors of node w in the same order in which the previous opera-
tions linked them to w, from the earliest to the latest. We claim that the
rank of the i — th successor of w is at least i — 2. To establish this result,
let y be the i — th successor of node w and consider the moment when y
was linked to w. Just before this link operation, w had at least i/ —1
successors since y is the i — th successor (It might have had more than
i —1 successors at that time, some having been cut since then). Since at
the time of this link operation nodes y and w both have the same rank,
node y had at least i —1 successors just before we performed this link
operation.

Furthermore, notice that since that time node y has lost at most one
successor (from property 1). Therefore, node y (which is the i — th suc-
cessor of node w) has rank at least i — 2. As a result, the subtree hanging
at node w contains at least
142+ G(1)+ G2) +.+ Gk-2) > 1+ G(1)+ G2)+..+ Gk - 2)
nodes.

To summarize, we have shown that

Gk 2 1+ G(1) + G(2) +..+ G(k - 2),
which in view of Proposition 2 implies that G(k) = F(k). Since no subtree
can contain more than » nodes, we have
n2 G(k) 2 F(k) 2 2% b2
by Proposition 1, which implics that £ <2 logn + 1.]

The following property follows directly from Property 2 and
Proposition 5.

Proposition 6. A Fibonacci heap with n nodes contains at most
1+ 2 logn rooted trees.

We next discuss how to restore properties 1 and 2 if they become
violated at intermediate steps of a heap operation.

Restoring Property 1. To restore Property 1, we maintain an addi-
tional index lost (i) for every node (. defined as follows.

169

https://biblioteca-digitala.ro / https://unibuc.ro

lost (i): For a nonroot i, lost (i) represents the number of successors
the node has lost after it became a nonroot node. For a root node i,
lost(:) = 0.

Suppose that while manipulating a Fibonacci heap, we perform the
operation cut (). We refer to this cut as the actual cut. Let j = pred (7). In
this operation, node j loses a successor. If node ; is a nonroot node, we
increment lost () by 1. If lost (j) becomes two, Property 1 requires that
we make node ; a root node. In that case we perform cut () and make
a root node. Let &k = pred (j). This cut increases lost (k) by 1. If kis a
nonroot node and lost () = 2, we must make it a root node as well, and
so on.

Thus an actual cut might lead to several cuts due to a cascading
effect: We keep performing these cuts until we reach a node that has not
lost any successor so far or is a root node. We refer to these additional
cuts that are triggered by an actual cut as cascading cuts, and the entire
sequence of steps following an actual cut as multicascading.

o We illustrate this process
on the Fibonacci heap shown
in Figure 3(a) where we sup-

e e @ pose that lost (11)=1 and lost

(8) = 1. Suppose that we cut
/ node 17 from its predccessor.

i, @6 O G

9 @@ o O ® ©
@
o W ®

Figure 3. Illustrating how @ @ @

we satisfy Property 1 by
performing cut (17), if

Jost (11) = lost (8) = 1 (19) (b)

170

https://biblioteca-digitala.ro / https://unibuc.ro

This operation also requires that we also cut nodes 11 and & from
their predecessors. Figure 3(b) shows the resulting Fibonacci heap that
satisfies Property 1. We now summarize the preceding discussion.

Proposition 7. [f we perform an actual cut in a Fibonacci heap, we
might also need to perform several cascading cuts so that the heap again
satisfies Property 1; the time needed for these operations is propor-
tional to the total number of cuts performed.

Suppose that we perform a number of actual cuts at different times
while manipulating a Fibonacci heap and that these cuts cause addi-
tional cascading cuts. What is the relationship between the total number
of actual cuts and the total number of cascading cuts? We shall show
that the total number of cascading cuts cannot exceed the total number
of actual cuts. To prove this result, consider the potential function
%= iir%aLOSt(i) . Suppose that we perform cut (i) and j = pred (i). This
operation sets lost (i) to zero and increases lost (j) by one if j is anonroot
node. If the cut is an actual cut, lost (i) equals 0 or 1 before the cut, and
if it is a cascading cut, lost () equals 1 before the cut.

Therefore, an actual cut increases lost (i) + lost (j), and hence the
value of the potential function ¢ by at most one, and a cascading cut
decreases lost (i) + lost (f) by at least one. If we start with a potential
value of zero, the total decreases in the potential function are bounded
by the total increases. The following property is now apparent.

Proposition 8. The total number of cascading cuts is less than or
equal to the total number of actual cuts.

Restoring Property 2. The Property 2 requires that no two root
nodes have the same rank. To maintain this property, we need the fol-
lowing index for every possible rank k=1, 2,..., 2 l_logn J+1

bucket (k): If the Fibonacci heap contains no root node with
rank equal to £, then bucket (k) = 0; and if some root node i has
a rank equal to &, then bucket (k) = i.

Suppose that while manipulating a Fibonacci heap, we create a
root node j of rank & and the heap already contains another root node i
with the same rank. Then we repeat the following procedure to restore
Property 2.

171

https://biblioteca-digitala.ro / https://unibuc.ro

We perform the operation link (i), which merges the two rooted
trees into a new tree of rank 4 +1. Suppose that node / is the root of the
new tree. Then by looking at bucket (k +1), we check to see whether the
heap already contains a root node of rank £ +1. If not, we are done.
Otherwise, we perform another link operation to create another rooted
tree of rank & + 2 and check whether the heap already contains a root
node of rank & + 2.

We repeat this process until we satisfy Property 2. We refer to this
sequence of steps following the addition of a new root as multilinking.

We illustrate this process of re-establishing Property 2 on a nu-
merical example. Consider the Fibonacci heap shown in Figure 4(a),
assuming that the key of node i equals i. Suppose that we add a new
rooted tree containing a singleton node 10. The heap already contains
another root node of rank 0, namely node 9. Thus we perform a link
operation on nodes 9 and 10, obtaining the rooted trees shown in Figure
4(b). Now two trees in the heap , with roots 7 and 9, have rank 1.

fA O
/@\ ﬁz ﬁ%

)
Figure 4: lllustrating how we satisfy Property 2 by multilinking. @

172

https://biblioteca-digitala.ro / https://unibuc.ro

We perform another link operation, producing the structure shown
in Figure 4(c). But now two trees, with roots 1 and 7, have rank 2. We
perform another link operation, producing the structure shown in Figure
4(d). At this point, Property 2 is fullfiled and we terminate.

We summarize the preceding discussion as follows:

Proposition 9. If we add a new rooted tree to a Fibonacci heap, we

might need to perform several links to restore Property 2; the time needed
Jfor these operations is proportional to the total number of links.

Heap operations. Finally, we show how we perform various heap
operations using the Fibonacci heap data structure and indicate the amount
of time they take.

» find-min ({,/). We simply return i = minkey, since the variable
minkey contains the node with the minimum key.

« insert (i,H). We create a new singleton root node i and add it to H.
After we have performed this operation, the heap might violate Property
2, in which case we perform multilinking to restore the invariant.

» decrease-key (i, value, H). We first decrease the key of node i and
set it equal to value. After we have decreased the key of node i, every
node in the subtree hanging at node i still satisfies the heap order pro-
perty; the predecessor of node i might, however, violate this property.
Letj = pred (7). If key (j) < value, we are done. Otherwise, we perform
an actual cut, cut (¢), make node i a root node, and update minkey. After
we have performed the cut, the heap might violate Property 1, so we
perform multicascading to restore this invariant. The resulting cascad-
ing cuts generate new rooted trees whose roots we store in a list, LIST.
Then one by one, we remove a root node from LIST, add it to the previ-
ous set of roots, and perform multilinking to satisfy Property 2. We
terminate when LIST becomes empty.

* delete-min (i,H). We first set i = minkey. Then one by one, we
scan each node / € SUCC (i), perform an actual cut, cut (/), and update
minkey.

We apply multilinking after performing each such actual cut. When
we have cut each node in SUCC (i), we scan through all root nodes
(which are stored in bucket (k), for k=0,1,...,2 L logn f+ 1), identify the
root node A with minimum key, and set minkey = A.

173

https://biblioteca-digitala.ro / https://unibuc.ro

Recall that |SUCC (¢)] £ 2 logn + 1, because Proposition 5 implies
that each node has at most 2 log n + 1 successors. Therefore, the delete-
min operation performs O(log n) actual cuts, followed by a number of
cascading cuts and links. Then we scan through O (log n) root nodes to
identify the root with the minimum key. Summarizing, for the heap
operation: find-min (/,H), step Return { = minkey, time taken is O (1);
for insert (i,H); add a new singleton node i, time: O (1); for decrease-key
(i, value, H); decrease the key of node i: O(1); perform cut (i) and update
minkey: O(1); for delete-min (i,/): perform cut (/) for each node / €
SUCC (i): O (log n) and compute minkey by scanning all root nodes:
time taken O (log n).

We now consider the time required for multicascading and
multilinking. We claim that the time taken by these two steps is O (log
n), so we can ignore this time further.

To establish this claim, we use the following facts: (1) Proposition
8, which states that the number of cascading cuts is no more than the
number of actual cuts; and (2) Proposition 4, which states that the num-
ber of links is no more than n — 1 plus the number of actual and cascad-
ing cuts. Consequently, if we perform a sufficiently large number of
operations (relative to n), the number of actual cuts will count the num-
ber of links and cascading cuts within a constant factor; therefore, in the
big O notation, we can ignore the time required for the latter operations.

In a similar way we can prove that the operations delete and in-
crease-key also require O (log n) amortized time.

We summarize the discussion in this section as follows:

Theorem 10. The Fibonacci heap data structure requires O (1)
amortized time to perform each of the operations insert, find-min, and
decrease-key, and O (log n) amortized time to perform each of the op-
erations delete-min, delete, and increase-key.

It is clear that the role of data structure is critical in designing effi-
cient algorithms and in writing computer programs for implementing
algorithms. We illustrate this idea further by considering Dijkstra’s
algorithm for the shortest path problem.

Let G = (V,E) be an undirected graph and let / be a function assig-
ning a nonnegative length to each edge. Extend / to domain V' x V by
defining /(v,v) =0 and /(x,v) = = if (u,v) &€ E. Define the length of apath

174

https://biblioteca-digitala.ro / https://unibuc.ro

P = e,e,...e_ written as a sequence of edges to be /(p) = Zl(e,). For

i=1
u,v € V, define the distance d(u,v) from u to v to be the length of a shortest
path from u to v, or s if no such path exists. Notice that d(u,u) = 0 for
everyu e V.
The single-source shortest path problem is to find, givens € V, the
value of d(s,u) for every other vertex u in the graph.
There is an algorithm due to Dijkstra that solves this problem; we
will give an O (m + n log n) implementation using Fibonacci heaps,
where m = |E| and n = |V].
This algorithm is a type of greedy algorithm: it builds a set X vertex
by vertex, always taking vertices closest to X.
Dijkstra’s Algorithm
X {s};
D(s) « 0;
foreachue V\ {s} do
D(u) « I(s,u);
while X # V do
let u € V'\ X such that D(u) is minimum
X < X v {u}; for each edge (u,v) withv e V'\ Xdo
D(v) « min (D(v), D(u) + l(u,v))

end while

The final value of D(u) is d(s,u). This algorithm can be proved
correct by showing that the following two invariants are maintained by
the while loop:

» for any u, D(u) is the distance from s to u along a shortest path
through only vertices in .X;

sforanyu € X, ve X, D(u) < D(v) holds.

Dijkstra’s algorithm performs » inserts, n find - mins, n delete -
mins, and at most m decrease - key operations.

The time requirements of the heap operations imply that the algo-
rithm requires O (m + n log n) time, plus the time for O (n log n) actual
cuts, plus the time for multicascading and multilinking. Using the facts
that the number of cascading cuts and links are no more than twice the
number of actual cuts, and that each actual cut requires O (1) time, we
immediately see that the shortest path algorithm runs in O (m + n log n)
time.

175

https://biblioteca-digitala.ro / https://unibuc.ro

The following algorithm, known as Prim’s algorithm, produces a
minimum spanning tree T in a connected undirected graph with edge
weights.

Initially, we choose an arbitrary vertex and let 7 be the tree con-
sisting of that vertex and no edges. We then repeat the following step
n —1 times: find an edge of minimum weight with exactly one endpoint
in T and include that edge in 7.

Using the Fibonacci heap, there exists an implementation of this
algorithm that runs in time O (m + n log n).

§ 17. Splay trees

A splay trec is a data structure invented by Sleator and Tarjan (1983)
for maintaining a sct of elements drawn from a totally ordered set. Splay
trees are a particular kind of self-organizing tree structure.

The most interesting aspect of the structure is that, unlike balanced
trec schemes such as AVL trees, it is not necessary to rebalance the tree
explicitly after every operation — it happens automatically.

Data are represented at all nodes of a splay trce; they are distinct
and drawn from a totally ordered set U having a weight function w :
U — N*. The data items will always be maintained in inorder; that is, for
any node x, the elements occupying the left subtree of x are all less than x,
and those occupyving the right subtree of x arc all greater than x. Splav
trees support the following opcrations:

- Access (x, 7): if item x is in tree 7 then return a pointer to its
location, otherwise return nil.

- Insert (x, 7): insert x into tree T and return the resulting tree (i.e. a
pointer to its root) .

- Delete (x, 7): delete x from tree 7" and return the resulting tree.

~Join 2 (7', T,): return a tree rcpresenting the items in 7, followed
by the 1items 1n f destroying T, and T, (this assumcs that all clements of
7, are smaller than all elements of T)

~Join 3 (7', x, T,): retum a trec representing the items in 7))
followed by x, followed by the items in T, destroving 7| and 7 (this
assumes that all clements of 7', are smaller than x which in turnis smaller
than all items 1n 7).

176

https://biblioteca-digitala.ro / https://unibuc.ro

- Split (x, 7): return two trees 7. and T2 7' contains all items of 7'
smaller than x and 7', contains all items of 7' larger than x (this assumes
that x is in tree 7); tree 77 is destroved.

- Change weight (x, 7', 8): change the weight of element x by 8. It is
assumed that x belongs to tree 7" The operation retums a tree represent-
ing the same set of clements as trce 7

All these operations are implemented in terms of a single basic
operation, called operation Splay, which 1s unique to splay-trecs and gives
them their name:

Splav (x, 7): returns a tree representing the same set of clements as
1 If x is n the tree, then x becomes the root. If x is not in the tree then
cither the immediate predecessor x of x (x =max {ke€ T |k <x})orthe
immediate successor x' of x in 7' becomes the root. (x*=mun {k € T|k>x}).
This operation destrovs 7

All of thc operations mentioned above can be performed with a
constant number of splavs in addition to a constant number of other low-
level operations such as pointer manipulations and comparisons and can
be reduced to operation Splav. For example, in order to do Access (x, T)
we do Splay (x, 7) and then inspect the root. Notice that x 1s stored in tree
7' iff x 1s stored in the root of the tree returned by Splay (x, 7). To do
Insert (x. 7)) we first do Splay (x, 7), then split the resulting tree into one
containing all items less than x and one containing all items greater than
x, onc breaks onc of the links leaving the root and then build a new tree
with the root storing x and the two trees being the left and right subtree.

To do Deletc (x, 7) we do Splay (x, 7), discard the root and join the
two subtrees 7). T, by Join 2 (7, T')). To do Join 2 (T, T,) we do Splay
(+ oo, T)) where + oo 1s assumed to be larger than all clements of U and
then makc 7, the right son of the root of the resulting tree. Notice that
Splay (+ o, T) makes thc largest clement of 7' the root and hence creates
a tree with an empty right subtree. To do Join 3 (7, x, T,) we make 7', and
T, the subtrees of a tree with root x. To do Split (x, T) we do Splay (x, 7)
and then break the two links leaving the root. Finally, to do Change weight
(x, 1. 8) we do Splay (x, 7). The following diagram illustrates how all
other opcrations arc reduced to Splay:

Spla\ (x, 1

https://biblioteca-digitala.ro / https://unibuc.ro

< Inspect root

177

Insert (x, T): Splay x q > A
/'

Delete (x, T): Splay (x, T) Join 2 (T1. T)

NN

Join 2(7, T7):

/\ /\ Splay (+e0 T1)

Join 3(T, x, T7):

®
A AT KA
Split (x, 7): Splay (x,) @
NNV

Change weight (x, T, 8): Splay (x, 7)

178

https://biblioteca-digitala.ro / https://unibuc.ro

It remains to describe the operation Splay (x, 7). We first locate the
node which i1s made the root by the splay operation.

v « ROOT;

while v # A and key (v) 2 x

dou « v,

ifx <key (v)
then v « LLINK (v) else v &< RLINK (v) fi

od

ifv#Athenu & vfi

If x is stored in tree T then clearly points to the node containing x.
If x 1s not stored in tree 7 then u points to the last non-nil node on the
search path, i.e. to a node containing either the predecessor or the succes-
sor of x. We will make node u the root of the tree by a sequence of rota-
tions. More precisely, we move u to the root by a sequence of splay steps.
For the splay step we distinguish three cases.

Case 1: Node u has a father but no grandfather. Then we perform a
rotation at v = father () and terminate the splay operation. The operation
rotate (1) moves « up and v down and changes a few pointers. A very
simple but important observation to make at this point is that the rotate
operation preserves inorder numbering.

rotate (u)
—

rotate (v)
-— a

Case 2: If u has a father v and a grandfather, and if # and v are
either both left children or both right children, we first rotate (v) and then
rotate (u).

179

https://biblioteca-digitala.ro / https://unibuc.ro

Case 3: If u has a father v and a grandfather, and if one of 1, v 1sa
left child and the other is a nght child, we first rotate () and then rotate
(1) again.

0
AL

Remark: [t is very important that the rotations in case 2 are
applied in this unconventional order. Note that this order moves node u
and its subtrees A and B closer to the root. This is also true for case 3
and will be very important for the analysis.

This finishes the description of the splay operation. The following
figure shows an example.

Apply Splay (1, 7) to the following tree T

Applving splay to node 2 in the tree denoted by Splay (1, 7) we get
another tree which is denoted Splay (2, Splay (1, 7)) and so on.

180

https://biblioteca-digitala.ro / https://unibuc.ro

Splay (1, T)

case(1)

Splay (2, Splay (1, 7))

Analysis. Before we can analyse splay trees we need some
more notation. For x € U we write w(x) to denote the weight of clement
x (w(x) > 0). For v a node of a splay tree we write tw(v) to denote the sum
of the weights of all elements which are stored in descendants of nodc v.
Notice that the total weight of a node changes over time. If 7'is a splay
tree we write tw(7) instead of rw(root (7).

181

https://biblioteca-digitala.ro / https://unibuc.ro

Let
bal (7) = - 2, Liogaw(»)]

v nodeof T

or with the definition of a rank r(v) = Llog w()] of a node v, bal

(1) = Z’ () . We define #(T) = |_log mw(T)J. For the following lemma

vnodeof T
we assume that each splay step takes time 1 (for the constant number of
low - level operations such as pointer manipulations and comparisons).

Lemma 1. The amortized cost of operation Splay (x, T) is at most
1 + 3 (H(T) — r(u)) where u is the node of T which is made the root by the
splay operation.

Proof: We shall prove that if 2, v and w are as defined in the figures
illustrating the three cases of the splay step, then the amortized cost of
casc 1 i1s at most 1 + 3 (r(v) — r(u)), and of cases 2 and 3 i1s at most
3(r(w)— r(u)).

Notice also that the amortized cost of operation Splay (x, 7) is
equal to the number of splay steps plus the difference in balance of the
tree after this operation.

In this proof we use #'(u), r'(v), r'(w) to denote the ranks of the
various nodes after the splay step. Notice that r'(x) = r(v) in case 1 and
r’(x) = r(w) in cases 2 and 3.

We will frequently use the following simple observation about ranks.
If zis a node with sons z, and z, and r(z,) = r(z,y then 7(z) 2 7(z,) + 1. This
follows since 7(z,) = (z,) = k implies

28 < (z)), tw(z,) <2
and hence tw(z) 2 tw(z,) + tw(z,) = 2.

Thus r(z) 2 r(z,) + 1. Also r(father(z)) 2 r(z) for all nodes z.

We are now ready to discuss the various cases of the splay step.
Notice that the actual cost is one in all three cases.

Case 1: The amortized cost of this splay step 1s

1+)+ r)—rEv)—rQ)
=1+ r'(v) = r(u), since r'(u) = r(v)
<1+ rv)-r),since r'(v) < r'(u) = r(v)
< 1+ 3(Hv) — H(u)), since r(v) = r(u).

182

https://biblioteca-digitala.ro / https://unibuc.ro

Case 3. The amortized cost of this splay step is
P+) + 1’ (v) +riiw)—ru) —r(v) —r(w) =
=1+ r(v)+r(w)—ru) - rVv), since ¥'(u) = Hw).
Assume first that r(w) > r(x). Then we conclude further, using
rev) <ri(u) =rw), rw) <r@)=r(w), r(v) 2 r(u) and | < r(w) - r(u),
that the amortized cost is bounded by
rOw) = Hu) + r(w) + r(w) — r(u) — r(u) = 3(r(w) — r(u)).
This finishes the proof if #(w) > r(u).
Assume next that #(w) = r(u). Then r(w) = r(v) = r(u) = r'(u). Also
r'(w) < r'(u) =r(u) and r'(v) < r'(u) = r(u). Hence r'(w) — r(u) < 0 and
r'(v) — r(v) < 0 since the subtree with root v after rotation contains subtrces
("and D and before rotation it had contain B, C, D and node .
If these two incqualitics arc equalities we have r'(w) = r'(v) and by
the obscrvation above r'(1) = #'(w) + 1, which implies that »'(w) — r(u) =
r'(w) — r'(u) < 0 and this inequality shows that at least one of the
inequalities ' (w) — r(u) < 0 and r'(v) — r(v) < 0 is strict. In this case
I +r' (V) —r(v) + (W) = r(u) £0=3(rw) - r(n)).

Case 2: The amortized cost of this splay step is
1+ @)+ rwy+rw)—rw)—-r(vy—-rw)=1+rH +
+ r'(w) = #(u) — r(v), since ¥ (u) = r(w).

Assume first that #(w) > r(1). Then we conclude further, using
| £ Hw) = 1), Hu) € r(v) € H(w) and r'(w) < ' (v) < r'(1) = #(w), that the
amortized cost is

S r(w) —r(u) + r(w) + r(w) — r(u) — r(u) = 3(r(w) — r(u)).

Assume next that #(w) = (). Then r(w) = r(v) = r(u) = r’'(u) and
r(uyzr)zrw).

Ifr'(u) > r'(w) then r'(w) — r'(u) < -l or r'(w) — r(u) < - 1 since
r'(u) = r(u) and r'(v) < r'(u) = r(v). Hence the amortized cost is bounded
by zero (= 3(r(w) — (1)) and we arc done. So assume r'(u) = r'(w).
Consider the middle tree in the figure illustrating case 2. We use F{u),
F(v), F(w) to denote the ranks in this tree. We have F(u) = r(u), F(w) =
= r'(w) and F(v) = r(w). If r'(w) = r'(u) then

F(w)=r'(w)=r'(u) = r(w) = r(u) = F(1) and hence F(v) > F(w) and
therefore r'(1) > #'(w), a contradiction. Hence »'(4) > r'(w) always. This
finishes the proof in case 2.

183

https://biblioteca-digitala.ro / https://unibuc.ro

The proof of lemma | is completed by summing the costs of the
individual splay steps. Notice that the sum telescopes. (.

The amortized cost of the other operations 1s now readily
computed.

Theorem 2. The amortized cost of Splay (x. T) is () (log tw(T) /
tw(x)); The amortized cost of Access (x, T) is O (log tw(7) / tw(x)):

tw(T)

min(ow(x), o x”

The amortized cost of Delete (x.1) is O] 108)) , where

x is the predecessor of x in tree T, The amortized cost of Join 2 (T, T)

(73)+ 0w (1)
is O log where x is the largest element in tree T, The

tw(x)
rw(Tl)w(Tz))_

amortized cost of Join 3 (T, x, T,) is O[log wi(x)

The amortized cost of Insert (x, T) is O (logtw'(T) / min (tw(x"),
w(x™), w(x))), where x” is the predecessor, x™ is the successor of x in the
final tree and tw' (1) is the weight of T after the operation;

The amortized cost of Split (x, T) is O (log tw(7) / tw(x)); The
amortized cost of Change weight (x, 7,d) is O (log (m(7T) + 8) / tw(x)).

Proof: The bound for the Splay operation was shown in lemma 1.
Operation Access 1s identical to Splay and the cost of Split (x, 7) is the
cost of Splay (x, 7) plus 1. The bound on the amortized cost of Join 2 (7,
T,)is O (log (1)) / tw(x) + 1 + log (tw(T')) + w(T)) — log w(T))) = O
(log (1w(T') + tw(T.)) / tw(x)) where x is the largest clcment in tree 7. In
this bound, the first term accounts for the cost of Splay (+ =, 7') and the
second and third term account for the actual cost of making a son of x and
the change in the rank of x caused by making 7', a son of x. The cost of
Join3 (7, x,T)1s O (1 + log (w(T)) + w(x) + mw(T)) — log w(x))) where
the last term accounts for the rank change of x. The amortized cost of
Delete (x, 7) is O (log tw(1) / tw(x) +log tw(T) / tw(x)) where the first
term accounts tor the cost of Splay (x, 7) and the second tenn accounts

184

https://biblioteca-digitala.ro / https://unibuc.ro

for the Join 2 opcration. The cost of Insert is () (log rw(7) / min (fw(x).
w(x*)) + 1 +log (e (1) + w(x)) — log w(x)) = O (log ((T) + w(x)) / min
(rw(x), tw(x7), w(x))) where the first term accounts for the splay opcra-
tion and the last term accounts for the rank change of x. Finally, the cost
of Change weight (x, 7., 8) is O (log w(T) / tw(x)) + O (log (tw(T) + &) —
—log v (7)) = O (log (tw(T') + &) / w(x)) where the first term accounts
for the Splay operation and the second term accounts for the rank
change of x.

In order to complete the analysis, we must consider the effects of
insertion, deletion, join and split on the ranks of nodes. To simplify mat-
ters, let us define the individual weight of every item to be 1. Then every
node has a rank in the range {0,1,.., Llog nl}, and lemma 1 gives a bound
of 3 |_log nJ+ 1 for splaving. The actual cost of a scquence of m opera-
tions Op,,...,Op_starting with weight function w: U = R, w(x) = 1 for
every x€ U and a forest of single node trees is bounded by the sum of the

amortized costs of the operations and the initial balance z Liog w(x)]=0.

xel’
By theorem 2 the amortized cost of a single operation is O (log »). Thus
we have the following corollary:

Corollary 3. The total time required for a sequence of m sorted
set operations using splay (self — adjusting) trees, starting with no sorted
sets is O (m log n), where n is the number of items.

§ 18. Random search trees

In this lecture we will describe a probabilistic data structure that
allows insertions, delctions, and membership tests (among other opera-
tions) in cxpected loganthmic time and is closely related to the sclf-
adjusting (splay) trees presented in the last lecture.

~ Consider a binary tree, not necessarily balanced, with nodes drawn
from a totallv ordered set, ordered in inorder; that is, if 7 is in the left
subtree of £ and is in the right subtrce of &, then 7 < k < j. Recall that the
rotate operation discussed in the previous lecture preserves this
order.

185

https://biblioteca-digitala.ro / https://unibuc.ro

rotate (x)
 ——

rotate (v)
-—

Now suppose that each clement & has a unique priority p(k) drawn
from some other totally ordered set, and that the clements are ordered in
heap order according to priority; that is, an element of maximum priority
in any subtree is found at the root of that subtree. A tree in which the data
values & are ordered in inorder and the priorities p(k) arc ordered in heap
order is called a treap (for tree-heap). It may not be obvious that treaps
always exist for every priority assignment. Moreover, if the priorities are
distinct, then the trcap is unique.

Lemma 1. Let X and Y be totally ordered sets. and let p be a func-
tion assigning a distinct priority in Y to each element of X. Then there
exists a unique treap with nodes X and priorities p.

Proof: Let k be the unique element of X of maximum priority; this
must be the root. Partition the remaining elements into two sets

{ie Xii<k}and lie X:i>k)
Inductively build the unique treaps out of these two sets and make
them the left and right subtrees of &, respectively. (]

A random treap is a treap in which the priorities have becn assigned
randomly. This is best done in practice by calling a random number
generator each time a new clement m is presented for insertion into the
treap to assign a random priority to 7. Under some highly 1dealized but
reasonable assumptions about the random number generator (which gives
a uniformly distributed random real number in the interval [0,1), and
successive calls are statistically independent), two clements receive the
same priority with probability zero, and if all elements in the treap are
sorted by priority, then every permutation s equally likely. When a new
clement m is presented for insertion or to test membership, we start at the
root and work our wav down some path in the treap as in any binary

186

https://biblioteca-digitala.ro / https://unibuc.ro

search tree, comparing m to elements along the path to see which way to
go to find m’ s appropriate inorder position. If we see m on the path on
the way down, we can answer the membership query affirmatively. If
we make it all the way down without seeing m, we can answer the mem-
bership query negatively. If m is to be inserted, we attach m as a new
leaf in its appropriate inorder position. At that point we call the random
number generator to assign a random priority p(m), which by Lemma 1
specifies a unique position in the treap. We then rotate m upward as long
as its priority is greater than that of its parent, or until m becomes the
root. At that point the tree is in heap order with respect to the priorities
and in inorder with respect to the data values.

To delete m, we first find m by searching down from the root as for
any binarv search tree, then rotate m down until it is a leaf, taking care
to choose the direction of rotation so as to maintain heap order. For
example, if the children of m are j and 4 and p(j) >p(k), then we rotate m
down in the direction of j, since the rotate operation will make j an
ancestor of k. When m becomes a leaf, we prune it off. The beauty of this
approach is that the position of anv element in the treap is determined
once and for all at the time it is inserted, and it stays put at that level until
it is deleted; there is not a lot of restructuring going on as with splay trees.
Moreover, as we will show below, the expected number of rotations for
an insertion or deletion is at most two. We now show that, averaged over
all random priority assignments, the expected time for any insertion,
deletion or membership test is O(log n). We will do the analysis for de-
letes only; it is not difficult to see that the time bound for membership
tests and insertions is proportionally no worse than for deletions. Sup-
pose that at the moment, the treap contains » data items (without loos of
generality, say{1, 2,...,n}), and we wish to delete m. The priorities have
been chosen randomly, so that if the set {1,2,...,n} is sorted in decreasing
order by priority to obtain a permutation s of {1,2,...,n}, every s is equally
likely. In order to locate m in the treap, we follow the path from the root
down to m. The amount of time to do this is proportional to the length of
the path. Let us calculate the expected length of this path, averaged over
all possible random permutations ©.

187

https://biblioteca-digitala.ro / https://unibuc.ro

Let L(m) = {1, 2,...m}and G(m) = {m, m+ |,...n}. Let A be the
set of ancestors of m, including m itself. The definitions of L(m) and
(z(m) do not depend on G, but the definition of 4 does. Let X be the
random variable defined as follows: X = length of the path from the root
down to m = |L(m) N A| + |G(m) N A]-2(m is counted in both L(m) and
((m)). We are interested in £(X), the expected value of X; by linearity of
expectation, we have E(X) = E(IL(m) N A]) + E(G(m) N A]) — 2. By
symmetry, it will suffice to calculate £(|L(m) N A|). Notice that if the
clements of /.(;m) are sorted in descending order by priority, then: every
permutation of L(m) is equally likely: and an element of /.(m) is in A4 if
and onlyv if it is greater than all previous elements of L(m) in sorted order.
In other words. permute L(n7) randomly, then scan the rcsulting list from
left to right, checking off thosc elements & that are larger than anyvthing to
the left of 4: the quantity E(|L(m) N A]) is the expected number of checks.

Example. Let » =10 and m = 8. Supposc that when priorities
are assigned randomly to {1,2,....10} and thesc clements are sorted
in decreasing order by priority, we get thc permutation: ¢ =
(4.5,9,2,1.7,3,10,8,6).

This results in the following treap:

Then 1L.(m) = {1,2,3,4,5,6.7,8}. If we restrict the random permuta-
tion G to this set, we obtain the permutation (4,5.2,1,7,3,8.6). Scanning
in this permutation from left to right and checking only thosc elements &
that arc greater than all elements to the left of 4, we get the scquence

188

https://biblioteca-digitala.ro / https://unibuc.ro

(4.5,7.8). This is exactly the sequence of elements in L{m) appearing on
the path from the root down to m in the treap. A similar argument using
G(m) gives the sequence (9,8) which is the sequence of elements in
G(m) appearing on the path from the root down to m in the trcap. The
length of the path is the sum of the two lengths of these sequences less
2,i.c. 4+ 2 -2 =4, We are thus left with the problem of determining the
cxpected value of the random vanable Y , the number of checks ob-
tained when scanning a random permutation of {1,2,...,m} from left to
right and checking cvery element that is greater than anything to its left.

Suppose we permute {1,...,m} randomly to get the random permu-
tation ¢. Deleting 1 from ¢, we get a random permutation ¢ of {2.3....,m}.
Notice that an element other than 1 is checked when scanning ¢ if and
only if it is checked when scanning ¢”; thus the presence or absence of
1 docs not affect whether other element is checked since 1 is the small-
est element.

Thus the expected number of checks on elements other than 1 is the
same in ¢ as in ¢', or E(¥_). The element 1 is checked if and only if it

. o
occurs first in ¢, and this occurs with probability - Thus the expected

number of checks on the element 1, averaged over all permutations, is

1
—-. By lincarity of expectation,
m

1
EY)=EY)+ —.
(Y,)=B(Y,)+
Since E(Y,) = 1 the solution of this rccurrence is

)] 1
b(y,,,) = Z; =H,, the m — th harmonic number and H_~ In m; in par-
k=1
ticular we have H_= O(In m).
A similar analysis allows us to calculate the expected number of
rotations necessary to delete m from its position in the treap; the result is

189

https://biblioteca-digitala.ro / https://unibuc.ro

§ 19. Muitidimensional data structures

By reconsidering searching problems in higher dimensional space,
a number of problems become interesting only in higher dimensions.
Let Ube some ordered set and let S c U for some d. An elementx € §
is ad —tuple (x,,x,,...,x, ,). The simplest searching problem is to specify
a point y € U” and to ask whether y € S; this is called an exact match
query and can in principle be solved by the methods that use a balanced
search tree since [can be totally ordered by lexicographic order. A
very general form of query is to specify a region R ¢ U” and to ask for
all points in R N S. General region queries can only be solved by ex-
haustive search of set S. Special and more tractable cases are obtained
by restricting the query region R to some subclass of regions. Restrict-
ing R to polygons gives us polygon searching, restricting it further to
rectangles with sides parallel to the axes gives us range searching, and
finally restricting the class of rectangles even further gives us partial
match retrieval. In one-dimensional space balanced trees solve all these
problems efficiently. In higher dimensions we will nced different data
structures for different types of queries: d-dimensional trees, range trees
and polygon trees. It seems to be very difficult to deal with insertions
and deletions to balance these structures after insertions and deletions in
many dimensions.

Multidunensional searching problems appear in numerous applica-
tions, most notably database systems. In these applications U is an
arbitrary ordered set, e.g. a set of names or a set of possible incomes.
Region queries arise in these applications in a natural way. E.g. in a
database containing information about persons, say name, income, and
number of children, we might ask for all persons with:number of chil-
dren=3, a partial match query; number of children = 3, 2000 < income <
3000, a range query; income = 2000+1000 * (number of children), a
polygon query.

Definition. Let T,,T,,T, be sets. A searching problem Q of type T,
T, T,isafunction Q: T, x 2" > T,.

A searching problem takes a point in 7, and a subset of T, and
produces an answer in 7. For example, in the member problem we have

T,=T, T,={true, false} and O(x, §) = ,,x € §” In the nearest neighbour

190

https://biblioteca-digitala.ro / https://unibuc.ro

problem in the planc wehave T, = 7,= R?, T,= Rand Q(x, S) = 8(x, y),
wherc vy € Sand 8(x, y) £ 8(x, z) forall z € S. Here & is some metric. In
the inside the convex hull problem we have T, = T,= R?, T,={truc,falsc}
and Q(x, 5) = ,,is x inside the convex hull of point set § ™.

A statistic data structure S for a searching problem supports only
query operation O, i.e. for every § ¢ T, one can build a static data
structure S such that function Q(x, S): T, — T, can be computed effi-
ciently. A semi-dynamic data structure D for a searching problem sup-
ports in addition operation Insert, i.e. we can not only query D but also
insert new points into D. A dynamic structure supports Insert and De-
lete. There exists a general method for tuming static data structures into
semi-dynamic data structures; this method is only applicable to a sub-
class of scarching problems, the decomposable searching problcms_.

Let U, 0 <i<d, be an ordered set and let U = UxU x...xU,
element x = (x,...,.x,)€ U'is also called point or record ord tuplc itis
customary to talk about points in geometric applications and about records
in databasc applications. Components x, are also called coordinates or
attributes. A region searching problem is specified by a set T'c2¥ of
rcgions in U. The problem is then to organize a static set § < U such
that queries of the form " list all elements in S " R " or " count the
number of points in § N R " can be answered efficiently for arbitrary
Re T". Since region searching problems are decomposable searching prob-
lems, we have dvnamic solutions for region searching problems once a
static solution is found.

We address four tvpes of region queries.

a) Orthogonal Range Queries : Here I is a set of hypercubes in U,
ie. T ={R:R=[l, h]x[], hx. xI,] where /. h € U, and
I <h}.

b) Partial Match Queries: Here I" is the set of degenerated hypercubes
where every side is either a single point or all of U,ie.
=R R=[, h)x[l,h}x X[l . ¢, l] where/ h € U and
either/ =h or!/ =—oand h = o for everyi }

If /.= h then the i — th coordinate is specified. otherwise it is
unspec1ﬁed.

-1 dl

191

https://biblioteca-digitala.ro / https://unibuc.ro

c) Exact Match Queries: Here I is the sct of singletons, 1.¢.
Iy, = {R R = {x} for some x € U}.

d) Polvgon Queries: Polygon quenes are only defined for {/ = R
We have

I = {R. R is a simple polygonal region in R*}.

There seems to be no single data structure doing well on all of them
and we thereforc mention three data structures: ¢ — dimensional trces,
polvgon trees, and range trees. d — dimensional trees and polvgon trees
use lincar space and solve partial match queries and polygon queries in
time ()(#®) where € depends on the type of the problem. Range trecs allow
us to solve orthogonal range queries in time O((logn)?) but they use non-
linear space O(n(logn)@'). In fact thev exhibit a tradeoff between speed
and space. In onc — dimensional space we could solve a large number of
problems in linear space and logarithmic time, in higher dimensions all
data structures mentioned above either use non — lin¢ar space or use
"rootic " time O(nf) for some e, 0 <g < 1.

We present d-dimensional trees that are a straightfonward, vet
powerful extcnsion of one-dimensional search trees. At every level of a
dd — tree we split the set according to one of the coordinates. Faimess
demands that we use the different coordinates with the same frequency;
this is most casily achieved if we go through the coordinates in cyvclic order.

Definition. Let Sc U x..x U, ,|S] = n. A dd-tree for S (starting
at coordinate 7) is defined as follows:

1) If n=d =1 then it consist of a single leaflabelled by the unique
clement x € S.

2)Ifd>1 or n>1 then it consists of a root labelled by some
clement d, € U and three subtrees 7. 7, and T, . Here 7' 1s a dd—tree
starting at coordinate (i +1)(mod d) for set S, = {x € S x={x,, .., x,)
andx <d} T isadd - tree starting at coordinate (i +1)(mod d) for set
S —{xcSx=(x,..x,)andx >d}and T is a (d-1)—dimensional
trce starting at coordinate i (mod d-1) forsetS = {(x. .., x . x .
X, ix=0,..x_,d,x,..,x)€e S}

The figure below shows a 2d — tree for set .S= {(1.1I), (1IH). (2.]),
(2.111), (3.1), (3.11)} starting at coordinate 0. Here U = U/, = {I, 2, 3}.
Arabic and roman numerals arc used to distinguish coordinates.

192

https://biblioteca-digitala.ro / https://unibuc.ro

>
3, 10) |

m,n) J l(l,III) J ﬁz, I) | |(2, 111 | E(s,)] U

[tis very helpful to visualize 2d — trecs as subdivisions of the planc.
The root node splits the plane by vertical line x; = 2 into three parts:

(1,111) l
o (2.11)

x, 11 © o (3,ID)
(1,11
@l ¢—o— Xl
3.0
X, =2

left halfplane, right halfplanc and the line itself. The left son of the root
then splits the left halfplane by horizontal line x, = 2, the right son splits
the right halfplanc by horizontal line x, = 1.

In many cases it is more convenient to represent two-dimensional
(2d) trees as binary trees that are dvnamic, adaptable data structurcs,
dividing up the geometric 2 - dimensional space in a manner convenient
for use in range scarching and other problems. The idea is to build binary
scarch trees with points in the nodes, using the y and x coordinates of the
points as kevs in a strictly alternating sequence. The same algorithm can
be used to insert points into 2d trees as in normal binary search trees. but
at the root we use the y coordinate (if the point to be inserted has a smaller
y coordinate than the point at the root, go left; otherwise go right), then at
the next level we use the x coordinate, then at the next level the y coordi-
nate, etc.. alternating until an external node is encountered.

193

https://biblioteca-digitala.ro / https://unibuc.ro

The significance of this technique is that it corresponds to dividing
up the plane in a simple way: all the points below the point at the root go
in the left subtree, all those above in the right subtree, etc. The figure
below show how the plane is subdivided corresponding to the construc-
tion of the tree in the next figure.

T} P
H F
_O—
C
0 A
y

First a horizontal line is drawn at the y — coordinate of 4, the first
node inserted. Then, since B is below 4, it goes to the left subtree of A4;
the halfplane below 4 is divided with a vertical line at the x — coordinate
of B. Then, since C is below A, we go left at the root, and since it is to the
left of B we go left at B, and divide the portion of the plane below 4 and
to the left of B with a horizontal line at the y — coordinate of C. The
insertion of D is similar, but it goes to the right of 4, since it is above it, etc.

Everv external node of the tree corresponds to some rectangle o, f3,
Y, ..., A, p in the plane and each region corresponds to an external node
in the tree; each point lies on a horizontal or vertical line segment that
defines the division made in the tree at that point.

194

https://biblioteca-digitala.ro / https://unibuc.ro

The algorithm to construct 2d — trees is a straightforward modifi-
cation of standard binary tree search to switch between x and y coordi-
nates at each level.

The three sons of a node v in a dd-tree do not all have the same
quality. The root of T_ (the son via the = —pointer) represents a set of one
smaller dimension. The roots of T_and 7, (the sons via the < — pointer
and the > — pointer) represent sets of the same dimension but generally
smaller size. Thus every edge of a dd—tree reduces the complexity of the
set represented: cither in dimension or in size. In 1d— trees, 1.e. ordinary
search trees, onlyv reductions in size are required.

It is clear how to perform exact match queries in dd—trees. Start at
the root, compare the search key with the value stored in the node and
follow the correct pointer. Running time is proportional to the height of
the tree. Our first task is therefore to derive bounds on the height of
dd—trees.

Definition : a) Let T be a dd- tree and let v be a node of 7. Then
S(v) is the set of leaves in the subtree with root v, d(v) is the depth of
node v, and sd(v), the number of < — pointers and > — pointers on the
path _from the root to v, is the strong depth of v. Node x is a proper son of
node v if it is a son via a < — or > — pointer.

b) A dd-tree is ideal if |S(x)] < |S(v)|/2 for every node v and all
proper sons x of v.

Ideal dd—trees are a generalization of perfectly balanced 1d-trees.

Lemma 1. Let T be an ideal dd—tree for set S, |S| = n. Then:

a) d(v) < d + logn for every node v of T;

b) sd(v) < logn for every node v of T.

Proof: a) follows from b) and the fact that at most d = — pointers
can be on the path to any node v. Part b) 1s immediate from the definition
of an ideal tree.

Theorem 1. Let Sc U=U Xx..xU,_,|S=n.

a) An exact match query in an ideal dd—tree for S takes time
O(d + logn).

b) Anideal dd—tree for S can be constructed in time O(n(d + logn)).

Proof : a) is immediate from Lemma 1a).

b) We descnibe a procedure which constructs ideal dd — trees in
time O(n(d + logn)). Let S, = {x; (x,,..., x,) € S} be the multiset of

195

https://biblioteca-digitala.ro / https://unibuc.ro

0 — th coordinatcs of . We use the linear time median algorithm to find
the median d, of . d, will be the label of the root. Then clearly |S | < |S)/2
and also |S,| < |SV2 where S_ = {x e S;x <d }and S = {xe S:x,>d,}.
We use the same algorithm recursively to construct dd — trees for S and
S (starting at coordinate }) and a (d—1)—dimensional trees for S_. This
algorithm will clearly construct an ideal dd — trec T for S. The bound on
the running time can be seen as follows. In every node v of 7 we spend
O(|S(v)|) steps to compute the median of a set of size |S(v)|. Furthermore,
S(v)N S(w) = D if v and w are nodes of the same depth and hence

(2):|S i— N for every k, 0 <k < d + logn. Thus the running time is
d{v)=k

bounded by
z O(IS(")D =0 2 ZlS(V)l d + logn)) r
vnodeol T 0<k<d+logn d(v)=k

Insertions into dd-trees are a non-trivial problem. A first idea is to
usc an analogue to the naive inscrtion algorithm into one-dimensional
trecs. If x 1s to be inserted into trec T, search for x in T until a leaf is
reached and replace that leaf by a small subtrce with two leaves. Of course,
the tree will not be ideal after the insertion in general. We might define
weight — balanced dd — trecs to remedy the situation, i.e. we choose some
parameter o, say o0 = 1/4, and require that |S(x)} < (1-0)}S(v)| for every
node v and all proper sons x of v. This is a generalization of BB[o] trecs.
Two problems arise, that illustrate a major difference between one-
dimensional and multi-dimensional searching. The first problem is that
although theorem 1 is true for weight-balanced dd — trecs, query time in
near-idcal dd — trees may have a different order than query time in ideal
trces. More precisely, partial match in ideal 2d — trees has running time
O(/) but it can be shown that it has running time O(#°"*) in weight-
balanced dd — trees for o= 1/4. Thus weight balanced dd — trees are only
useful for exact match queries. A second problem is that weight-balanced
dd — trees are hard to rebalance. Rotations are of no use since splitting is
done with respect to different coordinates on different levels. Thus it is
impossible to change the depth of a node as rotations do.

196

https://biblioteca-digitala.ro / https://unibuc.ro

ASSIGNMENTS

LIST A

Al. Devise a way to represent circular lists inside a computer in
such a way that the list can be traversed efficiently in both directions, vet
only one link field is used per node.

Hint: Let the link field of node x, contain LOC(x,,,) - LOC(x).
Two adjacent list heads are included in the circular list, to help get things
started properly.

Design algorithms of insertion and deletion such that the list can be
used as either a stack or a queue.

Ref: D. E. Knuth, The art of computer programming, vol. 1, (Read-
ing, Massachusetts, 1969). ex. 18, p. 277.

A2. Find an optimum binary search tree for:

2 2 3 1 1
a)n=4;qo=ﬁ,q TR TR TR RETE
2 1 3 2
P, = F,PZ = Fapn = ;',P4 = F
3 1 1 2 2 3
b) n= 4%--1'; v Pt e e TS
_: v 2
T R RART)
1 2 3 1 2 1
cyn= 4%_ﬁq BT R IR AL S e il Zi et Rt
3 2 2

Py= 5Py = P =

Ref: D. E. Knuth, The art of computer programming (Addison -
Wesley, 1973), vol. 3, pp. 434 - 435.

197

https://biblioteca-digitala.ro / https://unibuc.ro

A3. Design an algorithm to add two sparse matrices: given matri-
ces A and B, 4 will retain the sum:

a«a+b VI<i<m 1<j<n
if i if

The two input matrices should be represented as sparse matrices
(circularly linked lists for each row and column; there are special list
head nodes, for everv row and column).

Ref: D. E. Knuth, The art of computer programming (Reading,
Massachusetts, 1969), vol. 1, p. 300.

A4. Design an efficient algorithm which replace thc NV quantities
(R, ,...R)by (R o) >3 R P(N)), respectively, given the values of R, ,.., R,
and the permutation p(1) ... p(N) of {1,....N}. Try to avoid using excess
mecmory space. (This problem arises if we “vish to rcarrange records in
memory after an address table sort, without requiring room for storing
2N records).

Propose algorithms in both cases where p(i) is a function of i which
is tabulated and/or 1s to be computed.

What is expression of p(i) in the case of matrix transposition (sup-
pose that the matrix is M x N) ?

Ref: D. E. Knuth, The art of computer programming (Addison-
Weslev, 1973), vol. 3, ex. 10, p. 80; answer p. 595.

A5. Let P, denote the number of possible outcomes when »
elements are sorted with ties allowed, so that (P, P, P, P,, P, P,,.) =
=(1, 1,3, 13,75,541, ..).

For example, when equality between keys is allowed, there are 13
possible outcomes when sorting three elements:

K =K=K.K=K<K,K=K<K,
K,=K,<K,K <K,=K, K, <K, =K,
K, <K =K,K <K,<K,K <K, <K,
K, <K <K,K,<K,<K,K,<K <K,
and K, <K, <K,.

198

https://biblioteca-digitala.ro / https://unibuc.ro

Prove that the generating function

oo P zn
. 1
P(z) = Z ! 1s equal to e

n=0 —éf

n
Hint: Show that 7, = 2 o ek when n > 0.
>0\ /
Ref: D. E. Knuth, The art of computer programming (Addison -
Wesley, 1973), vol. 3, ex. 3, p. 195; answer p. 627.

A6. Given a file containing N 30 - bit binary words x, x,, ..., x,,
how would you find the number of all pairs (x,, x) such that x, = x_except
in at most two bit positions? Use an algorithm of s complexity O(NlogN).

Hint: Create a file with 31 N entries, forming 31 entries from each
original word x, by including x, and the 30 words that differ from x, in one
position. Sort this extended file and look for duplicates.

Find a formula counting the looking for number of pairs as a
function of the number of duplicates in the sorted file and propose an
algorithm to do this (after the sorting of the file).

Ref: D. Knuth, The art of computer programming (Addison -
Weslev, 1973), vol. 3, ex. 20, p. 9; answer p. 576.

A7.Given any permutation p=a,a, ...a, of {1, 2, ..., n}, let xch(p)
be the minimum number of exchanges which will sort p into increasing
order. Express xch(p) in terms of ,,simpler” charactenistics of p, namely
prove that

xch(p) =n — c(p),
where c(p) is the number of cvcles of p.

Propose an algorithm that sort p by using this minimum number of

element transpositions.

Ref: D. Knuth, The art of computer programming (Addison -
Wesley, 1973), vol 3, ex. 2, p. 134; answer p. 605.

A8. Suppose that, instead of sorting an entire file, we only want to
determine the m-th smallest of a given set of n elements. Show that
,,quicksort” can be adapted to this purpose, avoiding many of the com-
putations required to do a complete sort.

199

https://biblioteca-digitala.ro / https://unibuc.ro

Ref: D. Knuth, The art of computer programming (Addison -
Wesley, 1973), vol. 3, ex. 31, p. 136; answer p. 610.
See also C.A.R. Hoare, Comm. ACM 4 (1961), pp. 321 - 322.

-

A9 . a) Prove that every positive integer » has a unique representa-
tion as a sum of Fibonacci numbers n=F, +F, +..+1I, where r > |.
aza, +2forl<j<r-1l,anda 22

b) Prove that in the Fibonacci trec of order £, the path from the root
to nodc @ has length k +1-r -a .

Ref: D. E. Knuth, The art of computer programming. vol. |: ex
34, p. 85; answer p. 493.

D. E. Knuth, The art of computer programming. vol. 3. ex. 17. p.
421; answer p. 669.

A10. Binomial heaps.

Ref D. C. Kozen, The design and analysis of algorithms, Springer
- Verlag, New York, 1992.

ASSIGNMENTS

LIST B

B1. Splay trees.

Ref.: D. C. Kozen. The design and analysis of algorithms, Springer-
Verlag, New York, 1992, pp. 58- 64.

B2. Random search trees.

Ref: D. C. Kozen, The design and analysis of algorithms, Springer
- Verlag, New York, 1992, pp. 65 - 70.

B3. The Huffman optimum tree in non-binary case + exercisc 7.1,
p. 145 of the reference.

Ref: S. Even, Algorithmic combinatorics. Macmillan. New York
and London, 1973, pp. 127 - 140.

200

https://biblioteca-digitala.ro / https://unibuc.ro

B4. Show that we can find both the maximum and the minimum of

[- In]

a sct of » elements, using at most 1 Y | ~ 2 comparisons, and the latter

number cannot be lowered.
(|_A.| denotes the smallest integer greater than or equal to x).

Ref.: D. E. Knuth, The art of computer programming (Addison -
Wesley, 1973), vol. 3., ex 16, p. 220: answer p. 167; see also . Pohl.
Comm. ACM 13(1972). 462 - 464,

B3. Red - black trees + cxercises 14.1 - 1 to 14.1 - 3 (propertics,
rotations and insertion only).

Ref - T. Cormen. C. Leiscrson. R. Rivest, Introdhuction to algo-

rithms, MIT Press/ Mc Graw Hill, 1990, pp. 263 - 272.

B6. Determine the average internal path length of a binary tree with
n nodes, assuming that each of the

1 (2n
n+—l[n]
trees 1s equally probable. Find the asvmptotic valuc of this quantity.
Ref: D. E. Knuth, The art of computer programming, vol. 1 (Read-
ing. Massachusctts, 1969). ex. 3, p. 404; answer p. 590.

For the gencrating function of the number of binarv trees with »
nodes see pp. 388 - 389.

B7. Algorithm PATRICIA (Practical Algorithm To Retrieve Infor-
mation Coded In Alphanumeric) + ex. 7, p. 238 of the first reference.

Ref . 1. R. Sedgewick, Algorithms, 2™ edition, Addison - Wesley,
1988, pp. 253 - 257.

2. D. E. Knuth, The art of computer programming (Addison -
Weslev, 1973), vol. 3. pp. 490 - 493.

B8. Algonthm F (Fibonaccian search) + ex. 14, p. 420. answer
p. 669.

201

https://biblioteca-digitala.ro / https://unibuc.ro

Ref: D. E. Knuth, The art of computer programming (Addison -
Weslev, 1973), vol. 3, pp. 414 - 415.

B9. Find a simple formula for a , the number of permutations on »
elements that can be obtained with a stack like that in ex. 2 of the refer-
ence. Show that this problem is equivalent to many other combinatorial
problems, such as the enumeration of binary trees, the number of ways to
insert parentheses into a product of factors, and the number of ways to
divide a polyvgon into triangles by non-intersecting diagonals (Euler).

Ref.. D. E. Knuth, The art of computer programming, vol. | (Read-
ing, Massachusetts, 1969), ex. 4, p. 239, answer p. 331.
See also pp. 388 - 389 for the number of binary trees with » nodes.

B10. Fibonaccti heaps and their applications to the implementation
of Dyjkstra’s sigle-source shortest-path algorithm and of Prim’s algorithm
for minimum spanning trees.

Ref.. D. C. Kozen, The design and analysis of algorithms, Springer
- Verlag, New York, 1992, pp. 25 - 26, 44 - 47,222, 250.

https://biblioteca-digitala.ro / https://unibuc.ro

Test 1

Answer four questions: 1. 2, (3A or 2B), (4A or 4B).

1. Design an algorithm which takes a circular list such as in Fig. 1
and reverses the direction of all the arrows. PTR

LINK l

2. A tree is said to be k-ary if every internal vertex has exactly & sons.
Find the number of leaves of a k-ary tree with » internal verti-
ces. Justifv your answer.

Figure 1

3A. Design an algorithm for a binary tree traversal in symmetric
order using an auxiliary stack 4. T'is a pointer to the root of the

i

tree and all vertices of the binary tree have fields: LLINK, RLINK

and CONTENT.

3B. Design an algorithm for tree search and insertion for a given key
K. ROOT points to the root of the tree (ROOT # A) and each
node NODE(P) contains at least the following fields: KEY (P),
LLINK(P) and RLINK(P).

4A. Apply Huffman’s algorithm to get an optimum prefix binary code
for weights: 1,1,2,2, 2,2, 3,4,5,6.

4B. Find all optimum binary search trees forn=4,49,=3,p, =0, q,
=2,p,=3,9,=1,p,=4,9,=1,p,=2,q9,= 1
Note: Each problem is worth 2.5 points.

203

https://biblioteca-digitala.ro / https://unibuc.ro

Test 2

Answer four questions: 1, 2, (34 or 3B), (44 or 4B).
1. Find the cyclomatic number (the number of independent cycles)

for the graph in Fig. 1.

Fig 1

2. Illustrate the binary decision tree associated to the binary search
algorithm of a given key K in a tablc of records R, ..., R,. whose keys are
in increasing order K, <K, < ... <K ..

3A. Design an algorithm to add two polynomials P, such that

« P+ Qand P, Q are represented as circular simply linked lists having a
list head, in the decreasing lexicographic order of their monomials.

3B. If S(n) = ™in h(T), where T ranges over all decision trees for
sorting » elements (or the minimum worst case complexity of any sorting
algorithm), prove that

. S(n)
lim =1
ns=nlog,n
4A. Consider a linear simply linked list having a list head HEAD

like that in Fig. 2.

204

https://biblioteca-digitala.ro / https://unibuc.ro

Design an insertion and a delction algorithm such that list becomes
a queue. Try to avoid an extensive scarch into the list.

LINK

Fig. 2

Caution: The list may consist only of list head.

4B. Consider two linear simply linked lists having list heads HEAD
and HEAD?2, respectively. Design an algorithm to concatenate these two
lists into a single list having list head HEAD1.

Caution: The same as for the problem 44.

NOTE: Each problem is worth 2.5 points.

https://biblioteca-digitala.ro / https://unibuc.ro

BIBLIOGRAPHY

1.R. K. AHUJA, T.L! VMAGNANTI, J. B. ORLIN, Network flows: Theory, algorithms
and applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

2. T. CORMEN, C. LEISERSON, R. RIVEST, Introduction to algorithms, MIT Press
/ Mc Graw Hill, 1990.

3. S. EVEN, Algorithmic combinatorics, Macmillan, New York and London, 1973.
4. D. E. KNUTH, The art of computer programming: vol. 1, Reading, Massachusetts,

1969; vol. 3, Addison-Wesley, 1973. r
5. D. C. KOZEN, The design and analysis of algorithms, Springer - Verlag, New York,
1992,

6. K. MEHLHORN, Data structures and algorithms: vol. 1: Sorting and searching;
vol. 3: Multi -dimensional searching and computational geometry, Springer -
Verlag, Berlin - Heidelberg - New York - Tokyo, 1984.

7. R. SEDGEWICK, Algorithms, 2nd edition, Addison - Wesley, 1988.

8. R. E. TARJAN, Data structures and network algorithms, SIAM, Philadelphia, Penn-
sylvania, 1983.

X
% CENTRAL
UNIVERSITAK

6,
\\Q@"g 4
el URRD

https://biblioteca-digitala.ro / https://unibuc.ro

s ®w eanb
Y,

“r il

Tiparul s-a executat sub cda 235/1996 la
Tipografia Editurii Universititii din Bucuresti

https://biblioteca-digitala.ro / https://unibuc.ro

7 =\

This book discusses some efficient techniques for
data organization. It tocuses on four main topics
structured data types (queues and stacks, arrays.
traversing binary trees. Huffman trees. multilinked
structures, dynamic storage allocation), sorting
techniques (sorting by counting, insertion. selection,
partitioning, merging, distribution, and Tower bounds),
searching techniques (self-organizing linear lists,
serching ordered sets: binary search and search trees,
balanced binary trees, weighted trees. weight-balanced
trees. hashing with chaining and opening addressing.
perfect hashing, d-heaps. Fibonacci heaps, splay
trees, randaom search trees) and an introduction to
multidimensional data structures.

The clear yet rigorous treatment of the topics is
illustrated by many examples and algorithms and the
text includes many figures. N

The material is based on a.one-semester graduate

- course in data structures taught at the University of
Bucharest. Romania and at the University of Auckland.
New Zealand. Data Structures is suitable as a text
for a gaduate level course. it is aimed primarily at
computer science students.

ff

ISBN: 973 - 575-147~X Lei 18000

https://biblioteca-digitala.ro / https://unibuc.ro

	!00000001
	!00000002
	!00000002_i0000
	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0045_i0001
	0045_i0002
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0202_i0000
	0203

