
~ ,igzfto j
r.

D
STRUC ES

ETHTl"R\ C\'T\'ERSlT.-\'fII DI\! BlTl 'REŞTI

DiBLIO.fECA CENTRALA
UNIVERSITARA
Bucureşti

7ic29Jfto Cota -"-'·-·· -...... ..

. _(! M5.ili.
Inventa1 -.......... - -., ,

https://biblioteca-digitala.ro / https://unibuc.ro

IOAN TOMESCU

DATA STRUCTURES

EDITURA UNIVERSITĂTII DIN BUCURESTI
' ' -1997-

https://biblioteca-digitala.ro / https://unibuc.ro

Referenţi ştiinţifici: Conf. dr. Octavian BÂSCĂ
Conf. dr. Horia Ioan GEORGESCU

B.C.U. Bucureşti

111 niu1111
---] © Editura Universităţii din Bucureşti

Şos. Panduri, 90-921 Bucure~ti - 76235; Telefon: 410.23.84 _

Redactor : Ion MIHAI
Tehnoredactare computerizată: Constanţa TITU

ISBN : 973 - 575 - 147 - X

https://biblioteca-digitala.ro / https://unibuc.ro

CONTE~TS

Chapter 1. Structured data types . .. 5
§ I. Linear lists. Stacks and queues 5
§ 2, Sequential allocation 6
§ J. Link ed allocation 11
§ 4. Circular I ists 13
§ 5 Douhly linkcd lists 16
§ 6. Graphs and trees 20
§ 7. Binary trees ... 27
§ 8. Huffma.n's algorithm 34
§ 9. Marking algorithms for nonavailable memory .. 40
§ 10. Multilinked strncturcs 44
§ 11. Dynarnic storagc allocation SO
Chapter 2. Sorting techniques 59
§ I. Sorting by counting .. 61
§ 2. Sorting by insertion 63
§ 3. Sorting by cxchanging 64
§ 4. Sorting by selection 69
§ 5. Sorting by merging 74
§ 6. Optimum s011ing 77
§ 7. Sorting by distribution 81
§ 8. The linear median algorithm ... 88
Chapter 3. Searching techniques 93
§ I . Sequential searching 94
§ 2. Self-organizing linear lists 96
§ 3. Scarching by comparison of keys 10 I
§ 4. Binary trec searching I 08
§ 5. Weighted trees 113
§ 6. Balanccd trecs 118
§ 7. Weight - balanccd trccs 130
§ 8. llashing 136

Ş 9. llash fw1ctions 137
Ş 1 O. The division mcthod 139
§ 11. Thc multiplication mcthod . 139

3

https://biblioteca-digitala.ro / https://unibuc.ro

§ 12. Universal bashing 141
§ 13. Hashing with chaini11g 143
§ 14. Ilashing with open addressing 148
§ 15. d-Heaps 158
§ 16. Fi bon acei beaps I 64
§ 17. Splay trees I 76
§ 18. Random search trees ... ,.................. 185
§ 19. Multidimensional data structures I 90
Assignments 197
List A ... 197
List B .. 200
Test I 203
Test 2 .. 204
Bibliography 206

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 1. Structured data types

§ 1 . Linear lists. Stacks and Queues

A linear list is a set of n ~ O nodes X [1], X [2] , ... , X [n] whose
structw-al properties essentially involve only the linear (one-dimensional)
relative positions of the nodes:

if n > O, .\îl] is the first node;
when l < k < n, the k- th node X [k] is preceded by X [k- 1] and followed
by X[k+l];

ĂÎ n] is the last node.
The operations we might want to perform on linear lists include,

for example, the following:
i) Gain acces to the k-th node ofthe list to examine and/or change

the contents of its fie\ds.
ii) Insert a new node just before the k- th node.
iii) Delete the k- th node.
iv) Combine two or more lists into a single list.
v) Split a linear list into two or more lists.
vi) Make a copy of a linear list.
vii) Determine thc numbcr of nodes in a !ist.
viii) Sort the nodes of the !ist into asccnding order based on cer­

tain fields of the nodes.
ix) Search the list for the occurrence of a node with a particular

valuc in somc field.
There are many ways to reprcscnt linear lists depending on the

class of operations which arc to be done most ftequently. lt appears to
be impossible to design a simple representation method for linear lists
in which all of thcse opcrations arc efficient.

5

https://biblioteca-digitala.ro / https://unibuc.ro

Linear lists in which insc1tions, deletions, am) accesscs to \'abes
occur almost always at the first or the last node arc frcquently cncmm­
tercd, and wc give them special names:

• A stack is a linear list for which all inscrtions and deletions (and
usually all accesses) are made atone end of the !ist. Stacks hilve
been called push - down lists, last-in-first out (LIFO) lists, ...

• A qucue is a linear !ist for which al I insertions are macle at one end
of the !ist; all deletions are made at the other end. Qucues havc
been called also circular stores or first-in-first-out (FIFO) lists.

Stacks most frequently occur m connection with rec ursi, c
algorithms.

top --- front „

bottom ___ .,_ rear--__,., ..

~

Wc write A <= x (when A is a stack) to mean that thc valuc x îs
inserted on top of stack A, or (when A is a queue) to mean that x is
inscrted at thc rear of the queuc.

The notation x <= A is used to mcan that the variable x is set cqual
to the value at the top of stack A or at the front of queue A, and this valuc
is deleted from A.

Notation x <= A is meaningless when A is cmpty.

§ 2 Sequential allocation

The simplest way to kcep a linear list inside a computer îs Io pul
the]ist items in sequential locations, one node after the other:

LOC(X[i + I]) = LOC(X[i]) + c
whcrc c is thc number of words per node (usually c = I).

6

https://biblioteca-digitala.ro / https://unibuc.ro

W e wi 11 assumc that adj accnt groups of c words forma single node.
ln general LOC(X[j]) = L., + cj, where L

0
is a constant, callcd the

base address.
Sequential allocation is convenient for dealing with a stack.
We have a variable T call cd the stack pointer. When the stack is

empty, we let T = O.
·X<= Y (insert into stack):

T f-- T + 1; if T > M then OVERFLOW;
X[T]f--Y.

· Y <= X (delete from stack):
if T= O, then UNDERFLOW;
Yf--X[T]; Tf-- T-1.

(We assumed that X[l] , ... , X[M] is the total amount of space
allowed for the list).

OVERFLOW means that the storagc capacity has heen
exceeded, and the program terminates.

For a queue wc use two pointers F and R (for the front and rear of
the queue). If F = R then the queue is empty.

We can set aside M nodes X [1] , ... , X [M] arranged implicitly in
a circle with X[I] following X [M]. (R = F = M initially).

Hence we usc a queue as a circular queuc.

{

I, if queue is ful!
Let c = O, if queue is empty j-\~\ X[l / X[q_

2, otherwise -· /~7,-r----,__ ·.

•X<= Y (insert into queue):
1. if c = 1 then OVERFLOW;

// '. _j_\/ i ',
' / , /,

, / ~,X~1
i .' ~

' ~
;-i/11~'' . I, -1./

\ ~·· ',,, ~!!!V,

', t--~87,f ;\;'Y
Y~J:,'.2'/y· .

X[R]. .. -

7

https://biblioteca-digitala.ro / https://unibuc.ro

if R = M then R f- 1, elsc R f- R + 1.
2. X[R] f- Y; if R = Fthen c f-- 1, else c f-- 2.

• Y (= X (delete from queue):
1. if c = O then UNDERFLOW;

if F= Mthen F f- 1, clse F f- F + 1.
2. Y f--- X [F]; if F = R then c f- O, else c f- 2.

List 1 A vai labie space List 2

ţ
Bottom Top Top Bottom

When there are just two variable size list, they can coexist to­
gether if we let the lists grow toward each other: List l expands to the
right and List 2 to the lefi.

OVERFLOW will occur when the total size of both lists exhausts
all memory space.

But there is no way to stare three or more variable - size sequen­
tial lists in memory so that (a) OVERFLOW will occur only when the
total size of all lists exceeds the total space, and (b) each !ist has a fix ed
location for its „bottom" element.

Suppose that we have n stacks; the insertion and deletion algo­
rithms above become the following ifBASE[i] and TOP[i] are link vari­
ables for the i-th stack:

i-th stack

ţ ţ

BASE[i] TOP[i]

• Insertion: TOP[i] f- TOP [i] + c;
if TOP [i] > BASE [i+ l], then OVERFLOW; otherwisc set

NODE [TOP[i]] f- Y.

8

https://biblioteca-digitala.ro / https://unibuc.ro

• Deletion: if TOP [i] "7 BASE [i], then UNDERFLOW; other­
wise set Y ~ NODE [TOP [i]], TOP [i] ~ TOP fi] - c.

These stacks arc all to shan: thc common memory area consisting
of all locations L with L

0
S L < /,,

(L~ - L
0

is a multiple of c).
We wight start out with all stacks empty, and BASE [i] = TOP [i]

= L
0

- c, for all i.
We alsa set BASE [n +I]= L~ -c.
Whenever a particular stack, except stack n, gets more items in it

than it ever had before, OVERFLOW will occur.
When stack i overflows, there are three possibilities:
a) We find the smallest k for which

i < k ~ n and TOP [k] < BASE [k + ll,
if any such k exist.

Set CONTENTS (L + c) ~ CONTENTS (L) for
TOP [kl+ c > L ~ BASE [i + 1] + c (this should be dane for decreasing
values of L to avoid losing information).

Set BASE Ul ~ BASE Ul + c
TOPU]~ TOPU]+ c, for i <j 'S. k.

b) No k can be found as în a), but we find thc largest k for which
I$. k <j and TOP [kl< BASE [k + l].

Set CONTENTS (L - c) ~ CONTENTS (L),
for BASE [k + l l + c 'S. L < TOP [i] + c
(for increasing values of L)

Set BASE U] ~· BASE Ul - c, TOP Ul ~ TOP Ul - c, for
k <J 'S. i.

c)WehaveTOP[kl=BASE[k+ ll forallk:t-i.Wecannotfind
space for the new stack entry, and we must give up.

By imagining a sequcnce of m insertion operations al' a
2

, ••• , am
where each a; is an integer between 1 and n representing an insertion on
top of stack a,, wc can regard each of the nm possible specifications
a 1 , a,., as equally likcly.

We can ask for the average number of times it is necessary to
move a word from one location to another during the repacking opera­
tions as the entire table is built.

9

https://biblioteca-digitala.ro / https://unibuc.ro

Starting with all available space given to thc n-th stack, wc find
that the average number of move operations required is

(hence is essentially proportional to the square ofthe number of itcms in
the tablcs) by counting the number of invcrsions in all n"' such strings.

• Algorithm R [Relocate sequcntial tablcs].
For I $.J $. n the information specified by BASE [/] and TOP[/]

in accord with the given conventions is moved to new positions speci­
fied by NEWBASE [/] and the valucs of BASE [/] and TOP [/] are
suitably adjusted.

1 (Ini tializc) Set j f-- 1 (Note that stack 1 never needs to be moved,
so for efficiency the programmer should put the longest stack first i f he
knows which one will be largest).

2 (Find start of shift). Increasej in steps of 1 until finding either a)
NEWBASE [j] < BASE [j]: go to 3; orb) NEWBASE [/] > BASE [j] : go
to 4; or c)j > n : the algorithm terminates.

3 (Shift down) Set 6 f-- BASE U] - NEWBASE U]- Set
CONTENTS (L - 6) f-- CONTENTS (L) for L = BASE [j] + c, BASE
[J] + c + 1 , ... , TOP [J] + c - 1. Set BASE [J] f-- NEWBASE [,1, TOP[/] f-­

TOP [i]-6.
Go to 2.
4 (Find top of shift). Find the smallest k ~j for which NEWBASE

[k + 1] $. BASE [k + 1]. (Note that NEWBASE [n+ 1] = BASE [n + 1],
so that such a k will always exist).

Then do step 5 fort= k, k- 1 , ... ,}; finally set} f-- k and go to 2.
5 (shift up) Set

6 f-- NEWBASE [t] - BASE [t]
Set

CONTENTS (L + o) f-- CONTENTS (L) for L = TOP [t] +
+ c - 1, TOP [t] + c - 2 , ... , BASE [!] + C.

10

Set BASE [t] f-- NEWBASE [t]
TOP [t] f-- TOP [t] + o.

Notation. LetJ: g: N ➔ R
• Wewritej(n) = O(g(n)) ifthcrc exist C> O and n

0
E N such that

lf(n)I < C
i g(n)

https://biblioteca-digitala.ro / https://unibuc.ro

foralln>n
0

. /(11)
• J(n) = o(g(n)) if hm-·--= O.

C . n➔~ g(n)

. f(n)
• fin) - g(n) (asimptotically equal) if hm -(-) = 1.

n➔~ g n

§ 3. Linked Allocation

Each node contai ns a link to the next node of the 1 ist:

Sequential allocation: Linked allocation:
Addrcss Contcnts Addrcss Contcnts

L +c: Item 1 A: ltem 1
V

L +2c: Item2 B: Item2
V

L + 3c: ltem 3 C: Itcm3
o

L + 4c: ltem4 D: ltem4
o

L + Se: ltemS E: ltern 5
o

A is the null link.

B
C
D
E
A

Links are often shown sirnply by arrows and the liked table above
might be shown as follows:

II ere FJRST is a link variable pointing to the first node of the !ist.
Comparisons bctween sequential and linked allocation:
• linked allocation takcs up additional memo!)' space for the links.
• it is casy to deletc an item from within a linked !ist. For sequential

allocation such a deletion implies moving a large part of the !ist.
• it is easy to insert an item into a !ist whcn thc linked scheme is

being used.
By compa1ison, this opcration would be extremely time - con­

suming in a long sequcntial table.

11

https://biblioteca-digitala.ro / https://unibuc.ro

• references to random parts of the list arc much faster in the
sequential case.

• the linked scheme makes it casier to join two lists together or to
break one apart.

Wc shall assume that a node has one word and that it is broken
into two fields

INFO and LINK: I INFO I LINK I
The usc of linked allocation implies the existence of a list of

available space: A V AIL list (AV AIL stack).
,,X<= AVAIL": if AVAIL = A, then OVERFLOW;
otherwise X f--- AVAIL, AVAIL f-- LINK (A VAIL).
,,A V AIL <= X" : LINK (X) f--- A V AIL, A V AIL f-- X.

T -----+

A linked stack

1---H

1+1

Insertion:

' '

A

Insertion:

P <= A V AIL, INFO (P) f-- Y,
LINK(P) f-- T, T f--- P.

Deletion:

If T= A, then UNDERFLOW;

otherwise set P f--- T, T f--- LINK(P),

Y f--- INFO(P), A V AIL <= P.

I+!
A linked queue

I +I~ __.___.I+~/
o=t1

P <= A V AIL, INFO(P) f-- Y, LINK(P) f-- A; if F = A then R f--- F f--- P,
else LINK (R) f--- P, R f--- P.

12
https://biblioteca-digitala.ro / https://unibuc.ro

(By definition an empty queue is represented by F = A)

F rFfrL 1+1
jJ

AVAIL

Deletion

lf F= A, then UNDERFLOW; otherwise set P f-F, F f- LINK(P),
Y f- INFO(P), A V AIL <== P.

§ 4. Circular lists

~1+1 1+1 ;J_J+-PTR

A circular list has the property that its last node links back to the
first instead to be A •

a) Insert Y at lefi
P <== A V AIL, INFO(P) f- Y, if PTR = A, then
PTR f- LINK(P) f- P; otherwise LINK(P) f- LINK(PTR),

LINK(PTR) f- P.

b) Insert Y at right
Insert Yat lcft, then PTR f- P.

c) Set T to lefi node and delele
lf PTR = A, then UNDERFLOW; otherwise P f- LINK (PTR),

Y f- INFO(P), LINK(PTR) f- LINK(P), if PTR = P, then PTR f- A,
AVAIL <== P.

(a)+ (c) = a stack
(b) + (c) = a queue

It is convenient to „erase" a list, i.e., to put an entire circular list anto
thc A V AIL stack at once:

lf PTR ~ A, then A V AIL H LINK(PTR).

13

https://biblioteca-digitala.ro / https://unibuc.ro

(Thc „H " opcration denotcs interchange, i.e., P f- AVAIL.
A V AIL f- LINK(PTR), LINK (PTR) f--- P).

lf PTR
1

and PTR
2

point to disjoint circular lists L
1

and l
2

, respcc-
tivcly, wc can insert thc cntire I ist L

2
at thc right of L

1
:

lf PTR
2

-:ţ. A then
(if PTR

1
-:ţ. A, then LINK (PTR

1
) H LINK (PTR

2
)

set PTR
1
f- PTR

2
, PTR

2
f- A).

We can put a special, recognizable node into each circular list, as
a convenient stopping place.

This special node is called thc list head.

List head

c1+1
On this way the circular !ist will then never be empty. The refer­

ences to such lists are usually made via the I ist head, which is oftcn in a
fixed memory location.

We will consider thc two operations of addition and multiplica­
tion of polynomials in the variables x, y and z.

Let us suppose that a polynomial is represented as a I ist in which
cach node stands for one nonzero term, and has the two-word fom1

COEF

±ABC I LINK

where COEF is the coefficicnt ofthe term x4y8zc.
The nodes of the list always appear in decreasing order of thc

ABC field and the I ist head links to thc largcst value of ABC (thc ordcr is

thc lexicographic order).
For exemple, thc polynomial 3x3y 4

- 6xysz + 5y7x2 would bc rcp­

rescntcd thus:

r-- __ 3- _!

;,,.)40 I ,-

o,

14

https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm A (Addition of polynomials)
This algorithm adds polynomial P to polynomial Q, assuming

that P and Q are pointer variables pointing to polynomials having the
fonn above.

The !ist P will be unchangcd, thc !ist Q will retain the sum. Pointer
variables P and Q retum to their starting points at the conclusion of this
algorithm; auxiliary pointer variables QI aod Q2 are alsa used. The
pointer variable Qt follows thc pointer Q around the !ist.

1. [Initialize]. Set P ~ LINK(P), Ql ~ Q, Q ~ LINK (Q) (Now
both P and Q point to the leading tcrm of the polynomial. Thc variable
Ql will be „onc step behind" Q, in the sense that Q = LINK(Ql)).

2. [ABC(P) : ABC(Q)]. If ABC(P) < ABC(Q), set Ql f-· Q and Q
~ LINK(Q) and repeat this stcp. lfABC (P) = ABC(Q), go to step 3. lf
ABC(P) > ABC(Q), go to step 5.

3. [Add coefficients] (We have found terrns with equal exponents)
lf ABC(P) < O, the algorithm terminates. Otherwise set COEF(Q) ~
COEF(Q) + COEF(P). Now if COEF(Q) = O, go to 4; otherwise, set
Ql ~ Q, P ~ LINK(?), Q ~ LINK(Q), and go to 2.

4. [Delete zero terrn]. Set Q2 ~ Q, LINK(Ql) f-- Q ~ LINK(Q),
and AVAIL ~ Q2.

(A zero terrn created in step 3 has been removed from polynomial Q).
Set P ~ LfNK(P) and go to 2.
5. [Insert new term] (Polynomial P contains a term that is not

present in polynomial Q, so we insert it in polynomial Q).
Set Q2 ~ A V AlL, COEF(Q2) ~ COEF(P), ABC(Q2) ~ ABC(P),

LINK(Q2) ~ Q, LINK(Ql) ~ Q2, Ql ~ Q2, P ~ LINK(?), and
retum to step 2.

Algorithm M (Multiplication of polynomials)
This algoritm, analogous to algorithm A, replaces polynomial Q

by polynomial Q + polynomial M x polynomial P.
1. [Next multiplier] Set M ~ LINK(M). If ABC(M) < O, thc

algorithm terrninates.
2. [Multiply cycle] Perform algorithm A, except whercver thc

notation „ABC(P)" appears in that algorithm, replace it by „if ABC(P)
< O then -1, otherwisc, ABC(P) + ABC(M)"; wherever „COEF(P)"
appears in that algoritm, replace it by „COEF(P) x COEF(M)". Then
go back to step 1 .

15

https://biblioteca-digitala.ro / https://unibuc.ro

§ 5. Doubly linked lists

For even greater flexibility in thc manipulation oflinear lists, wc
can include two links in each node, pointing to the items on cither sidc
of that node.

Bere LEFT and RIGHT are pointer variables to the left and right
of the list.

Each node includes two links, called LLINK and RLINK.
When a list head node is present, we have a typical diagram of a

doubly linked !ist:

List head

rfll I .. .___.__...__. - ___ ~-
~=.:__ ___________ -----------==~--=_:__--=~-:::·'.'.;;:

If the I ist is ernpty, both link fields of the

list head point to the head itself.
The list representation clearly satisfies the condition
RLINK (LLINK(X)) = LLINK(RLINK (X)) = X

if X is the location of any node in the list (including the head).
A doubly linked !ist usually takes more memory space than a

singly linked one does, but the additional operations that can now bc
perforrned efficiently are often more than ample compensation for this
extra space requirement.

One can delete NODE (X) from the !ist, given only the valuc of X
X
j,

_nf_l_ I fil _

16

JJ
AVAIL

https://biblioteca-digitala.ro / https://unibuc.ro

RLINK(LUNK(X)) f-- RLINK(X). LLINK(RLTNK(X)J f-- LLINK(X).
AVAIL ţ=X.

The insertion of a node c1dj accnl to NODE (X) at either the left or
the right is easy.

P ţ= AVAIL, LLINK(P) f-- X. RLINK(P) f-- RUNK(X), LLINK
(RLINK(X)) f-- P, RUNK(X) f-- P
do such an insertion to thc right ofNODE (X); by interchanging lcft and
right we get the corresponding algorithm for insertion to the left.

Arrays and lists. A genernlization of a linear I ist is a two -dimen­
sional or higher - dimensional array of information. For examplc, con­
sider the case of an m x n matrix

[

Al l,ll,.-lfl,21 .A[l,11] l
.-1[2,l),.![2,21, . 112.111

A[~,11,:11m.2], .Alm,11]

1n this two - dimensional array, each node A[i,k] belongs to two
linear lists: the ,,row j" 1 ist A [i, 1], A [i,2], ... , A l_i, n], and the „column k"
tist A[1,k], A[2,k], ... , A[m,k].

Similar remarks apply to higher - dimensional arrays of infor­
mation.

Sequential allocation. Whcn an array is stored in sequential
mcmory locations, storage is usually allocatcd so that

LOC(A[J, K]) = a0 +a/+ a2 K,
where a

0
, ar and a 2 are constants.

Thc most natural (and most commonly used) way to allocate stor­
age is to lct the array appear in mcmory in the .,lexicographic ordcr" of
its indices.

In general, given a Ic-dimensional array with c-word elements
A[JJ2, ... ,lk] for O$ / 1 $ d 1, O$/,$ d2 •... , O$ Ik $ d*' we can stare it in
memory as
LOC (A[/1' / 2, ••. , /*]) = LOC(Aro.0 ,0]) + c(d2 +I) ... (d, + 1)/

1
+ ...

k

... + c(dk + I) Jk
1

+ clk =- LOC(A[0,0, ... ,0]) + L a,.Ir.
r=I

k

where a,. = C n (d, +I).
::.=r+I

17

https://biblioteca-digitala.ro / https://unibuc.ro

To see why this formula works, observe that a„ is the amount of
memmy needed to stare the subarray A[lp···,1,, J,., p···,JJ if !" ... ;I, arc
constant and J,~ l' ... ,J* vary through all values O::; J, + 1 ::; d,+ p·•·, O::; l,
::; dk; hence by precisely this amount when I, changcs by 1 .

The above method for storing arrays is generally suitable whcn
the array has a complete rectangular structure, i.c., when al! elements
A[/1,12, ... ,lk] arc prescnt.

There are many situations in which this is not the case; mast com­
mon among these îs the triangular rnatrix, where wc want to storc only
thc entries A[i,k] for,say, O$ k$J $ n:

A[O,O]

A[l,O] A[l,1]

A[n,O] A{n,1] ... A[n,n]

We rnay know that all other entries arc zero, or that A[i,k] = A[k,j],
so only half of the values need to be stored.

If we want to stare the lower triangular matrix in (n+ 1)(n+2)/2
consecutive rnemory positions, we can now ask for an allocation ar­
rangement of the form

LOC(A[i, k]) = a
0

+ J;(J) + J;_(K)
whereJ; and.J; are functions of one variable.

We have in fact the formula
LOC(A[J, K]) = LOC(A[0, O])+ cJ(J + 1)/2 + Kc

The generalization of triangular matrices in higher dimcnsions is
called a tetrahedral array. A k-dimensional tetrahedral array A[il'i

2
, ••• ,ik]

satisfies O$ i~ $... $ i
2

$ i
1

$ n.
If A is stored in lexicographic order of the indices then

(l+k-r)
To sce why this formula holds, observe that c 1; _ r + 1 is thc

18

https://biblioteca-digitala.ro / https://unibuc.ro

amount ofmcmory nccdcd to storc thc subarray A(/1' ... ,I„ I' Jr,···,JJ if
/

1
, •• • ,I, 1 arc constant and Jr, ... ,Jk vary through all values O$. Jk '5. .. :S. J,. $.

l,.- 1, i.c. thc diffcrcnce of locations bctwecn A[lp···, I, I' 0, ... ,0] and
A [1

1
, ••• , 1,

1
, /,., 0, ... ,0]. The number of incrcasing words Jk ... J, of length

k - r + I with lcttcrs in an alphabct of cardinality I, is precisely thc
number of combinations with rcpctition of a set with I, clements taken

k-r+ I atatime.i.e., (
1
;:;;;).

Linked allocation. For higher - dimensional arrays of infonna­
tion thc nodes can contain k link ficlds, one for each !ist the node is in.

Sparse matriccs arc matrices of largc order in which most of the
clements are zero.

The goal is to operate on thesc matriccs as though the entire ma­
trix were present, but to save great amounts of memory space because
the zero entries need not be reprcsented.

Thc representation wc will discuss consists of circularly linked
lists for cach row and column. Each node of the matrix contains three
words and five fields:

ROW UP

COL LEFT

VAL

I-Icre ROW and COL arc thc row and column indices of the node;
VAL is the valuc stored at that part of the matrix; LEFT and UP are
links to thc next nonzcro entry to the lefi in the row, or upward in thc
column, rcspcctivcly.

Thcre arc special !ist head nodes, BASEROW [i] and BASECOL
U], for every row and column. Thcsc nodcs are identified by
COL(LOC(BASEROW[i])) < O and ROW(LOC(BASECOL U])) < O

As usual in a circular !ist, thc LEFT link in BASEROW [i] is thc
location of thc tightmost value in that row, and UP in BASECOL U] is
thc lowcst valuc in that column.

19
https://biblioteca-digitala.ro / https://unibuc.ro

If the nodes are illustrated in the format

LEFT UP

ROW COL VAL the matrix

represented as shown below:

I
I

I

2

o
-10

o
ii . ~ ll would be

----lF-~---,---+-----~---------

List heads appear at the lefi: and the top.
The amount of time taken to access a random element AU,k] is

also quite reasonable since most matiix algorithms procced by walking
sequentially through a matrix, instead of accessing elements at random.

§ 6. Graphs and trees

A graph G = (V,E) is a combinatorial structure consisting of a set
of vcrtices V and a set of edges E. Unless otherwise stated, both arc
assumed tobe finite. Each edge is associated with two verticcs called its
end points.

20
https://biblioteca-digitala.ro / https://unibuc.ro

lf these two cnd points haw the same relation to the cdgc, thc
edgc has no natural oricntation and is considcred undirected. In this case
E is a set of unordercd pairs of vcrtices.

I f not, we may consider onc of end points as the start vertex and
thc othcr as the finish vertex, and in this case the edge îs considcred
directcd. For directcd graphs Eisa subset ofthe cartcsian product Vx V.

Usually, when wc draw a representation of G, thc vertices are
represented by points and the edgcs are represented by lines, not neces­
sari ly straight. If the edges are directed, we add an arrowhead to specify
its direction. Thc vertex set and edgc set of a graph G are also denoted
by V(G) and E(G), respectively.

o e

b C

/\I;
1'------\/

h

The graph G
1

is undirccted. It has
V(G

1
) = {a,b,c,d,e,f,g,h,i,j} and

E(G1
) = {ah, ac, ad,fg.fh, gh, gj, hi,ji}

b

C

G2 is dirccted with V(G
2

) = {a.b,c,d,e,.f} andE(G
2

) = {(a,b), (a,c),

(c.e), (e,a), (c,d), (d,e), (e,J)}.

Thc dcgrcc of a vertex v, denoted d(v) îs the number of cdges

containing v. ln case ofa dîrectcd graph we may also speak ofthe indcgrce

d-(v), and outdcgree d+(v), which arc defined in the natural way.

For cxamplc, for the graph G
1

wc have d(a) = 3, d(e)=O (e îs an
iso latcd vertex), d(f) = 2 etc.

21

https://biblioteca-digitala.ro / https://unibuc.ro

For G
2

wc get d (b)=l and d-(b)=O; d-(c)=l and J+(c)=2 etc.
Two vertices joined by an edge (direct ed or not) arc cal led

adj3cent.
A walk in a graph is a sequence ofverticcs x

1
, x

2
, ••• ,x, such that x,

is adjacent with xi+I for 1 $ i $ r-1. For directed graphs (or digraphs) this
condition becomcs (xi, xi_

1
) E E(G) for every l $ i $ r-1.

If all vertices xl' ... ,x, are pairwise distinct thc walk is called
a path.

For undirccted graphs if x
1
= x, and no edge is used twice, thc

walk xl'x2, ••• ,x, (=x
1
) is called a cycle.

If thc cdges of a cycle are dircctcd arbitrarily we obtain a cyclc in
a digraph.

I f every two adj a cent cdgcs of a cycle in a digraph havc not oppo­
site orientations, the cycle is called a circuit.

An undirected graph is said tobe connected if for cvery two ver­
tices a and b there exists a path: a, ... ,b connecting them.

If a graph G is nat connected, then it has r ~ 2 connected compo­
nents that are defined as maximal connectcd subgraphs of G (maximality
refers to set - inclusion).

Forexample, G
1
hasthreeconnectedcomponcnts, C

1
={e}, C

2
={a.

b, c, d} and C
3
={j, g, h,i, j}.

A directed graph is said to bc strongly conncctcd if for cvcry two
vertices a and b there exists a dirccted path from a to b. G

2
has 3 strongly

connected components: {b}, {/}, {a,c,d,e}.

The connectcd (strongly connectcd, rcsp.) componcnts ofa graph
G induce a partition of V(G).

E.xamples
• b,a,d,a,c is a walk for G

1
which is nat a path.

• fg.h,ij is a path for G
1

•

• e,a,c,e,f is a walk for G
2

which is nota path.

• a,c,d,e,f is a path for Gr
• fg,h,fand g,h,i,j.g are cyclcs of G

1
•

• e,c,d,e is a cyclc of G
2

which is nat a circuit.

• e,a,c,d,e is a circuit of Gr

22

https://biblioteca-digitala.ro / https://unibuc.ro

Note that a cycle can use twice
the same vertex. G

3
is in fact a cycle

a, c, e, d, c, h, a which uscs twicc ver­
tex c. This cycle is in fact thc sum of
two elementary cycles: a, c, h, a and
c, d, e, c.

The order of a graph G is by
definition IV(G)J, the number of its
vertices and the size is IE(G)I, the num­
ber of its edges.

A connected graph that contains
no cycle is called a tree.

This notion referees mainly to
undirccted graphs (see for examplc
graph T). The following theorcm gives
three characterizations of trees:

Theorem 1. Let G be a graph of
order n ~ 3. The following conditions
are equivalent:

a

b

(a) G is a connected graph without cycles;

d

e

T

(b) G is cyc/e - free maximal (if any missing edge is added to G,
a cycle appear.s);

(c) G is connected minimal (if any edge is deleted from G, the
connectivity of G is destroyedj.

Proof: We shall prove that (a) ⇒ (b) ⇒ (c) ⇒ (a).
(a) ⇒ (b): We assume that G is connected and cycle - frec. Lct

e = ab e E(G), whcrc a -:ţ:. b. Thcre is a path in G between a and b; ifwe
add e this path with e form a cycle.

(b) ⇒ (c): If G would not be connected then by joining by a new
edge two vertices belonging to different connectcd components thcn no
cycle appears, which contradicts (b). If e E E(G) and G--e is still con­
nected then there exists a path joi ning the extrcmities of e in G, hence G
contai ns a cycle, which contradicts (b) again.

(c) ⇒ (a): If G would contain a cycle and e is any edge of this
cycle then G--e is still connccted, which contradicts (c). [j

23

https://biblioteca-digitala.ro / https://unibuc.ro

Theorem 2. If G is a tree ofvrder n, then G has n - 1 edges.
Proof: First wc shall prove that G contains at lcast one (in fact

two) vcrticcs of degree onc (terminal vertices).
Supposc, to thc contrary, that d(v) ~ 2 for cvcry v E V(G). In this

case consider a path P of maximum lcngth (= number of edges) of G and
let x bc an extremity of P. V crtcx x has degree at least 2, hcnce it must bc
adjacent to at least another vertex of P (by the maximality of P) which
produces a cycle in G, a contradiction.

Now the property that G has n-1 edges follows easily by induc­
tion: it is true for n=l and if wc supposc that it is true for all trccs
of order at most n-1 Jet G bea trec of order n. If x is a terminal vertex of
G, then G-x is alsa a trec of order n-1 and the induction hypothesis
applies to G-x. C

If G has m edges wc shall associate to G a vectorial subspace of
R"', denoted by Z(G) and called the cycle space in the following manner:

First we orient in an arbitrary rnanner the edges of G and any
cyclc c of G is associatcd with a vector (cl'c2, ••. ,cm) E R"' whcrc

{

1,if edge e; E c bas the same orientation as c;

c, = - I, i f e; E c bas oppositc orientation toc;

O, otherwisc

G

24

For examplc cycle I ,2,3, 1 is
associated to

c
1
= (L-1,-1,0,0);

1,3,4, 1 ➔ (0,0, 1, 1, 1) = c
2

;

1,2,3,4, I ➔ (1,-L0, Ll) = C;

It is cicar that el' c 2, c, arc
not linearly independent, sincc
c3 = c 1 + cr

Now Z(G) is defined as the
vectorial subspacc of R"' spanned
by all vcctors associatcd with
cycles of G.

Consider now an ordcrcd
pat1ition of V(G): V(G) = X, u X:

https://biblioteca-digitala.ro / https://unibuc.ro

Thc cocyclc (or cutsct) rn induccd hy this partition consists of thc set of
directcd cdgcs (u,b) whcrc a t- X

1
and b E X

2
and of the set of dircctcd

edges (c,d), whcrc cc X
2

and d E: X
1

• To w we associate a vector of Rm,

(wl,(!)2'""'(!)m), whcrc

-(~ife; = (a,,h)anda_E X1 and b E Xz;
w,- l,1faE.\ 2 andhEc.\ 1,

O, othcrwisc.

lf X
1
={ 1,2} and X

2
={3,4 }, the cocycle w = (0,-1,1,0,-1).

Thc cocyclc spacc of G, dcnoted by U(G) is defined as the
vectorial subspace of Rm spanned by all vectors associated with
cocycles of G.

lf <, > denotes the scalar (or inner) product ofvectors in Rm, one
can casily check that < cl'w > = < c

2
,w > = < c

3
,w >=O. This is a general

property for graphs.

Theorern 3. For any graph G, spaces Z(G) and U(G) are
orthogonal.

Proof: W e shall prove that for any cyclc c and cocyclc w wc havc
<c,w> = O.

Let X
1
u X

2
be the ordered partition of V(G) inducing w. lt is clcar

that only edgcs of c joining a vertex of X
1

with a vertex of X
2

will pro­
duce non-vanishing componcnts of< c,w >. If c goes fi-om X

1
to X

2
this

non-vanishing component of thc scalar product is always equal to
I (1 • 1 if the corresponding edgc of the cycle is fi-om X

1
towards X

2
or

(-1)•(-1) if the directed edge has an opposite orientation), and if c goes
fi-om X

2
to X

1
this component is cqual to -1 (1 •(-1) or (-1)• 1). Ilencc

< c,w > cquals thc diffcrcncc between the number of times whencver c
passes fi-om X

1
to X

2
and thc number of times whcncver c passes frorn x;

to X
1

, which is zero. I ;
The dimension of Z(G) is dcnoted by µ(G) and is callcd the

cyclomatic number of G and thc dimension of V(G) is denoted by A(G),
the cocyclomatic number of G.

Theorern 4. (Kirchhoft). let G bea graph having n vertices,
m edgcs and p connected cumponents. Then µ(G) = m-n+p and
}.JC.i') = 11-p.

25

https://biblioteca-digitala.ro / https://unibuc.ro

Proof: Suppose first that G is connected (p = I).
Since G is connccted, from Theorem I (c) it follows that therc

exists a spanning trec Tof G (such that V(T) = V(G) and E(T) c E(G)).
T has exactly n-1 edges. We shall denote the remaining edges of G by
e,,e1, ... ,em-n"'l' From Theorem 1 (b) it follows that T+e, contains a cycle
c, for every 1 :::; i:::; m-n+ I. These m-n+ 1 cycles are linearly independent
becausc each contains an edge that is not contained by the other cycles.
It follows that µ(G) = dim Z(G) ~ m-n+ 1.

If E(T) = {f,, ... J"_ 1}, it follows that T-J. has exactly two

connected components, c~1 and c,2 which induce a partition of V(G),

hence a cocycle w; of G for cvery 1 :::; i :::; n-1. These n-1 cocycles
arc linearly independent by the same argument as for cycles. Hencc
A(C) = dim U(G) ~ 11- l .

It follows that µ(G) + A(G) ~ m. Bccause spaces Z(C) and U(G)
are orthogonal it follows that µ(G) + A(G):::; m since both are subspaces
of Rm. We deduce that all inequalities are equalities and µ(G) = m-n+ 1
and A(G) = n-1 hold.

Jf G is not connected it has p ~ 2 connected componcnts
C"C2, ... ,C, containing respectively np ... ,n vertices (n,+ ... +n = n) and p . p p
m" ... ,m edges (m 1+ ... +m =m).

p p .
By perfom1ing the same algorithm we find m each component

C;, m;-n/ 1 linearly independent cycles and n,-1 linearly independent
cocycles.

p

Hencc the numbcr of thesc cycles is equal to L, (m; -n; + 1)
i=l

p

= m - n + p and of cocycles is L, (n, - 1) = n - P and all thcse cycl cs
i=l

(resp. cocycles) are linearly independent. Since µ(G) + Â(G) ~ m it
follows, as above, that µ(G) = m-n+p and A(G) = n-p. ~-]

Theorem 5. Lct G be a graph uf order 11 c 3. The following con­
ditions are equivalent:

(a) G is a connected graph without cycles;
(d) G is cycle -free and has n-1 edges;

https://biblioteca-digitala.ro / https://unibuc.ro

(c) G is cunnected and has 11-I edges;
(f) There is a unique path hetween eve,y pair ufdistinct vertices

ufG.
Proof: Wc shall prove that (a) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a).
(a) ⇒ (d): µ(G) = O, i.c., m-n+ 1=0, or m=n-1.
(d) ⇒ (c): µ(G) = O implies that (n-1)-n+p=0, or p=I, hence G is

conncctcd.
(e) ⇒ (f): µ(G) = (n-1)-n+ I =O, hcncc G is cyclc-free. Because

G is connected there exists at least a path betwccn evcry pair of distinct
vertices of G. Iffor two vertices x,y E V(G) there exist two paths P1 and
P

2
betwecn x and y (P

1
-:t; P

2
) this implies that G has at least a cycle,

which contradicts the property that G is without cycles.
(f) ⇒ (a): If G would contain a cycle C wc contradict (/) since

bcnvccn evcry pair of distinct vcniccs of Cthcrc arc two distinct paths. ~~
From thcorcms I and 5 we deduce six different characterizations

of trees: (a) - (f).

§ 7. Binary trees

The binary trees are the most important nonlinear structures aris­
ing in computer algorithms. Generally speaking, trec structure means a
branching relationship bctwecn nodcs, much likc that found in the trees
of nature.

ln thc sequel wc shall use another notion of trec. In graph-thco­
retic literaturc trees as dcfined bclow are usually called ordered rooted
trces.

Trees consist of internai nodes (branching points) and tern1inal
nodes (or leavcs).

Lct V = { vi' v2 , ... } bc an infinite set of internai nodes and Jet
B = { b

1
, b

2
, ... } be an infinite set of leavcs. We define the set of trces

ovcr Vand B inductively.

Defiriition
a) Each element b E B is a tree. Then b îs also root oifthe tree.

I I

b) If Tl' ... ,Tm (m ~ I) are trees with paiiwisc disjoint sets of inter-
nai nodes and leaves and v E Vis a new node then the (m + 1) - tuple
T = < v, T1, ... T"' > is a trec. Node vis the root of the tree, p(v) = m is its
degree and T, îs the i-th subtree of T.

27

https://biblioteca-digitala.ro / https://unibuc.ro

We always draw trees with the root at thc top and thc leaves at the
bottom. Internai nodes are drawn as circlcs and lcaves arc drawn as
rectanglcs, but they can be drawn as circles also.

b.

V
2

Fig. 1

V
l

Wc use the following tenns when we talk about trees. Les Tbe a
tree with root v and subtrees T, 1 ~ i ~ m. Let w = root (T). Then w is

I I I I

the i-th son of v and v is thc father of w .
I

Descendant (ancestor) denotes the reflexive, transitive closure of
relation son (father). wj is a brother of w;,J :ţ:. i. ln the tree above, b

1
and

v
4

are brothers, v
1

is father ofv
2

and v
3

and b
5

is descendant of v
2

•

The depth or levei of a node v of a tree T is defined as follows: If
v îs the root of T then depth (v, T) = O. If v is not the root of T then v
belongs to T; for sorne i. Then depth (v, 7) = 1 + depth (v, T). We mostly
drop the second argument of depth when it is clear from the context.

The hcight of a tree T is defincd as follows: height (7) =- max
{ depth (b, 7) : bis a lcaf of T}. In our example, we have depth (v3) = 1,
depth (v

4
) = 2, depth (b

5
) = 3 and height (7) = 3. Tree Tisa binary trce

if all internai nodes of T have degrec 1 or 2 and T is called complete if
all internai nodes of T have degree exactly 2.

Our example tree is a complete binary trec. A complete binary
tree with n internai nodes has n + 1 leavcs. The 1 st (2nd) subtree is also
called lcft (right) subtrec.

Note that the degree of a vertex (interna] node o,r leat) of a tree is
the number of subtrces of that vertex and leafs havc degrce zero. Also a
binar)' trec is nota tree from graphthcoretic literature. For cxample, thc
bina!")' trecs bclow an: distinct (thc root has an empty kft subtrcc in onc

28

https://biblioteca-digitala.ro / https://unibuc.ro

case and a noncmpty left
subtree in the other), although
as trces thcy would be identi­
ca!. Algebraic formulas pro­
vide us with another example
of tree structure. The arith­
metic expression

ab - c (d/e + hg)
may be represented as a binary
tree:

and \

g

Traversing bina,y trees. Information can be stored in the leaves
and nodes of a tree. In some applications we usc only one possibility. A
binary trce is realized by thrcc arrays LLINK, RLINK and CONTENT
or equivalently by records with thrce fields, and a link variable T which
is a pointer to the tree. If the trec is empty, T = A; othcrwise T îs the
address ofthe root ofthe tree, and LLINK (T), RLINK (T) are'pointers
to the left and right, rcspectively, subtrees of the root. These rules recur­
sively define the mcmory rcpresentation of any binary tree.

For cxamplc, the binary trec in figure 1 is represcnted by

T

. - JL,_ --·-

A i h, i A I
I - Fig 2

29
https://biblioteca-digitala.ro / https://unibuc.ro

Systematic cxploration of a tree is needed frcquently. A binary
trec consisting of thrce components (a root, a left subtree and a right
subtree), three methods of trec traversai come naturally:

Preorder traversai: visit the root, traverse the left subtrec, traverse
the right sub trec: Root, L, R.

Postorder traversai: traverse thc left subtree, traverse thc right
subtree, visit the root: L, R, Root.

Symrnetric traversai: traverse the left subtree, visit the root, traverse
the right subtree: L, Root, R.

These three methods are dcfincd recursively; when the bina1y tree
is empty, it is traversed by doing nothing. Symmetrical variants are
obtained by interchanging Land R.

If we apply these definitions to the binary trec rrom fig. 1, we find
that the vertices in preordcr arc v1v2b 1v/J4b5v3bi63, in postorder are
b

1
b

4
b

5
v

4
vi

2
b

3
v

3
v

1
andin symmetric order: b1v2

b4v4b5
v

1
b

2
v

3
b

3
•

In order to traverse a binary trec wc usually make use of an aux­
iliary stack, as in the following algorithm:

Algorithm T (Traverse binary tree in symmetric order).
Lct T be a pointer to a binary trec having a reprcsentation as in fig. 2;
this algorithm visits all the no des of thc binary tree in symmctric order,
making use of an auxiliary stack A.

1. [lnitialize]. Set stack A empty, and set the link variable P f- T.
2. [P = A?] If P = A, go to step 4.
3. [Stack <= P]. (Now P points to a nonempty binary trec which is

to he traversed). Set A <= P, i.e., push thc valuc of Ponto stack A. Then
set P f- LLINK (P) and retum to step 2.

4. [P <= Stack]. If stack A is empty, the algorithm tem1inates;
othcrwise set P <= A.

5. [Visit NODE (P)]. Visit NODE (P). Then set P f- RLINK (P)
and retum to stcp 2.

In the final step of this algorithm, the word "visit" mcans \\"C do
whatcvcr activity is intendcd as the trec is being traversed.

When we get to step 3, we want to traverse thc binary trec whosc
root is indicatcd by pointer P. Thc idea is to save P on a stack and thcn
to traverse the lefi subtree; whcn this has bcen dane, we will get to stcp
4 anct will find the old valuc of P on the stack again. Aftcr visiting thc
root, NODE (P) in stcp 5, the rcmainingjob is to traverse the right subtrcc.

30
https://biblioteca-digitala.ro / https://unibuc.ro

Let us prove that algorith111 T traverses a binary trec of 11 nodcs in
symmetric order, by using induction on n. We shall prove a slightly
more general resuit:

Starting at step 2 with P a pointer to a binary trce of n nodes and
wi th the stack A containing A [1] ... A [m] for some m ~ O, the proccdure
of steps 2-5 will traverse the binary trec in question in symmetric order
and will then anive at step 4 with stack A returned to its original value
A [1] ... A [m].

This statement is obviously trnc when n = O, because of step 2. If
n > O, let P

0
be the value of P upon cntry to step 2. Sincc P

0
:ţ. A, we will

perfonn step 3, which means that stack A is changcd to A [l]4 [m] P
0

and P is set to LLINK (P
0
). Now thc left subtree has less than n nodes,

so by induction we will traverse the lefi subtree in symmetric order and
will ultimately arrive at step 4 with A [1] ... A [m]P

0
on the stack. Step 4

retums the stack to A [1] ... A [m] and sets P ~ P
0

• Step 5 now visits
NODE (P

0
) and sets P ~ RLINK (P

0
). Now the right subtree has less

than n nodes, so by induction wc will traverse the right subtrce in
postorder and anive at step 4 as rcquired. The tree bas been traversed in
symmetric order and the pro ofis complete. C

An almost identica! algorithm may be fonnulated which traverses
binary trees in order Root, L, R hy visiting NODE (P) between steps 2
and 3, instead of between steps 4 and 2.

If P points to a node of a binary tree, Jet P$ be the address of
successor of NODE (P) in symmetric order and $P be the address of
predecessor of NODE (P) in the same order. lf there is no such succes­
sor or predecessor of NODE (P), thc value LOC (T) is generally used,
where T is a pointer to the tree in question.

There is an important alternative to the memory representation of
binary trees given in figure 2, which is somewhat analogous to the dif­
ference between circular lists and straight one-way lists. It can be proved
easily by induction on n that for evcry binary trec with n nodes rcpre­
sented asin fig. 2 there are always cxactly n + 1 A links (counting T
when it is null) and there are n non-null links, counting T, hcncc thcrc
are more null links than other pointers.

ln thc method calted threaded trec representation terminal links
are replaced by "threads" to other parts of thc trec, as an aid to traversing
the tree.

31

https://biblioteca-digitala.ro / https://unibuc.ro

The threaded trec equivalent to the rcprcscntation in fig. 2 is:

.... fv'\

~/~f~
/~~ : ;' ,/~ ✓·, '. : : ,: : ,,\ ..

I I ' ' I

-------- ' ' ~------- ' . ~ ' -~ ' --(b I ,' : I V,) ', · .. · b ,- - (b)- .
y1~ ,' ~- ~ \,_].,./

,· I , , _ ,' ► : : ...
:,4~ __ ,: ·,,ri;',,'
~ __'._J,/

Fig. 3

Here dotted lincs rcpresent thc threads, which go to a highei: node
ofthc trce.

In the memory representation of a threaded binary trec it is ncces­
sary to distinguish between thc dotted and solid links; this is done by
two additional one-bit fields in each node, L TAG and RT AG. Thc
threaded reprcsentation may bc precisely defined as follows:

Unthreaded representation

LUNK(P) = A
LLINK (P) = Q t:- A
RLINK (P) =A
RLINK (P) = Q t:- A

Thrcadcd representation

LTAG (P) = - , LLINK (P) = $P
LTAG (P) = +, LLINK (P) = Q
RT AG (P) = -, RLINK (P) = P$
RTAG (P) = +, RLINK (P) = Q

Hence each new thread link points directly to thc predcccssor or
successor of thc node in question, in symrnctric order.

For threaded trees wc shall use a !ist head for the trec, with
LLINK (HEAD) = T, RLINK (HEAD) = HEAD, RTAG (IIEAD) = +,
whcrc T is thc pointer to thc trec and HEAD denotcs the address of thc
!ist head.

Tf thc trec is noncmpty then L TAG (HEAD) = +; otherwise wc
havc LLINK (HEAD) = IIEAD, LTAG (HEAD) = -.

In accordancc with thcsc conventions, the computer representa­
ti on for tree in fig. I, as a threaded tree is shown in fig. 4,

32
https://biblioteca-digitala.ro / https://unibuc.ro

Fig. 4

The advantage of threadcd trccs is that the traversal algorithms
becomc simpler.

The following algorithm calculates P$, givcn P:

Algorithm S (Symmctric succes sor in a threaded binary tree).
If P points to a node of a thrcadcd binary trec, this algorithm sets
Q f-- P$.

1. [RLINK (P) a thread?] Set Q f-- RLINK (P). If RT AG (P) = -,
terminate the algotithm.

2. [Search to left). If L TAG (Q) = +, set Q +- LLINK (Q) and
repeat this step. Othcrwisc thc algorithm terminates.

Note that no stack is needed here to accomplish what was done
using a stack in Algorithm T. Thrcadcd trccs grow almost as easily as
ordinary ones do.

Algorithm I (lnscrtîon înto a threadcd binary trec). This
algorithm attaches a singk node, NODE (Q), as thc right subtrec of
NODE (P), if thc right subtrec is cmpty, and it inserts NODE (Q) bc­
twccn NODE (P) and NODE (RLINK (P)) othcnvise.

33

https://biblioteca-digitala.ro / https://unibuc.ro

1. [Adjust tags and links]. Set RLINK (Q) ~ RLINK. (P), RTAG
(Q) ~ RTAG (P), RLINK. (P) ~ Q, RTAG (P) ~ +, LLINK (Q) ~ P,
LTAG (Q) ~ -.

2. [Was RLINK (P) a thread?]. lf RTAG (Q) = +, set LLINK
(Q$) ~ Q. (Here Q$ is determined by Algorithm S).

§ 8. Huffman's algorithm

The vertices of a binary tree have a natural correspondence to
words over an alphabet with 2 letters, say M = { O, 1}. For example,

D

00

100

Fig. 5.

101

vertex H of fig. 5 corresponds to the
word l 00, because we take first the
right son (l), then the left (O), and
finally the left (O).

Thus, for every vertex of the
tree there exists a unique word over
M. This is true whether the vertex is
terminal (like li) or not (like F, which
corresponds to 10). However, there
rnay be words over M which do not
correspond to vertices of the tree. Let
/(v) (the levei of vertex v) be the length

of the path frorn the root to v (or the depth of v): it is equal to the number
of letters in the word which corresponds to v.

The set of words which correspond to the terminal vertices of a
binary tree forrns a prefix (sornetimes called instantaneous) cade; that
is, no word in the cade is the beginning of another. Thus, if a sequence
ofletters is formed by concatenation ofwords of the cade, where repeti­
tions are allowed, the sequence can be decornposed by reading the se­
quence from left to right and marking off a word as soon as a word of
the code is recognized. For example, the code which corresponds to the
tree of fig. 5 is {00, Ol, 100, 101, 11 }. Now, the sequence 00011011 O 100
is easily decomposed, from left to right into 00, Ol, 101, 101, 00.

We shall discuss a construction of a binary tree which is optimal
in a sense tobe discussed shortly. Wc shall present it as a communica-

34
https://biblioteca-digitala.ro / https://unibuc.ro

tion problem, both becausc it is a natural application, and because his­
torically it was the context of its invcntion by Huffman. Later we shall
paint out two more applications: in sorting and in searching.

Assume that we have L basic messages tobe transmitted over a
communication channcl which trnnsfers lettcrs of M = { O, 1}, one at a
time. Wc assume that cach lctter of M requires the same time to trans­
mit. Alsa assume that thesc messages appear one after the other with
probabilities pi' p2, ... ,pL an<l the next messagc tobe sent is chosen with
these probabilities, independent of the previous messages. Our purpose
îs to find a prefix cade C = {wI' w

2
, ... ,wL} over Mwith a vector ofword

L

lengths (/1' /2, ••• ,/J such that the average word length L PJ; will be
i=l

minimum. Here l(w,) = I, is the length (number ofletters) in w,.
Sorting by merging accesses data in a purely sequential manner.

Hence it is very appropriate for sorting with secondary memory, such as
disks and tapes. In this context the following problem is of interest.
Very often we do not start with sorted sequences of length ane but are
given n sorted sequences Sp···,Sn of length wp···,wn respectively. The
problem is to find the optimal order of merging these sequences into a
single sequence. Here we assume that it costs x + y time units to merge
a sequence of length x with a sequence of length y.

Any merging pattem can be rcpresented as a binary tree with n

leavcs.
Thc n leaves represent the n initial sequcnces and thc n-1 internai

nodes reprcsent the sequences obtained
by merging.

Trec represents the following
merging pattem:

S
6
f- Merge (S" S)

S
7
f- Merge (S

6
, S

4
)

S
8
f- Merge (S

2
, ~\)

35
https://biblioteca-digitala.ro / https://unibuc.ro

n

Here the sum to be minimized is L w,d(,\) whcre w is the
• I

i=l

!cngth of S
1
and d(S) is its depth (or levei) in thc trec.

Anothcr application of the Huffman tree to searching problems is
the following: in certain cases, data (keys) are storcd in the leavcs of
a binary tree. The question of how to construct this tree when thc
probabilities of thc various data are given and when we want to mini­
mize the average,scarch time is identica! with thc problem which the
Huffrnan construction solves.

Let us first demonstrate Huffu1an 's construction by means of an
example. We shall assume that p 1 2:: p 2 2:: ... 2:: pL. Let aur vector of
probabilities he (0.6, 0.2, 0.05, 0.05. 0.03, 0.03. 0.03. O.Ol). Wc shall
write it as our top row (sec fig. 6). We add the Iast (and thcrcforc least)
two numbers, and put the resuit (0.04 in aur case) in its proper place.
We rcpeat this opcration until we get a vector with only two proba­
bilities.

0.6

0.~6

~
0.6

~
0.6

~
0.6

~
0.6

~
0.6

36

0.2
~

0.2
~

0.2

• 0.2
~

0.2
~

O.O 0.05 0.05 0.04 >':r=-~
0.09 0.06 0.05
~~

0.11 0.09

0.2 0.2 -~--
0.4

Fig. 6

0.03

10001

O 03 1001

O.OS

0.01
O.Ol

https://biblioteca-digitala.ro / https://unibuc.ro

Wc havc obtained an optimal binary tree.
Thc fact that the Iluffman construction is in terrns ofprobabilitics

docs not mattcr, since the fact that p
1
+ Pi + ... + p L = 1 is never, uscd in

the construction or its validity proof

Definition: Let T bc a binaiy trce with n leaves vl' ... ,v,,; lct CONT:

{ vi' v2, .•• ,v,,} ~ { wp···, w.} bc a bijcction and let di be the depth of leaf

n

vi. Then Cost (T) = L d, CONT(v,) is called the cost of tree T with

respect to labelling CONT.
In the case of sorting by mcrging trec T is a merging pattem, thc

leavcs of T arc labclled by the n initial sequences, respectively their
lengths (wcights). In our example above sequence S

1
is merged threc

times into larger sequences: with S
3

, then as a part of S
6

with S
4

and then
as a part of S

7
with S

8
• Alsa three is the depth of the leaf labe lied S

1
•

In general, a leaf v of depth d is merged d times into larger se­
quenccs for a total cost of d CONT(v). Thus the cost of a merging
pattem T is as given în the definition above. We want to find the
merging pattem of minimal cost.

Definition: Tree T with labelling CONT is optimal if Cost
(T) S Cost (T') for any other tree T' and labelling CONT'.

Theorem. If OS w
1

S w
2

S ... S w. then an optimal tree T and
labe/ling CONT can be found in linear time.

Proof: Huffu1an's algorithm can be summarized as follows: Wc
construct trec Tina bottom-up fashion. We start with a set V= { v

1
, ••• , v,.}

of n leaves and labelling CONT (v) = w, for 1 $ i $ n and an empty set
I of internai nodes and set k to zero; k counts the numbcr of internai
nodes constructed so far.

while k < n - 1
do select x 1, x

2
E / u V with the two smallest values of CONT;

ties arc broken arbitrarily; construct a ncw node x with CONT (x) =
= CONT (x

1
) + CONT (x

2
) and add x to I; k f--- k + 1; de I etc x

1
and x

2

from /u V

37

https://biblioteca-digitala.ro / https://unibuc.ro

od

For n = 5 and { wp···, wJ = {I, 2, 4, 4, 4} we start with 5 leaves
ofweight I, 2, 4, 4, 4. In the first step we combine the leaves ofweight
I and 2 and obtain an internai node with weight (content) 3 and so on:

-

-
Let T

0 1
with labelling CONT

0
P

1
he an optimal trec. Let {yp ... ,Y,.}

be the set of leaves of T
1

• Assume w.l.o.g. that CONT (y.) = w for op opt 1 1

1 ::; i ::; n. Let d 0P1 he the depth of leafy. in tree T .
I I Opt

Lemma 1. If w < w. then d 0P1 ~ d1°P
1 for all i, 1·-

'] I

Proof: Assumc otherwise, say w < w and d 0P1 < d1°P
1 for some i

I] I

and j. If we interchange the labels of leaves Y; and y
1

then we obtain a
tree with cost

Cost (T) - d 0 P' w - dopt \V + dopt w + dop! w =
opt I I]]] I I j

= Cost (T) - (w - w)(d
1
°1'

1
- d 0

P') < Cost (T
1
), a contradiction. , i

opt J I r op

Lemma 2. There is an optimal tree in which the leaves with con­
tent w

1
and w

2
are brothers.

Proof"_· Letybe a node of maximal depth in T and letJ' and v 'J. opt I • /

be its sons. Then y and y. are leaves. Assume w.l.o.g. that CONT
J _, ort

38

https://biblioteca-digitala.ro / https://unibuc.ro

(y.) S CONT (y). From lemma 1 it follows that either CONT(y) = w1 I opt J I

or di S d
1

anct hence d, = d
1

by the choice of y. In either case we may
exchange leavesy

1
andy, without affecting cost ofthe tree. This shows

that there is an optimal tree such thaty
1

is a son of y. Similarly, we infer
from lemrna 1 that either CONT(y) = w

2
or d. S d

2
and hence di= dz­

In either case we may exchange le~ves y
2

andyi without affecting cost.
In this way we obtain an optimal tree in whichy1 andy2 are brothers. □

Lemma 3. The Huffman algorithm constructs an optimal tree.
Proof (by induction on n). The claim is obvious for n S 2. Let us

assume that n 2: 3 and let T
01

g be the tree constructed by our algorithm for
weights w

1
S w

2
S ... S wn. The algorithm combines weights w1 and w

2

first and constructs a node of weight (content) w
1
+ w

2
• Let T 'aJg be the

tree constructed by our algorithm for set (in fact a multiset) { w
1

+ w
2

,

w3, w4, ••• ,wn} ofweights. Then
Cost (Ta1g) = Cost (T'a1g) + w1 + w2

because Ta1
8

can be obtained from T aJg by replacing a leaf of weight
w1 + w

2
by an intemal node with two leaf sons of weight w

1
and w

2
,

respectively. Also T' a1 is optimal for the set of n - 1 weights w
1
+ w2,

w3, ... ,wn by induction typothesis.
Let Topt be an optimal tree satisfying lemrna 2, i.e. the leaves with

content w
1

and w
2

are brothers in T . Let T be the tree obtained from opt

T
0
P

1
by replacing leaves w

1
and w

2
and their father by a single leaf of

weight w1 + w
2

• Then
Cost (T0P1) = Cost (T) + w 1 + w2 2: Cost (T aJg) + w

1
+ w2 =

= Cost (T.
18

), since Cost (T') 2: Cost (T' a1g) by induction hypothesis. It
follows that Cost (Ta1

8
) = Cost (T

0
P

1
). □

It remains to analyse the run time of the algorithm.

Lemma 4. Lei zi' z2, ... ,z"_1 be the internai nodes created by the
algorithm in this order. Then CONT (z1) S CONT (z

2
) S ... S CONT (z,,.).

Furthermore, we a/ways have V= {v,, ... vJ, I= {z~ ... ,zk} for some
i S n + I, j S k + 1 S n when entering the body of the foop.

Proof (by induction on k). The claim is true when k = O. In each
iteration of the loop we increase k by one and i + j by two. Also
CONT (zk.) 2: CONT (zk) is imrnediately from the construction. □

39
https://biblioteca-digitala.ro / https://unibuc.ro

This lemma suggests a linear time implcmcntation. We keep thc
elemcnts of V and / in two separate sets both ordered according to CONT.
Since w 1 $... $ wn a queue will do for V and since CONT (z

1
) ~ •••

$ CONT (zn) another queue will do for /. lt is then easy to select
xi' x2 E lu Vwith the two smallest values of CONT by comparing the
first two front clements of thc queues. Also xi' x

2
can be deleted intime

0(1) and the newly created node can bc added to the I - qucuc in con­
stant timc.

Huffman's algorithm can be generalizcd to non - binary trees
(i.c., tom - ary trees, where m ~ 3).

§ 9. Marking algorithms for non-available memory

A (general) !ist is a linear tist whose elements may contain point­
ers to other lists. The common operations we wish to perfonn on lists
are the usual ones desired for linear lists: creation, insertion, dclction,
concatcnation, splitting, etc. For thcse purposes any of the thrce bas ic
tcchniqucs for representing linked linear lists in memory - straight,
circular, or double linkage can be used. The rest of this paragraph will
be devoted to the problem of maintaining the list of available space in
thc memory.

Thc garbage - collection tcchnique requires a new one-bit field in
each node called the "mark bit". Garbage collcction generally proceeds
in two phases. We assumc that thc mark bits of all nodes arc
initially zero (or we set them all to zero). Now thc first phasc marks all
thc nongarbagc nodcs, starting rrom those which are immediately ac­
ccssiblc to thc main program. The second phasc makes a sequential pass
ovcr the entire memory pool arca, putting all unmarked nodcs onto thc
list of frec space. Thc most interesting feature of garbage collection is
the fact that whilc this algorithn is running, thcre is only a very limited
amount of storage available which we can use to control our marking
algorithm. Hence it runs very slowly when nearly all the memory spacc
1s muse.

Algorithm A (Marking). Let thc entire memory used for !ist
storagc be NODE (1), NODE (2), ... , NODE (M), and suppose that thesc
nodcs eithcr are atoms or contain two link fields ALINK and BLJNK.

40

https://biblioteca-digitala.ro / https://unibuc.ro

Assumc that all nodcs arc initially unmarkcd. The purpose ofthis algo­
rithm is to mark all of thc nodes which can bc reached by a chain of
ALfNK and/or BLfNK pointers in nonatomic nodes, starting from a set
of "immcdiatcly acccssible" nodes.

l. Mark all nodes that arc "immediately accessible", i.e., the
nodes pointed to by ccrtain fixed locations in the main program which
are used as a source for all memory accesses. Set Kf-1.

2. Set Kl f-K + 1. IfNODE (K) is an atom or unmarked, go to 3.
Otheiwise, ifNODE (ALINK (K)) is unmarked, mark it, and if it is nat
an atom, set Klf- min (Kl, ALINK (K)). Similarly, ifNODE (BLINK
(K)) is unmarked, mark it, and if it is nat an atom, set Klf-min
(Kl, BLINK (K)).

3. Set K f-- Kl. If K ~ M, rctum to 2; otherwisc the algorithm
terminates.

Throughout this algorithm and the ones which follow in this
section, we will assume for conveniencc that the nonexistent node NODE
(A) is marked and alsa min (Kl, A)= Kl.

Algorithm A is vcry slow when n is large. Another marking
algorithm follows all paths and record branch points on a stack:

Algorithm B. This algorithm achieves the same effect as Algo­
rithm A, using ST ACK [I] , ST ACK [2], ... , as auxiliary storage.

1. Let T be the number of immediately accessible nodes; mark
them and place pointers to them in STACK [1], ... , STACK fT).

2. lf T = O, the algorithm terminates.
3. Set K f-- STACK [T], Tf-- T- 1.
4. If NODE(K) is an atom, retum to 2.
Otheiwise, if NODE (ALINK(K)) is unmarked, mark it and set

T f-- T + 1, ST ACK lT] f- ALINK(K); if NODE (BLINK(K)) is
unmarked, mark it and set T f-- T + I, ST ACK [T] f- BLfNK (K).
Returu to 2.

Algorithm B has an execution time proportional to the number
of cells it marks; but it can be nat really usable for memory marking
because there is no place to keep the stack. A better alternative is
possible, using a fixed stack size, and combining algorithms A and B:

Algorithm C. This algorithm achieves the same effect as algo-
1ithms A and B, using an auxiliary table of H cells, ST ACK fO], STACK

41

https://biblioteca-digitala.ro / https://unibuc.ro

(1), ... , STACK [H-1].ln this algo-
- rithm, the action "insert X on the

stack" means the following:
"Set T f-- (T + 1) mod H, and

STACK [T] f-- X. If T = B, set
B f-- (B + 1) mod H and Kl f--min
(Kl, STACK [B])".

(T points to the current top
Î ofthe stack, but B points one place
T below the current bottom).

1. Set T f-- H - 1, B f-- H-1, Klf--M + 1. Mark all the imme­
diately accessible nodes, and successively insert their locations anto
the stack (as just described above).

2. If T = B (stack empty) go to 5.

3. Set K f-- STACK [T], T f-- (T-1) mod H.

4. IfNODE (K) is an atom, return to 2.
Otherwise, if NODE (ALINK (K)) is unmarked, mark it and

insert ALJNK.(K) on the stack. Similarly, if NODE (BLINK(K)) is
unmarked, mark it and insert BLINK (K) on the stack. Retum to 2.

5. If Kl > M, the algorithm terminates. (The vari~ble Kl repre­
sents the smallest location where there is a possibility of a new link to a
node that should be marked). Otherwise, if NODE (Kl) is unmarked,
increase Kl by 1 and repeat this step. If NODE (Kl) is marked, set
K f-- Kl, increase Kl by I, and go to 4.

This algorithm and algorithm B can be improved if X is never put
on the stack when NODE (X) is an atom.

Algorithm C is essentially algorithm A when H = 1 and algo­
rithm B when H = M; it is more efficient when Hbecomes larger.

Algorithm E. Assume that a collection of no des is given having
the following fields:

MARK (a I-bit field, initially zero in each node), ATOM
(another 1-bit field), ALINK (a pointer field), BLINK (a pointer field).

When A TOM = O, the ALINK and BLINK fields may contain A
or a pointer to another node of the same format; when A TOM = I, the
contents ofthe ALINK and BLINK fields are irrelevant to this algorithrn.

42
https://biblioteca-digitala.ro / https://unibuc.ro

Given a pointer PO, this algorithm sets the MARK field to 1 in
NODE (PO) and in every other node which can bc reached from NODE
(PO) by a chain of ALINK and BLINK pointers in nodcs with ATOM=
O. The algorithm uses three pointer variables, T, Q, and P, and modifies
the links during its execution in such a waythat all ATOM, ALINK, and
BLINK fields are restored to their original settings aftcr completion,
although they may be changed temporarily.

1. Set T f-- A, P f-- PO.
2. Set MARK (P) r 1.
3. If ATOM (P) = 1, go to 6.
4. Set Q r ALINK (P). If Q * A and MARK (Q) = O, set A TOM

(P) r 1, ALINK (P) r T, T r P, P r Q and go to 2. (Here the A TOM
field and ALINK fields are temporarily being altcred, so that the list
strncture in certain marked nodcs bas bcen rather drastically changed.

But these changes will be restored in step 6).
5. Set Q r BLINK (P). If Q * A and MARK (Q) = O, set BLINK

(P) r T, T r P, P r Q, and go to 2.
6. (This step undoes the link switching roade in step 4 or 5; the

setting of ATOM (T) tells whether ALINK (T) or BLINK (T) is to be
restored).

IfT= A, the algorithm terminates. OtherwisesetQf-- T. lf ATOM
(Q) = 1, set ATOM (Q) r O, T r ALINK (Q), ALINK (Q) f-- P, P f-- Q,
and retum to 5. If ATOM (Q) = O, set T r BLINK (Q), BLINK
(Q) f-- P, P f-- Q, and retum to 6.

A proof that this algorithm is valid can bc formulated by induc­
tion on thc number of nodes that are to be marked. One provcs at the
same time that P = PO at the conclusion of the algorithm.

The intcresting idea used in this algoritm can be applied to prob­
Icms other than garbage collection, for example for tree traversai.

The fastcst garbage collection method known combines
allgorithms B and E, like algorithm C combines algorithms A and B
[cf. D. Knuth].

Algorithm F. In the sccond phase of garbage collcction this algo­
rithm compacts storage in the following sense:

Let NODE (1), ... , NODE (M) be nodes with fields MARK,
A TOM, A LINK, and BLINK, as described in algorithm E. Assumc

43

https://biblioteca-digitala.ro / https://unibuc.ro

MARK = 1 in all nodes that are not garbage. The algoritm relocatcs thc
marked nodes, if nccessaiy, so that they all appear in consecutive loca­
tions NODE (I), ... , NODE (k), and at the same timc the ALJNK and
BLJNK fields of nonatomic nodes are altered ifncccssaiy so that the !ist
structure is preserved.

I. Set L f--0, K f--M +1, MARK (O) f- 1, MARK (M +1) f- O.
2. L f-- L + 1, and if MARK (L) = 1 repeat this stcp.
3. K f-- K - 1, and ifMARK (K) = O repeat this step.
4. If L >K, go to step 5; otherwisc set NODE (L) f-- NODE (K),

ALINK (K) f- L, MARK (K) f- O, and return to 2.
5. For L = 1, 2, ... , K do the following: Set MARK (L) f- O. lf

ATOM (L) = O and ALINK (L) > K, set ALINK (L) f-- ALINK
(ALJNK(L)).

lf ATOM (LJ = O and BLINK (L) > K, set BLINK (L) ~ ALINK
(BLINK(L)).

§ 1 O. Multilinked structures

A multilinked structure involves nodcs with severa! link fields in
cach node, not just one or two as in our previous examples.

The problem we will consider arises in connection with writing a
compilcr program for translating COBOL and related languages.

A programmcr who used CO BOL may give alphabctic names to
thc quantitics in his program on severa! levels; for example, he may
havc two fi Ies of data for sales and purchases \Vhicb have thc following
structurc

44

I SALES
2 DATE

3 MONTH
3 DAY
3 YEAR

2 TRANSACTION
3 ITEM
3 QUANTITY
3 PRICE
3 TAX
3 BUYER

4 NAME
4 ADDRESS

I PURCHASES
2 DATE

3 DAY
3 MONTH
3 YEAR

2 TRANSACTION
3 ITEM
3 QUANTITY
3 PRICE
3 TAX
3 SHIPPER

4 NAME
4 ADDRESS

https://biblioteca-digitala.ro / https://unibuc.ro

This configuration indicates that each item in SALES consists of
two parts, the DATE and the TRANSACTION; the DATE is furthcr
dividcd into thrcc parts, and likcwisc TRANSACTION has fivc subdi­
visions. Similar rcmarks apply to PURCIIASES. Thc relative order of
these namc indicates thc order in which the quantitics appcar in externai
reprcscntations of thc file; note that in this example DA Y and MONTH
appear in opposite order in the two fi Ies. To refer to an individual vari­
ablc in thc ex ample abovc, it would nat be sufficient merely to givc the
namc DA Y; it could also write, more cornpletely, DA Y OF DA TE OF
SALES, but in general there is no need to givc more qualification than
ncccssary to avoid ambiguity. Thus, NAME OF SHIPPER OF TRAN­
SACTION OF PURCHASES, may be abbreviated to NAME OF
SHIPPER, since only one part of the data has been call ed SlIIPPER.

The rules may bc stated more prccisely as follows:
a) Each name is immediately preceded by an associated positive

intcgcr called its levei number. A name either refers to an elementary
item or else it is the name of a group of one or more itcms whose names
follow. In the latter case, cach item of the group must have the same
levei number, which must be grcatcr than the levei numbcr of the group
name.

b) To refer to an clemcnta1y' itcm or group of items na med A
0

, thc
general form is

A
0

OF A
1

OF ... OF A.,
whcrc n 2'. O and where, for O ~ j < n, A. is the name of some item

J
contained directly or indirectly within a group named A

1
~i· There must

be exactly onc itcm A
0

satisfying this condition.
c) 1f the same name A

0
appcars in severa I places, therc must be a

way to ref cr to each use of the name by using qual ification.
As an examplc of rulc (c), thc data configuration

IA
2B
3C
JO

2C

would not bc allowcd, sincc therc is no unambiguous way to refer to thc
sccond appcarancc of C. A programmer may writc

45

https://biblioteca-digitala.ro / https://unibuc.ro

MOVE CORRESPONDING ex TO p
which moves all items with corresponding names from data area a to
data area p. For example, the statement

MOVE CORRESPONDING DA TE OF SALES TO DA TE OF
PURCHASES

would mean that the values of MONTH, DA Y and YEAR from
the SA LES file are tobe moved to the variables DA Y, MONTH, YEAR
in the PURCHASES file.

Hence the problem is to design three algorithms which are to do
the following things:

1. To process a description of names and levei numbers, putting
the relevant information into tablcs for use in operations 2 and 3.

2. To determine if a given qualified reference, as in rule (b), is
valid, and when it is valid to locatc thc corresponding data item.

3. To find all corrcsponding pairs of items indicated by a COR­
RESPONDING statement. We will assume that a "syrnbol table sub­
routine" exists within our compiler, which will convert an alphabetic
name into a pointer to a memory location that contains a table entry for
that name. 1n addition to the Symbol Table, there is a larger table which
contains one entry for each item of data; we will call this the Data Table.

1n each Data Table entry we need five link fields:
PREV (a link to the previous entry with the same name, if any);
FA TflER (a link to the smallest group, if any, containing this

item);
NAME (a link to the Symbol Table entry for this item);
SON (a link to the first subitcm of a group);
BROTHER (a link to the next subitem in thc group containing

this item).
lt is clear that these data structures are essentially trees. As an

example of the multiple linking used, consider the two CO BOL data
structures

1 A IA

38

7C
3F

7D
3E

3F
7C 4G

4G

46
https://biblioteca-digitala.ro / https://unibuc.ro

lH lH
SF

8G
SB
SC

9E 8G
9D 9D 9G
9G

They would be represented as shown below. Note that the LINK
field of the Symbol Table entries points to the mast recently encoun­
tered Data Table entry for the symbolic name in question.

A

B

C

D

E

F

G

H

SYMBOL TABLE DATA TABLE

A I PREV F ATHER NAME SON BROTHER

BS
CS

D9

E9

FS
G9

HI

LINK

A 1

B3
C7
D7
E3
F3
G4
Hl

FS
G8
BS
CS

E9
D9
G9

A

A

A

A

A

A

A

A

F3
G4
B3
C7
E3
D7
G8

A

A I

B3
B3
Al

Al

F3
A

Hl

FS
H1

H1
CS

CS

CS

A B3 HI

B C7 E3
C A D7
D A A

E A F3
F G4 A

G A A

H FS A

F G8 BS
G A A

B A CS

C E9 A

E A D9
D A G9
G A A

Algorithm A (Build Data Table). This algorithm is given a se­
quence of pairs (L, P), where L is a positive integer "levei number"
and P points to a Symbol Table entry, corresponding to data structures.
This ordered sequence of pairs is in fact produced by traversing the
trees (non binary in general) in the order: Root, L, R. The algorithm
builds a Data Table. When P points to a Symbol Table entry that has not

47
https://biblioteca-digitala.ro / https://unibuc.ro

appearcd before, LINK(P) will equal A. This algorithm uses an
auxiliary stack which is treated as usual (using eithcr sequential or linkcd
allocation).

1. Set the stack contents to the single entry (O, A). (The stack
entrics throughout this algorithm are pairs (L, P), wherc L is an intcger
and P a pointer; as this algorithm proceeds, the stack contains thc levei
number and pointers to the last data entries on all levels higher in the
trec than the current leve!).

2. Let (L, P) be the next data item from the input. If the input is
cxhausted the algorithm terminates. Set Q (= A V AIL (Q is a location of
a new node in which we can put the next Data Table entry).

3. Set PREV(Q) ~ LINK (P), LINK (P) ~ Q, NAME(Q) ~ P.
4. Let the top entry of the stack be (Ll, Pl). If Ll < L, set

SON(Pl) ~ Q (or, if PI = A, set FIRST ~ Q, where FIRST is a vari­
able which is to point to the first Data Table entry) and go to 6.

5. If Ll > L, remove the top stack entry, Jet (LJ, PI) be the new
entry which has just come to the top of the stack, and rcpeat step 5.

If LI < L, signal an error (different nurnbers have occurred on the
sarne level).

Otherwise, i.e. when LJ = L, set BROTHER (Pl) ~ Q, remove
the top stack entry, and let (L 1, PI) be the pair which has just come to
the top of the stack.

6. Set FA THER(Q) ~ PI, SON(Q) ~ A, BROTHER(Q) ~ A
7. Place (L, Q) on the top of the stack, and retum to step 2.
The next problem is to locate the data table entry corresponding

to a reference A
0

OF A1 OF ... OF A", n 2'. O.

Algorithm B (Check a qualified reference). Corresponding
to referenceA

0
OF A

1
OF ... OF A,,, a Syrnbol Table subroutine will find

pointers P0 , PI' ... , P" to the Syrnbol Table entries for A0 , A I' ... , A,,, re­
spectively.

The purpose of this algorithm is to examine P0, PI' ... , P" and
either to determine that this rcfercnce is ambiguous, or to set variablc Q
to the address of the Data Table entry for the item refered to by it.

1. Set Q ~ A, P ~ LINK(P
0
).

2. If P = A, thc algorithm terminatcs; at this point Q will cqual A
if thc reference does not correspond to any Data Table cntry.

48
https://biblioteca-digitala.ro / https://unibuc.ro

Otherwisc set Sf- P and k f- O.
(S is a pointer variable which will run from Pup the tree through

FA THER links; k is an integer variable which goes from O to n. The
pointers P

0
, ... , P" may be kept in a linked list, and instead of k, we can

substitute a pointer variable which traverses this list).
3. If k < n go on to 4. Otherwise we have found a matching data

table entry; if Q * A, this is the second entry found, so an error condi­
tion is signaled. Set Q f- P, P f- PREV(P), and go to 2.

4. Set k f- k+ 1.
5. Set Sf- FA THER (S). If S = A, we have failed to find a match;

set P f- PREV(P) and go to 2.
6. If NAME(S) = Pk, go to 3, otherwise go to 5.
Note that the SON and BROTHER links are not needed by this

algorithm.
The statement MOVE CORRESPONDING ex. TO p where ex. and

p are references to data items, is an abbreviation for the set of all state­
ments MOVE r,.' TO W where there exists an integer n 2: O and n names
A0 , Al' ... , An-I such that ex.'= A0 OF A 1 OF ... OF An-I OF CX.

W =A0 OF A 1 OF ... OF An-I OF P (1)
and either r,.' or p' is an elementary item (not a group item). Furthermore
we require that (1) show complete qualifications, i.e., that Ai+I is the
father of A. for O $ j $ n - 1; ex.' and p' must be exactly n levels farther

J
down in the tree than ex. and p are.

ln our example, MOVE CORRESPONDING A TO H is an abbre­
viation for the statements MOVE B OF A TO B OF H; MOVE G OF F
OF A TO G OF F OF H The algorithm to recognize all corresponding
pairs ex.', P' proceeds as follows: we move through the tree, whose root
is ex., in preorder (root, L, R), simultaneously looking in the p tree for
matching names, and skipping over subtrces in which no corresponding
elements can possibly occur. The names A

0
, ... , A,,_

1
of (1) are discovcred

in the opposite order An-I' ... , A
0

•

Algorithm C (Find CORRESPONDING pairs). Given PO and
QO, which point to Data Table entries for ex. and p, respectively, this
algorithm successively finds all pairs (P, Q) of pointers to items (ex.',
P') satisfying the constraints mentioned above.

49
https://biblioteca-digitala.ro / https://unibuc.ro

1. Set P f-- PO, Q f-- QO. (In the remainder of this algorithrn, the
pointer variables P and Q will walk through trees having therespective
roots ex and P)-

2. If SON(P) = A or SON(Q) = A, output (P, Q) as one of the
desired pairs and go to 5. Otherwise set P f-- SON(P), Q f-- SON(Q).

3. (Now P and Q point to data items which have respective quali­
fications of the forms A0 OF A1 OF ... OF An-I OF ex and B0 OF A

1
OF ...

OF An-i OF p. The object is to see ifwe can make B0 = A0 by examining
all the names ofthe group A 1 OF ... OF An-i OF P).

IfNAME(P) = NAME(Q), go to 2 (a match bas been found).
Otherwise, if BROTHER(Q) -:t- A, set Q f-- BROTHER(Q) and

repeat step 3. (If BROTHER(Q) = A, no matching name is present in the
group, and we continue on to step 4).

4. If BROTHER(P) :;:. A, set
P f-- BROTHER(P) and Q f-- SON(FATHER(Q)),

and go back to 3. IfBROTHER(P) = A, set
P f-- FA THER(P) and Q f-- FA THER(Q).
5. If P = PO, the algorithm terminates; otherwise go to 4.
A pro of that this algorithrn is valid can readily be constructed by

induction on the size of the trees involved.
The five link fields are not all essential, although they are helpful

from the standpoint of speed in algorithrns B and C.
This situation is fairly typical of most multilinked structures.
lt is interesting to note that we can achieve the effects of algo­

rithms B and C, using only two link fields and sequential storage of the
Data Table, without a very great decrease in speed: PREV (as in the
text); SCOPE (link to the last elementary item in this group). We have
SCOPE(P) = P if and only if NODE(P) represents an elementary
item and NODE(P) is part of the tree below NODE(Q) if and only if
Q < P $ SCOPE(Q).

§ 11. Dynamic storage allocation

We have seen how the usc oflinks implies that tables need not be
sequentially locatcd in memory; a number oftables may independently
grow and shrink in a common „pooled" mcmory arca. For a great num-

50
https://biblioteca-digitala.ro / https://unibuc.ro

bcr of applications a single node sizc is not reasonablc; we often wish to
havc nodes of varying sizes sharing a common memory area. Putting
this anothcr way, we want algoritrns for reserving and freeing variable­
sizc blocks of memory from a largcr storage area, wherc these blocks
are to consist of consecutive mcmory locations. Such techniques are
generally callcd „dynamic storage allocation" algorithms. Somctimes,
oftcn in simulation programs, wc want dynamic storagc allocation for
nodes of rather small sizcs (say onc to ten words); and at other times,
often in „executive·' control programs, wc arc dcaling primarily with
rather large blocks of information.

For unifonnity in terminology between these two approaches, we
will generally use the tem1s block and area rather than „node" in this
section, to denote a set of contiguous memory locations.

A. Reservation. The problems wc want to solve arc the following:
a) How is this partitioning of available space to be represented

inside the computer?
b) Given such a representation of the available spaces, what is a

good algorithm for finding a block of n consecutive frec spaces and
reserving them?

Thc answcr to question (a) is, of course, to kcep a !ist of the avail­
able spacc somcwhere; this is almost always done best by using thc
availablc spacc itself to contain such a !ist.

An exception is the case whcn wc are allocating storage for a
disk file or othcr memory in which nonuniform access timc makes it
better to maintain a separate dircctory of available space.

Thus, we can link together the available segments: the first word
of cach frec storage arca may contain the size of that block and the
address of thc next frecarea. Thc free blocks can be linked together in
increasing or decrcasing order of size, or in order of memory address, or
in essentially random order. As for question (b), if we want n consecu­
tive words, clcarly wc must locate some block of m ~ n available words
and reduce its size tom - n.

Furthcm10rc, when m = n, wc must alsa delete this block from
the !ist. Therc may bc severa) blocks with n or more cclls, and so the
question bccomcs which arca should be chosen?

Two principal answers to this qucstion suggest themselves: We
can usc the „best-fit" mcthod or thc .,first-fit" method. ln the fom1er
case, we decide to choosc an arca with m cells, whcre m is the smallcst

51

https://biblioteca-digitala.ro / https://unibuc.ro

value present which is n or more. This usually requires searching the
entire list of availahle space hefore a decision can he made. The „first­
fit" method, on the other hand, simply chooses thc first area encoun­
tered that has :2'. n words. Historically, the hest-fit method was widely
used for several years; this naturally appears to he a good policy since it
saves the larger availahle areas for a later time when they might he
needed. But severa! ohjections to the hest-fit technique can he raised:

lt is rather slow, since it requires a fairly long search; more im­
portant, the hest-fit method tends to increase the number of very small
blocks, and proliferation of small blocks is usually undesirahle.

Algorithm A. (F i r s t - fi t m e t h o d). Let A V AIL point to
the first availahle block of storage, and suppose that each available
block with address P has two fields: SIZE(P) , the number of words în
the block, and LINK(P), a pointer to thc next available block. The last
pointer is A. This algorithm searches for and reserves a block of N
words, or reports failure.

1. Set Q f-- LOC (AVAIL) (Throughout the algorithm we use
two pointers, Q and P which are generally related by the condition
P = LINK(Q). We assume that

LINK(LOC(AVAIL)) = AVAIL).
2. Set P f-- LINK(Q). If P = A, the algorithm terminates unsuc­

cessfully, there is no space for a block of N consecutive words.
3. If SIZE(P) ~ N, go to 4; otherwise set Q f-- P and retum to 2.
4. Set K f-- SIZE(P) - N. If K = O, set LINK(Q) f-- LINK(P).

Otheiwise set SIZE(P) f-- K.
The algorithm terminates successfully, having reserved an area

of length Nheginning with location P + K.
Let us temporariiy assume, howcver, that we are primarily inter­

ested in large values of N.
We would have been better off if we had reserved the whole

block of N + K words when K is very small, instead of saving K extra
words.

If we allow the possibility ofreserving slightly more than N words,
it will be necessary to remember how many words have been resen-ed,
so that later when this block becomes available again the entire set of N
+ K words is freed. Hence it is usually to expect the SIZE field to be
prescnt in the first word of every block whether it is a vai labie or not.

52
https://biblioteca-digitala.ro / https://unibuc.ro

In accordance with these convcntions, we would modify step 4
above to read as follows:

4 ', Set K f- SJZE (P) - N. If K < c (where c is a small positive
constant chosen to reflect an amount of storage we are willing to sacri­
fice in the interests of saving time), set

LINK(Q) f- LINK(P) and L f- P.
OtheIWise set SIZE(P) f- K, L f- P + K and SIZE(L) f- N.
The algorithm tenninates successfully, having reserved an area

of length Nor more beginning with location L.
When the best-fit method is being used, the test K < c is even

more important than it is to the first-fit method, because smaller values
of K are much more likely to occur, and the number of available blocks
should be kept as small as possiblc for that algorithm.

B. Liberation. Now let us consider the inverse problem: How
should we retum blocks to the available space list when they are no
longer needed?

The only difficulty in liberation methods is the collapsing pro­
blem: two adjacent free areas should be merged into one. In fact, when
an area bounded by two available blocks becomes free, all three areas
should be merged together into one. In this way a good balance is ob­
tained in memory even though storage areas are continually reserved
and freed over a long period of time (see the „fifty-percent rule" below).

The problem is to determine whether the areas at either side of the
retumed block are currently available; and if they are, we want to update
the AVAIL list properly.

We will consider a method which eliminates all scarching when
storage is retumed to the A V AIL !ist.

This technique makes use of a TAG field at both ends of each
block, and a SIZE field in the first word of each block, this „overhead"
is negligible when reasonable large size blocks are being used.

The method we will describe assumes each block bas the follow­
ing form:

53

https://biblioteca-digitala.ro / https://unibuc.ro

Reserved block

TAG=+ TAGI SIZE I

TAG=+ TAGI .____. ____ __,

First word

Second word

Last word

Free block

TAGI SIZE LIMK TAG=-

LINK

TAGI SIZE TAG=-

The idea in the following algorithm is to maintain a doubly linked
AVAIL list, so that entries may conveniently be deleted from random
parts of the list.

The TAG field at either end of a block can be used to control the
collapsing process, since we can tel1 easily whether or nat both adjacent
blocks are available.

Double linking is achieved by letting the LINK in the first word
point to the next free block in the list, and letting the LINK in thc second
word point back to the previous block; thus, if P is the address of an
available block, we always have

LINK(LINK(P)+l) = LINK(LINK(P+l)) = P
To ensure proper „boundary conditions", A VAIL and the follow­

ing location are set up as follows:

LOC(AVAIL):

LOC(AVAIL) + 1: I
= I ➔ to first block in AVAIL space list

=-===-======:::+~to last block in available spacc list

A „first-fit" reservation algorithm for this technique may bc
designed very much like Algorithm A. The principal new feature of this
method is the way a block can be freed în csscntially a fixed amount of
time:

Algorithm C (L i b e r a t i o n w i t h b o u n d a r y t a g s).
Assumc that blocks of locations have thc fonns shown above, and as­
sume that the AVAIL list is doubly linkcd. This algorithm puts thc block

54

https://biblioteca-digitala.ro / https://unibuc.ro

oflocations starting with address PO ioto the A VAIL list. lfthe pool of
available storage tuns from locations m

0
through m1

, inclusive, the algo­
rithrn assumes for convenience that

TAG(m
0

- l)=TAG(m
1

+ 1)=+.
1. lf TAG(PO - 1) = +, go to 3.
2. Set P f-- PO - SIZE (PO - 1), and then set Pl f-- LINK(P),

P2 f-- LINK(P + 1), LINK(Pl + 1) f-- P2, LINK(P2) f-- PI,
SIZE(P) f-- SIZE(P) + SIZE(PO), PO f-- P.

3. Set P f-- PO + SIZE(PO). If TAG (P) = +, go to 5.
4. Set Pl f- LINK(P), P2 f-- LINK(P+ 1), LINK(Pl + 1) f- n,

LINK(n) f- Pl, SIZE(PO) f-- SIZE(PO) + SIZE(P), P f-- P + SlZE(P).
5. Set SIZE(P - 1) f- SIZE(PO), LINK(PO) f- LINK(A V AIL),

LINK (PO + 1) f-- LOC(AVAIL), LINK(LINK(AVAIL) + 1) f-- PO,
LINK.(AVAIL)f-PO, TAG(PO)f--TAG(P-l)f---.

The „buddy system ". This rnethod takes one bit of „overhead" in
each block, and it requires all blocks tobe oflength 2k(k?. O, kinteger).
If a block is not 2k words long for some integer k, the next higher power
of 2 is chosen and extra unused space is allocated accordingly. When
this method is applicable it bas an advantage of speed, especially in
,,real-time" situations.

The idea ofthis method is to keep separate lists ofavailable blocks
of each size 2\ O $ k $ n. The entire pool of memory space under
allocation consist of 2"' words, which we will assume for convenience
have the addresses O through 2m - 1. Originally, the entire block of 2m
words is available.

Later, when a block of2kwords is desired, and ifnone ofthis size
are available, a larger available block is split into two equal parts; ulti­
mately, a block of the right size 2* will appear.

When one block splits into two (each of which is half as large as
the original), these two blocks are called buddies.

Later when both buddies are available again, they coalesce back
into a single block; thus the process can be maintained indefinitely
(unless we tun out of space at some point).

lfwe know the addrcss of a block (i.e., the memory location ofits
first word), and if we also know the size of that block, we know the
address of its buddy.

55
https://biblioteca-digitala.ro / https://unibuc.ro

The address of a block of size 2k is a multiple of 2k and this prop­
erty îs easily justified by induction. In general, let buddyk (x) = address
of the buddy ofthe block of size 2k whose address îs x; wc can prove by
induction on k that:

{

x + 2k, if x = 0(mod 2k+t)
buddyk(x) =

x - 2k, if x = 2k (mod 2k+t)

The buddy system makes use ofa one-bit TAG field in each block:
TAG(P) = O, ifthe block with address P is reserved;
TAG(P) = 1, if the block with address P is available.
Besides this TAG field, which is present in all blocks, available

blocks also have two link fields, LINKF and LINKB, which are the
usual forward and backward links of a doubly linkcd list. Thcy also
have a KV AL field to specify k when their size is 2k. The algorithrns
below make use of the table locations AVAIL[0], AVAIL[l] , ... ,
A V AIL[n], which serve respectively as the heads of the lists of avail­
able storage of sizes 1, 2, 4, ... , 2m.

These lists are doubly linked, so as usual the list heads contain
two pointers:

AV AILF[k] = LINKF(AV AIL[k])) = link to rear of AV AIL[k] list;
AVAILB[k] = LINKB(LOC(AVAIL[k])) = link to front of

AVAIL[k] list.
Initially, before any storage has been allocated, we have

AV AILF[m] = AV AILB[m] = O,
LINKF[0] = LINKB[0] = LOC(AVAIL[m]),

TAG(0) = 1, KVAL(0) = m
(indicating a single available block oflength 2m, beginning in Iocation O),
and a\so AV AILF[k] = AVAILB[k] = LOC(AV AIL[k]), for-O$ k < m,
indicating empty lists for available blocks of lengths 2k for all k < m.

Algorithm R (B u d d y s y s t e m r e s e r v a t i o n). This
algorithm finds and reserves a block of 2* locations, or reports failure,
using the organization of the buddy system.

1. Set j be the smallest integer in the range k $ j $ m for which
A V AILF[i] -:t:. LOC (A V AIL[i]), that îs, for which the list of available
blocks of size 2J îs not empty. lf no suchj exists, the algorithm termi­
natcs unsuccessfully, since therc are no known available blocks of suffi­
cient size to meet the request.

56

https://biblioteca-digitala.ro / https://unibuc.ro

2. Set L f-- A V AILF[i], A V AILF[i] f- LINKF(L),
LINKB(LINKF(L)) f- LOC(AVAIL[i]), and TAG(L) f- O.

3. If k = }, the algorithm terminates (we have found and reserved
an available block starting at address L).

4. j f-- j - 1. Then set
P f-- L + 2!, TAG(P) f-- 1, KVAL(P) f- },

LINKF(P) f- LOC(A V AIL[11), LINKB(P) f- LOC(A V AIL[i]),
A V AILF[J1 f- A V AILB[i] f- P.

(This splits a large block and enters the unused half in the
A V AIL[j] list which was empty). Go back to step 3.

Algorithm S (B u d d y s y s t e m 1 i b e r a t i o n)
This algorithm retums a block of 2k locations starting in address

L to free storage, using the organization ofthe buddy system.
1. Set P f-- buddy/L). If k = m or if TAG(P) = O, or if TAG

(P) = 1 and KV AL(P) ::1: k, go to 3.
2. Set LINKF(LINKB(P)) f- LINKF(P), LINK.B(LINKF(P)) f-

LINKB(P).
(This removes block P from the AV AIL[k] list).
Then set k f-- k + 1, and if P < L set L f-- P.
Retum to 1.
3. Set TAG(L) f- 1, LINKF(L) f- AVAILF[k],

LINKB{AVAILF[k]) f- L, KVAL(L) f- k, LINKB(L) f­

LOC(A V AIL[k]), A V AILF[k] f- L.
(This puts block Lin the top ofthe AV AIL[k] list).
We can prove an interesting phenomenon, the so-called „fifty­

percent rule":
„If algorithms A and C are used continually in such a way that

the system tends to an equilibrium condition, where there are N reserved
blocks in the system, on the average, each with an independent lifetime,
and where the quantity K in algorithm A takes on nonzero values (or
values;;:: c asin step 4') with probability p, then the average number of

I
available blocks tends to approximately 2 pN'.

When the quantity p is near 1 - this will happen if c is very small
and if the block sizes are not frequently equal to each other - we have
about half as many available blocks as unavailable ones.

57

https://biblioteca-digitala.ro / https://unibuc.ro

In order to deduce this rule consider the following rncrnory rnap:

ex p y y p ex-

···I I
The reserved blocks are divided into three typcs:

ex : when freed, the nurnber of availablc blocks will decrease
by one;

P : when freed, the nurnber of available blocks will not change;
y : when freed, the number of available blocks will increase by

one.
Now let N be the number of reserved blocks, and let M be the

number of available o nes; let A, B and C be the number ofblocks of the
types ex, p and y, respectively.

We have
N=A+B+C

1
M= 2 (2A +B+E),

where E = O, 1 or 2 depending on conditions at the lowcr and upper
boundaries.

To derive the fifty-percent rule, we set probability that M increases
by one = probability that M decreases by one (or the average change in
M is set to zero during equilibrium). This leads to

c· A
-=-+1-p
N N

If E is assumed to be zero (when M and Nare assurned to be

1
reasonably large), we get N - 2M + A = A + (l - p)N, or M = 2 pN and

the rule follows.

https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 2

Sorting techniques

Sorting a set with respect to some ordering is a very frequently
occuring problem. IBM estimates that about 25% of total computing
time is spcnt on sorting in commercial computing centers. The most
important applications of sorting are (according to Knuth):

a) Collecting related things: In an airline reservation system one
bas to manipulate a set of pairs consisting of passenger name and flight
number. Suppose that we keep that set in sorted order of passenger names.
Sorting according to flight number then gives us a !ist of passengers for
each flight.

b) Finding duplicates: Suppose that we are given a !ist of N
persons and are asked to find out which of them are prcscnt in a group of
M persons (M $ N). An efficient solution is to create a !ist ofthe persons
in the group, sort both lists and then compare them in a sequential scan
through both lists.

c) Sorting makes searching simplcr as we will sec latcr.
We give a formal definition ofthe sorting problem. Given is a set

of N objects (records) R
1
,R

2
, ... ,RN" Each objectR; consists ofa key (namc)

K; and some information associated with that name. An important fact is
that the keys are drawn from some linearly ordered universe U; we use
$ to denotc thc linear order (e.g., the lexicographic order on words or
the usual order relation between real numbers). We want to find a rear­
rangement of the obj ects, or a permutation p(I)p(2) .. . p(N) such that

Kp(l) $ Kp(2) $ $ Kp(,\~

În some cases we will want the records to be physically rcar­
ranged in memory so that their keys are in order, while in other cases it
may be sufficient merely to have an auxiliary table of some sort which
spccifies the permutation.

59

https://biblioteca-digitala.ro / https://unibuc.ro

If the records and/or the keys each take up quite a few words of
computer memory, it is often better to make up a new table of link
addresses which point to the records, and to manipulate these link ad­
dresses instead of moving the bulky records around. This method is
called address table sorting (see Fig. I).

Key

Satellitc
infonnation

Before
sorting

After
sorting

Fig. 1. Address table sorting.

R1

19 Key

List head

Fig. 2. List sorting.

Satellite
infonnation

Link tield
(after
sorting)

If thc key is short but the satellite information of the records is
long, the key may be placed with the link addresses for greater speed;
this is called key sorting. Other sorting schemes utilize an auxiliary link
field which is included in each record; these links are manipulated in
such a way that, in the final resuit, the records are linked together to
forma straight linear list, with each link pointing to the following record.
This is called !ist sorting (see Fig. 2).

After sorting with an address table or !ist method, the records can
be rearrangcd into increasing order as desired. There are severa! ways to
do this, requiring only enough additional memory space to hold one
record; altematively, we can simply move the records into a new area
capable of holding all records. The latter method is usually about twice
as fast as the former, but it demands nearly twice as much storage space.
It is unnecessary to move the records at all, in many applications, sincc
the link fields are often adequate for subsequent addrcssing operations.

As an example of the first method wc shall dcscribe an efficient
algorithm which replaces the N quantities (Rp··-,R_,.,,) by (Rp(l)'···,Rr("'},

60

https://biblioteca-digitala.ro / https://unibuc.ro

respectively, given the values of Rp···,RN and thepermutationp(l) ... p(N)
of { 1 , ... ,N}, obtained after an address table sort, without requiring space
for storing 2N records.

Algorithm P
1. Do step 2 for 1 -S. i -S. N, then terminate the algorithm.
2. Do steps 3 through 5, if p(i) * i.
3. Set t f- R;,J f- i.
4. Set k f- p(j), R1 f- Rk, p(j) f- j, j f- k.

lf p(j) * i, repeat this step.
5. Set R

1
f- t, p(j) f- j.

This algorithm is bas ed on the cycle structure of the permutation
p; it changes p(i), since the sorting application lets us assume that p(i) is
stored in memory. On the other hand, there are applications such as
matrix transposition where p(i) is a function of i which is to be com­
puted (not tabulated) in order to save memory space. 1n such a case we
can use the following method, performing steps Bl through B3 for
I -S. i -S.N:

BJ. Set k f- p(i)
B2. If k > i, set k f- p(k) and repeat this step.
B3. If k < i, do nothing; but if k=i (this means that i is smallest

in its cycle), we permute the cycle containing i as follows:
Set t f- R;; then while p(k) * i repeatedly set Rk f- Rp(kl and

k f- p(k); finally set Rk f- t.
Wc will discuss sorting algorithms that are generally compari­

son-based, i.e. they make only use of the fact that the universe is
linearly ordered. Thcy belong to the following classes: sorting by
counting, sorting by insertion, sorting by exchanging, sorting by selec­
tion, sorting by merging; finally we shall discuss minimum - compari­
son sorting (asymptotic behaviour).

§ 1. Sorting by counting

This simple method is based on the idea that the j-th key in the
final sorted scquence is greater than exactly j - 1 of the other keys. So
the idea is to compare each pair of keys, counting how many are less
than each particular one. We need merely to ((compare K with K) for

} I

1 -S.j < i) for 1 < i -S. N. Hence wc are led to the following algorithm.

61
https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm C (Comparison counting). This algorithm sorts
Rl' ... ,RN on the keys Kp ... ,KN by maintaining an auxiliary table CO UNT
[1], ... ,COUNT [N] to count the number of keys less than a given key.
After the conclusion of the algorithm, COUNT [i]+ 1 specifies the final
position ofrecord R ..

t. Set coUNf [1) through COUNT [N] to zero.
2. Perform step 3, for i = N,N-1, ... ,2; then tem1inate the algorithm.
3. Perform step 4, for j = i -1, i - 2, ... , 1.
4. If Kj < JS, increase COUNT [i] by I; othenvise increase COUNT

[i] by 1.
This algorithm involves no movement of records. lt is similar to

an address table sort, since the COUNT table specifies the final arrange­
ment of records. But it is somewhat different because CO UNT [i] tells
us where to move R instead of indicating which record should be moved

J
into the place of R; thus the „inverse" ofthe permutationp(l) .. .p(n) is

J
specified in the COUNT table. Note that algorithm C gives the correct
resuit no matter how many equal keys are present.

Since the number of pair comparisons made in step 4 is equal to

(A') N
2
-N

2 =
2

, the factor N2 dominates the running time of this algo-

rithm. Hence this is nat an efficient way to sort when N is large; we will
sec latcr that the average running time can bc reduced to order N log N
using the „partition exchange" technique.

There is another way to sort by counting which is quite important
from the standpoint of efficiency; it is primarily applicable in thc case
that many equal keys are present, and when all keys fall into thc range
u ::S K

1
:5 v, where v - u is small.

Algorithm D (Distribution counting). Assuming that al! keys
arc integers in the range u :5 fS :5 v for 1 :5) :5 N, this algorithm sorts the
records Rp ... ,RN by making use of an auxiliary table COUNT
[u], ... ,COUNT [v].

At the conclusion of thc algorithm thc rccords arc movcd to an
output are a SI' S.v in the dcsired order.

1. Set COUNT [u] through COUNT [v] all to zero.

62
https://biblioteca-digitala.ro / https://unibuc.ro

2. Perfom1 step 3 for l s j s N; then go to 4.
3. Increase the value of COUNT[K.] by 1.
4. (At this point COUNT[i] is th~ number of keys which are

equal toi). Set
COUNT[i] f- COUNT[i] + COUNT[i-1]

for i = u+ 1, u+2, ... ,v.
5. (At this point CO UNT [i] is the number of keys which are less

than or equal toi; in particular COUNT [v] = N).
Perform step 6 for j = N, N - I, ... , 1; then terminate the algorithm.
6. Set i f- COUNT [K); Sj f- R , and

COUNT [K.j f- i - 1.
Under the conditions stated abov~, this sorting procedure is very fast.

§ 2. Sorting by insertion

Assume that 1 <j s N and that records Rl' ... ,Rj-I have been rear­
ranged so that

Kl S K2 s ... s K._l
Wc compare the new key K with JS-I'JS-2, ••• , in turn, until disco­

vering that Rj should be inserted between records R; and R;+i; then we
move records Ri+I''"''Rj-I up one space and put the new record into posi­
tion i+ 1.

Algorithm S (Straight insertion sort). Records Rl' ... ,RN are
rearranged in place; after sorting is complete, their keys will be in order,
K1 $; ... sK1v

1. Perform steps 2 through 5 for j = 2, 3, ... ,N; then terminate the
algorithm.

2. Setif-j-1,Kf-JS;Rf-RF
3. If K ~ K;, go to step 5. (We have found the desired position for

record R).
4. Set R;+i f- R;, then i f- i-l. If i > O, go back to step 3. (If i=0,

K is the smallest key found so far, so record R belongs in
position 1).

5. Set R;~i f- R.
Ifwe want to make improvements over straight insertion, we need

some mechanism by which the records can take long leaps instead of
short steps.

63
https://biblioteca-digitala.ro / https://unibuc.ro

Such a method was proposed by Donald Shell; we shall call it the
diminishing increment sort. Any sequence h„h, _ l' ... ,h

1
of increments

can be used, so long as the last increment h
1

equals 1.

Algorithm D (Diminishing increment sort). Records Rp ... ,RN
are rearranged in place; after sorting is complete, their keys will he in
order, K1 s ... s K,r An auxiliazy sequence of increments h1,h1_l' ... ,h1 is
used to control the sorting process, where h 1 = 1 ; proper choice of these
increments can significantly decrease the sorting time. This algorithm
reduces to Algorithm S when t= 1.

1. Perform step 2 for s=t,t-1, ... ,1; then terminate the algorithm.
2. Set h f--- h,, and perform steps 3 through 6 for h <j s N. (We

will use a straight insertion method to sort elements that are h
positions apart, so that K; s Ki+h for 1 s i s N-h).

3. Set i f-- j-h, K f--- JS, R f--- Rr
4. If K;;:: K;, go to step 6.
5. Set R;+h f--- R;, then i f--- i-h. If i > O, go hack to step 4.
6. Set Ri+h f--- R.

§ 3. Sorting by exchanging

We come now to the second family of sorting algorithms: ,,ex­
change" or „transposition" methods which systematically interchange
pairs of elements that are out of order until no more such pairs exist.

The bubble sort. We compare K
1

with K2, interchanging R
1

and
R

2
if the keys are out of order; then we do the same to R2 and R

3
, R

3
and

R
4

etc. During this sequence of operations, records with large keys will
move up. Repetitions of the process will get the appropriate records into
positions R,.~ RN-I' RN-i etc., so that all records will ultimately he sorted.

The method is called „buhhle sorting" becausc large elements
„bubhle up" to their proper position. After each pass through the file, it
is not hard to see that all records abovc and including the last one tobe
exchanged must be in their final position, so they need not be examined
on subsequent passes.

Algorithm B (Bubble sort). Records Rp ... ,RN are rearranged in
place; after sorting is complete their keys will be in order, K

1
:::: s Kw

64

https://biblioteca-digitala.ro / https://unibuc.ro

l. Set BOUND f- N. (BOUND is thc highest index forwhich the
record is not known tobe 1n its final position).

2. Set t f- O. Pcrfom1 step 3 for j= 1,2 , BOUND -1, and thcn
go to step 4.

3. lf K
1

> KFI' intcrchangc R
1
f➔ R

1
• 1 and set t f- j.

4. lf t=O, thc algorithm tcrminates. Otherwise set BOUND f- t
and rctum to stcp 2.

Quicksort. Consider thc following comparison/exchangc scheme:
Keep two pointers, i and j, with i= I and j=N initially. Compare K,: J<S.
and if no exchangc is necessary decrease j by 1 and rcpeat thc process.
After an exchange first occurs, incrcase i by 1, and continue comparing
and incrcasing i until anothcr cxchange occurs. Thcn dccrcase j again,
and so on, ,,buming the candlc at both ends", until i=j.

Each comparison will involve the original value of K
1
, because it

kecps getting cxchanged every time wc switch directions. By thc time
that i=j, the original record R

1
will have moved into its final position,

since there will bc no greatcr kcys to its left and rio smallcr keys to its
right. Toc original file will have bcen partitioncd in such a way that thc
original problem is rcduced to two simplcr problems, sorting Rp···,R;. i

and indepcndcntly sorting R,w···,R,,._,. Wc can apply thc samc tcchnique
to each of these subfiles.

Inside a computer, thcsc subfiles can be representcd by two vari­
ables / and r (the boundaries of thc sub file currently under examination)
and a stack of additional pairs (/k,rk). Each time thc file is subdivided,
we put thc largest subtile on the stack and commence work on the othcr
one, until we reach trivially short files; this proccdurc assures that the
stack will never contain more than about log

2
N cntries. This sorting

proccdurc is duc to C. Hoare and is called partition-cxchange sorting.
The partition-cxchangc (or quicksort partitioning proccdurc) is

suitable for large N; therefore it is desirable to sort short subfilcs in a
special manner as in the following algorithm.

Algorithm Q (Partition-exchange sort). Records Rp···,Rv arc
rearranged in place; after sorting is complete thcir keys will bc in ordcr,
Kl$ $ K,v-

An auxiliary stack with at rnost log
2
N entries is needed for tem­

porary storagc. This algorithm follows the quicksort partitioning proce­
dure dcscribed in the text above. with slight modifications for extra cf~
ficiency:

65
https://biblioteca-digitala.ro / https://unibuc.ro

a) We assumc the presence of artificial keys K0= -oo and K:v+i =oo
such that K

0
$ K; $ KN+I for cvery I $ i $ N.

b) Subfiles of Mor fcwer elements are sorted by straight inscr­
tion, whcre M;? 1 is a parametcr which must be initially chosen.

c) One or two extra comparisons are made during particular stages
(allowing the pointers i, j to cross), so that the main comparison loops
can bc as fast as possiblc.

d) Records with equal keys are exchanged although it is not strictly
necessary to do so (This idea hclps to split subfiles nearly in half when
equal elements are present).

1. Set the stack empty, and set / f- I, r f- N.
2. (We now wish to sort the subtile R1, ••• ,R,; we have,. ~ /-1, and

K1_
1

$ K; s; K,+i for l s; i $ r). If r-l < M, go to step 8. Otherv.'Îse
set i f- /, J f- r, K f- K1, R f- R„

3. If K < K, decreasej by 1 and repeat this step.
J •

4. If j S i, set R; f- R and go to 7. Otherw1se set R; f- Ri and
increase i by 1.

5. lf K; < K, increase i by 1 and repeat this step.
6. lfj S i, set Ri f- R and i f- j. Otherwise set Ri f- R;, decreasej

by /, and go to 3.
7. (Now the subtile R,. .. R, ... R, has been partitioned so that K* S K,

for/ s; k s; i and K; $ Kk for i S k s; r).
If r-i ~ i-l, insert (i+ 1,r) on top of the stack and set r f- i-t.

Otherwise insert (/.i-1) on top of the stack and set I f- i+ 1. (Each entry
(a,b) on the stack is a request to sort the subtile Ra ... Rb at somc future
tirne).

Now go back to step 2.
8. For j=l+ 1, /+2, ... , until j > r do the following operations: Set

K f- K, R f- R, i f- j-1; then set R;+i f- R;, i f- i-l zero or
more dmes undi K; $ K; then set R;.,.

1
f- R. (This is algorithrn

of sorting by insertion, applied to a subtile of M or fewcr
elemcnts).

9. Ifthe stack is empty, we arc done sorting; otherwise removc its
top entry (/', r'), set/~/', r ~ r', and return to stcp 2.

Quicksort is an example for a very powerful problem solving
mcthod: divide and conqucr. A problem is split into scvcral smaller

66
https://biblioteca-digitala.ro / https://unibuc.ro

parts (divide) which are thcn solvcd using the same algorithm rccur­
sivcly (conquer). Finally the answer is put together from thc answcrs to
thc subproblcms.

Wc have secn that a good solution encloses an array S[l ... n] with
two addition clements S[0] and S[n+ 1] such that S(0] $ S[i] $ S[n+ 1] for
all i. Quicksort can be also written as a recursive procedure in a more
compact fom1 as follows:

procedure Quicksort (/, r);
co Quicks01t (l,r) smts thc subarray S[/], ... ,S[r] into increasing order;

(1) begin i t- l, k t- r+ I, St- S[l];

end;

end

(2) while i < k do
(3) begin repeat i f- i+ l until S[i] 2: S;
(4) repeat k f- k-1 until S[k] $ S;
(5) if k > i then exchangc S[k] and S[i]

(6) exchange S[/] and S[k];
(7) if l < k-1 then Quicksort (l. k-1);
(8) if k+ 1 < r then Quicksort (k+ 1,r)

Although thc maximal numbcr QS(n) of key comparisons which
arc necdcd on an array of n elemcnts is quadratic (QS(n) = O(n2

) and this
is achieved for examplc for thc array 1 ,2, . .. ,n), the average case behaviour
is much better.

We analysc it undcr thc assumption that kcys are pairwise
distinct and that all pcmrntations of thc kcys arc equally likely.

We may thcn assume w.1.o.g. that thc kcys are the integcrs 1, ... ,n.
Key S

1
is equal to k with probability lin, 1 $ k $ n.

Then subproblcms of size k-1 and n-k have to be solved recur­
sively and thcsc subproblems are again random sequences, i.e. they
satisfy thc probability assumption set forth above. This can be scen as
follows.

If S
1
=k, then array S looks as follows just prior to exccution of

line (6):

k i,i2···ik-ljk+IJk+~···Jn

Herci1 ... i, 1 isapcrmutationofintcgcrs 1, ... ,k-1 andjH, ... J.isa
perrnutation of intcgers k+l , ... ,n. How did the array look like beforc the
partitioning step? lf s intcrchangcs occurcd in line (5) then there are s

67
https://biblioteca-digitala.ro / https://unibuc.ro

positions in the left subproblem, i.e. arnong array indices 2, ... ,k, and s

positions in the right subproblem, i.e. among k+l, ... ,n, such that the
entries in these positions were interchanged paixwise, narnely the leftmost
selected entry in the left subproblem with the rightmost selected entry in
the right subproblem, and so on. Thus there are exactly

arrays before partitioning which produce the array above by the parti­
tioning process.

The important fact to observe is that this expression only depends
on k but not on the particular permutations il' ... ,ik-1 andjk+I'··-J". Thus
al! pennutations are equally likely, and hence the subproblems of size
k-1 and n-k are again random.

Let QSa,.(n) be the expected number of comparisons on an input
of size n. Then

QSa.(O) = QSav(l) = o
and

I n
QSav(n)=; L (n+ I+QSav(k- I)+QSav(n-k))=

k=I

2
n-1

=n+ 1+-L QSav(k)
n k=O

for n;;:: 2.

68

We solve this recurrence as follows: Multiplication by n gives us:

n-1

nQS0 v(n) = n(n +I)+ 2 2' QS0 v(k)

k=O

Subtracting from this the equality for n-1 instead of n, yields

QSav(n) 2 QSav(n-1)
---=--+----

n+l n+l n

QSav(n)
By denoting P(n) = --- we get

n+ 1

https://biblioteca-digitala.ro / https://unibuc.ro

2 2 2
P(n) = -+ P(n - 1) = - + - + P(n - 2) = ...

n+I n+l n

(1 l 1)
... = 2 n+I +;+ .. .+3 sinceP(l)=O.

1 1 3 1 1
But --+ .. .+-

3
=Hn+1 -- where Hn+1 =1+-+ ... +-- îs the

n+l 2' 2 n+l
(n+ 1)-th harmonic number (H" - ln n ➔ y:::: 0.57, Euler's constant, as
n ➔ oo). Hence

QSav(n) = 2(n + 1>(Hn+I -¾) $ 2(n + 1) ln(n + 1).

The run time of the partitioning phase is proportional to the num­
ber of comparisons and the total cost of all other operations is O(n).
Thus quicksort sorts n elements with run time O(n2

) in the worst case
and it uses at most 2(n+ 1)ln(n+ 1) comparisons and time O(n log n) on
the average.

Quicksort has quadratic worst case behaviour; the worst case
behaviour occurs on the completely sorted sequence. Also almost sorted
sequences, which occur frequently in practice, are unfavourable to
Quicksort. There is an interesting way out ofthis dilemma: randomiz:ed
Quicksort. We change the algorithm by replacing line (1) by:

(la) begin i f-- I; k f-- r+ 1;
(lb) j f-- a random element of {O, ... ,r-/};
(le) interchange ~1/] and S[/+j];
(1 d) Sf- S[/];

§ 4. Sorting by selection

Another important family of sorting techniques is based on the
idea of repeated selection: find the smallest key and move it into its
proper position by exchanging it with the record currently occupying
that position. Then we need not consider that position again in future
selections. This idea yields our first selection sorting algorithm.

Algorithm S. (Straight selection sort). Records R
1

••• RN are
rearranged in place; after sorting is complete, their keys will be in order,
Kl:S ... :SKN.

69

https://biblioteca-digitala.ro / https://unibuc.ro

Sorting is based on the mcthod indicated above, except that it
provcs to be more convenient to select the largest clement first, then thc
second largest etc.

1. Perfom1 steps 2 and 3 for}= N, N-1 , ... , 2.

2. Search through keys K, K
1

, ••• , K
1

to find a maximal onc; Jet
it be K.

1 1

I

3. Interchange records R H R.. (Now records R , ... ,R„ are in their
I j J ••

final position).
The number of comparisons needed for this algorithm is equal to

(
N) N(N-1)
2 =

2
, rcgardless of thc values of the input keys, but it

involves very littlc data movemcnt.
Can this algorithm be improved upon the method for finding the

maximum ? The answer to this question is no, at least, if we restrict
oursclves to comparison-based algorithms. In comparison-based algo­
rithms thcre is no operation othcr than the comparison of two elements
which is applicable to elements of the uni verse from which the keys are
drawn.

Lemma. Any comparison-based algorithm necds at least n-1 com­
parisuns to find the maximum of n elements.

Proof Interpret a comparison f(< S
1

? as a match bctwcen S, and
S. If S < S then S is the winner and if S ~ S we can consider that S is

) I J j I j I

the winner. If an algorithm uses less than n-1 matches (comparisons)
then there are at least two players (keys) which are unbeaten at the cnd
of the toumament. Both players could still be best (the maximum), a
contradiction. li

This lcmma implics that wc have to look for a different sorting
mcthod if we want to inprove upon thc quadratic running timc of thc
naive algorithm. A selection proccss which finds thc largcst clement
must take at !cast n-1 steps; perhaps all sorting mcthods based on n
rcpcated selections rcquire order n2 stcps? Fortunately this lcmma
applies only on the first selection stcp; subsequent sclcctions can make
usc ofprcviously-gained infonnation. Suppose that we ,vant to sort thc
sequence 4, 2, 3. 1.

70

https://biblioteca-digitala.ro / https://unibuc.ro

c) Fig. 1

Ifwe use the complete binary tree la), each key being associated
to a terminal vertex of this tree, we shall associate to internai vertices
keys from this set such that the key of a vertex is equal to maximum of
the keys associatcd with its sons.

For this n-1 comparisons are necessary , sin ce every binary tree
having n terminal vertices contains n-1 internai vertices. New key 4 is
the greatest and will be deleted from the tree; to obtain the second largest
key we need to compute only the keys associated to the vertices belong­
ing to the path from the root to the terminal vertex which was associated
to the current largest key. In our example, this path is encircled by a
dotted line in fig. la). 2 is moved up and will be compared at the levei 1
with 3, giving the resuit 3 wich will bc associated to the root of the trce
in fig. 1 b); thus 3 is thc second largest clement (k.ey) and so on.

In this way the number of key comparisons is equal to
3 (la)+ 1 (lb) + 1 (le)+ O (Id)= 5.

This tree structure has the following property: Whenever one considers
a path through this tree from the root to any terminal vertex then the
labels along that path are monotonically decreasing. This is alsa callcd
thc heap property. Figures 1 a) - Id) are complete binary trecs with 4
terminal vertices, and it is convenient to represent such a tree in
consecutive locations as shown in fig. 2. Note that the father of node

71
https://biblioteca-digitala.ro / https://unibuc.ro

Fig. 2

number k is vertex lk!2J, and its sons Jrc
vertices 2k and 2k+ I . This representaton
can be easily extendcd to complete bimry
trees having a number of tem1inal verti.:-:es
which is not of the form 2P(p E N).

Thus we can storc the tree in a single
array and savc the space for pointers.

Definition. An array S[l ... n] satisfies the heap propcrty if
S[lk/2J] 2: S[k] for every 2 S k S n. The array is a heap starting at /,
I s I s n, if S[lk/2J] 2: S[k] for/ s Lk!2J < k s n. (lxJ is the largest
integer S x).

Notice that every array S[l ... n] is a heap starting at Ln/2] + 1.
The array 2, l O, 9, 5, 8, 7, 3, 6, 4, 1 is a heap starting at the second

position.
If an array S[l ... n] is a heap starting at the first position (or

equivalently, satisfies the heap property) then the largest element
appears „on top of the heap"

S[l] = max (S[l], S[2] , ... , S[n]).
lndeed, Jet m 2: 2; then S[m] S S[lm/2 J] S S[l lm/2J/2J] S ... S S[l] by
the heap property.

If we can somehow transform an arbitrary input file into a heap,
we can usc a „top-down" selcction procedure like that described above
to obtain an efficient sorting algorithm. An cfficient approach to heap
crcation has been suggested by R. W. Floyd.

Let us assume that wc havc been ablc to arrange the file so that
S[li/2J] 2: SU] for/< li!2J <j s n, (1)

where I is some number 2: 1 (in the original file this condition holds for
I= L n/2 J , sincc no subscriptj satisfies the condition ln/2 J < [j/2 J <j San).
lt is not difficult to sec howto transform the file so that the inequalitics
in (1) are extendcd to the case li/2J = I, working entirely in the subtree
whose root is vertex /. Thcreforc wc can dccrease I by 1, until heap
propcrty is finally achicved. Thcse idcas !cad to thc following elegant
algorithm:

72

https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm H. (llcapsort) As~ume that N ~ 2.
Records R

1
, ••• , R_,. are rcarranged in place; after sorting is com­

plete, their keys will bc in order, K
1

:S ... $ K,," First we rearrange the file
so that it fonns a heap, then wc rcpeatedly remove the top of thc heap
and transfer it to its proper final position.

1. Set l f-- lN!2j + 1, rf-- N
2. If / > 1, set I f-- / -1, R f-- R,, K f-- Kr
Othenvise set R f-- R,, K f-- Kr, R, f-- RI' and r f-- r - 1; if this

makcs r = 1, set R
I

f-- R and terminate thc algorithm.
3.Setjf-- /.
4. Set i f-- j andj f-- 2). Ifj < r, go to step 5; if j = r, go to step 6;

and if j > r, go to 8.
5. If K

1
< K

1
~

1
, then set) f-- j + 1.

6. lf K ~ K, then go to step 8.
I

7. Set R; f-- R
1
, and go back to step 4.

8. Set R, f-- R. Retum to step 2.
At step 2 if / > 1 then K

1
, ••• , K.v is a heap starting at /(build-up

phase) (whcn ,- = N); othcrwise / = 1 and the N- r largest elements are
stored in increasing ordcr in Kr+

1
, ••• , KN (selection phase). If / > I we

are building the heap and add key K1 ; otherwisc we are in the selection
phase, K1 is the maximum of K

1
••• K,, we exchangc K

1
and K„ and have

to restorc the heap property on K
1

, ••• , K,
1
, by interchanging K, repea­

tedly with the larger of its sons.
In the build-up phase r = N and / decreases to I; in the selection

phase, I = 1 and r decreases from N to 1.
We will evaluate the comparisons number in the casc of sorting

by selection algorithm using a tree as in fig. 1.
lf 2r $ N < 2•+ 1 two cases may occur:
(i) N = 2', and the trce has all terminal vertices on levei r. ln the

first phase we make N - 1 comparisons and after this we make N - 1
times comparisons at levels r-2, r-3, ... , 1, O (at most), hence the num­
ber of key comparisons is boundcd above by

N - 1 + (N - 1)(r - I) = (N - I)r = (N - I)log
2
N.

(ii) 2' < N < 2r+1• In this case we like to build a trec having al!
tenninal vcrtices on two consecutive lcvels, r and r + I.

73

https://biblioteca-digitala.ro / https://unibuc.ro

If we denote by x the number of tenninal vertices on levei r a.nd
by y this number for levei r + I, we obtain

x+y=N
2x + y = 2r+I

lt follows that x = 2r+i _ N and y = 2N - 2r+I. In this case the total
number of key comparisons is at most

N - I + (N -l)r = (N -l)(r + I) < (N -l)(log
2
N + 1) since

r = llogzHJ.
Hcnce the number of key comparisons is boundcd above by

Mog2N + O(N) in both cases.
It is not difficult to show that the numbcr of key comparisons for

heapsort algorithm is also of the form O(MogN).

§ 5. Sorting by merging

Merging means the combination of two or more ordcred files into
a singlc ordered file. A simple way to accomplish this is to compare the
two smallest items, output the srnallest, and then repeat the sarne pro­
cess. Some care is necessary when one of the two files becomes ex­
hausted; a detailed description of the process appears in the following
algcrithm:

Algorithm M. (Two - way merge). This algorithm merges the
ordered fi Ies x1 S x

2
S ... S xm and y 1 S y

2
S ... S Y„ into a single file

z1 S z2 S ... $ z,,,+.·
1. Set i ~ 1,j ~ 1, k ~ 1.
2. If x; S Yr go to step 3, otherwise go to 5.
3. Set z* ~ -\, k ~ k+ 1, i ~ i+ 1. If i S rn, return to 2.
4. Set (z, , ... , z) ~ 1". , ... , y) and tcm1inatc thc algorithm. ~ m...-11 V1 ,,

5. Set z* ~ y
1

k ~ k+ 1,j ~ j+ 1. Ifj S n, retum to 2.
6. Set (zk , ... , z) ~ (x , x) and tc1minate thc algorithm.

m+11 1 - m

From a historical point of view, merge smting is one of the very
first methods proposed for computer sorting; it was suggested by John
von Neumann as early as 1945.

In the worst case, each clement comes in the sortcd sequencc
z

1
S ... $ z,,,+n as a resuit of a kcy comparison (cxcept the last). I Icnce the

number of kcy comparisons it at most equal to m+n-1.

74
https://biblioteca-digitala.ro / https://unibuc.ro

This number of comparisons is reachcd for example whcn

xi $x2 $ ··· :Sx„ 1 <y1 $y2 $ ··· $y" <x,,, ·
If x

1
, ... , x ,)', , v are pairwisc distinct keys and assuming that

m . .,, ,i

each of tne (m: n) possiblc arrangements of m x 's among n y 's is

equally likely, we shall find the mean ofthe number ofkey comparisons
(i.c., of the numbcr of times step 2 is perfom1ed during algorithm lvf).

Let C bc the number of comparisons; wc have C = m + n - S,
where S is the number of elcments transmitted in step 4 or 6. The

probability that S ~ s is easily scen to be

q.,=[(m+n~-s)+("'+,:i-s)]/(m,:n) for 1 $ s $ m+n. llence

thc mean of S is

save =q1 -q2 +2(q2 -q3)+3(q3 -q4)+ ... =q1 +q2 +q3+ ... =

n m = --+ -- by writing cach binomial number as a diffcrencc of
m+I n+I'

C
. n m

two binomial numbcrs. Hencc aw = m + n - -- - -- . For m = n
m+l n+I

this avcrage is asymptotically 2n - 2 + O(n- 1); thus C is closc to its
maximum valuc.

Quicksort's bad worst case behaviour stcms from the fact that the
size ofthe subproblcms crcated by partitioning is badly controllcd. How
can wc achieve the splitting into two subproblems of size n/2 each?
Thcre is a simple answer: Take the first half of the input sequcnce and
sortit, take the second half ofthc input scqucnce and sortit. Then merge
thc two sorted subsequences to a singlc sorted sequence. These consid­
erations lead to the following algorithm.

75

https://biblioteca-digitala.ro / https://unibuc.ro

procedure Mergesort (S);
begin let n = ISI; split S into .two subsequences S1 and S2 of

length f n/2 l and L n/2 J, respectively;
Mergesort (S);
Mergesort (S2);

suppose that the first recursive call produces sequencex1 $;x2 ::;; ... $;xfnt2I'

and the second call producesy1 Sy2 ::;; ••. ::;;ylntiJ; merge thetwo sequences
into a single sorted sequence z1 s:; z2 s:; ... s:; z"

end
Note that the merge of the two sequences is performed with

algorithm M.
W e will next compute the nwnber of comparisons which Mergesort

uses on an input of length n in the worst case. We use M(n) to denote
that number. We have

M(l) = O and
M(n),;. n -1 + M(f n/21) + M(ln/2J), ifn > I. We use induction

on n to show
M(n)=nflognl-2110gnl+ I.

1bis is correct for n = 1. So let n > 1.

Case }: n * 21 + 1. Then flog r n/2 l l = r logln/2J l = f logn l - 1

and therefore

M(n) = n - 1 + f n/2 l flogf n/21 l - 2 110slnt2ll + 1 +

+ ln/2J flogln/2Jl - 21I0 slnt2Jl + 1 = n + n(flogn l- 1) - 2fiognl + 1=

= n flogn l - 2 [logn 1+ 1.

Case 2: n = 21 + 1. Then flogln/2Jl = k-1 = flogf n/211 -1 =
= flogn l - 2 and therefore

M(n) = n - 1 + r n/2l(flogn l -1) - 2flognH + 1

+ ln/2J (f Iogn l - 2) - 2 11ognl-2 + 1 =nr logn l -ln/2J - 21Iogn l +

+ 2r10snl-2 + 1 = n flogn l - 2r10snl + 1 since for

n = 21 + 1 we have ln/2J = 2fiognl- 2 (all logarithnlS are in the base 2).
We introduced Mergesort by way of a recursive program. It is

easy to replace recurs ion by iteration in the case of Mergesort. Split the
input sequence into n sequences of length 1. A sequence of lenght 1 is

76

https://biblioteca-digitala.ro / https://unibuc.ro

sorted. Then we pair the sequences of lenght 1 and merge them. This
gives us ln/2Jsorted sequences of lenght 2 and maybe one sequence
of length 1.

Then we merge the sequences oflength 2 into sequences oflength
4, and so on.

lt is clear that the run time of this algorithm is proportional to the
number of comparisons and this is less than or equal to

nflogn 1 - 2riognl +I= O(nlogn).

§ 6. Optlmum sorting

In this section we prove a lower bound on the number of compari­
sons required for sorting problems. We have seen severa! sorting meth­
ods which are based essentially on comparisons of keys, yet their run­
ning time in practice is dominated by other considerations such as data
movement. However we shall restrict our discussion to sorting tech­
niques which are based solely on an abstract linear ordering relation <
between keys. For simplicity, we shall also confine our discussion to
the case of distinct keys, so that there are only two possible outcomes of
any comparison between K. and K.: either K. < K. or K. > K..

I J I J I J
The problem of sorting by comparisons can also be expressed in

other equivalent ways, e.g. : given a set of n players in a toumament,
we can ask for the smallest number of games which suffice to ran1c all
contestants, assuming that the strengths of the players can be linearly
ordered (with no ties).

All n-element sorting methods which satisfy the above constraints
can be represented in terms of an extended binary tree structure such as
that shown in fig. I .

Level O

Level 1

123 Level 2

132 Level3

Fig. 1

77
https://biblioteca-digitala.ro / https://unibuc.ro

Each internai vertex (drawn as a circlc) contains two indices i.j
denoting a comparison of K; versus /S· Thc lcft subtree of this node
reprcsents the subsequent comparisons to be made if K < K, and thc
right subtree represcnts the actions tobe taken when K; >

1

K. E~ch exter­
nai ve1tcx ofthe tree (drawn as a box) contains a pc1mutati6n a

1
a

2
... a,, of

{1,2, ... ,n}, dcnoting thc fact that the ordering

Ka <K(l < ... <Ka
I 2 n

has bcen cstablished.
Thus fig.1 represents a sorting mcthod which first comparcs K

1
with K

2
; if K

1
> K

2
, it goes on (via the right subtree) to compare K

2
with

K
1

, and then if K
2

< K
3

it compares K
1

with K,; finally if K
1

> K
3

it
knows that K

2
< K3 < K

1
and so on.

An actual sorting algorithm will usually also move thc kcys around
in the file, but we are interested here only in the comparisons, so wc
ignore all data movcment. A comparison of K, with K in this tree
always means the original keys K; and fS, not the keys

1
which might

currently occupy the i-th position andj-th position of thc file aftcr the
records have been shuffied around. lt is possible to make redundant
comparisons; for examplc, in fig.1 on the lefi branch there is no rcason
to compare 3: I, since K

1
< K

2
and K 2 < K

3
implies that K

1
< K

3
• Since

wc are intcrested in minimizing the number of comparisons, we may
assume that no redundant comparisons are made; hencc wc have an
extended binary trec structure in which every externai vertex corrcsponds
to a pcrmutation.

Ali permutations of the input keys are possible, and cvery pcrmu­
tation defines a uniquc path from thc root to an externai vertex; it fol­
lows that there are exactly n! externai vertices in a comparison trce which
sorts n clements with no redundant comparisons.

Definition. A decision tree is a binary trec whosc verticcs have
labcls of the form K;:fS. The two outgoing cdgcs arc labcllcd 5 and >.
Lct Kl'K„ bc clements of univcrsc U. Thc computation of dccision
trec Ton input KI' ... ,K

0
is defined in a natural way. Wc start in thc root

of thc trec. Supposc now that we reachcd vertex v which is labei led
K :K. Wc thcn compare K with K and procccd to one of the sons of v

I J I k
dcpcnding on whcthcr K 5 K (or . < K in thc casc of pairwisc diffcr-

' / I j

cnt kcys) or K, > Ki

78
https://biblioteca-digitala.ro / https://unibuc.ro

Thc lcavcs of a dccision trec rcpresent the different outcomes of
the algorithm.

Definition. Let Tbe a decis ion trec. T solves the sorting problem
of size n if thcre is a labelling of the leaves of T by permutations of

{l, ... ,n} such that for every input Kl' ... ,K": ifthe leafreached on K,,K.
is labelled by rr then K"(IJ s K"(2 , s ... s K"<"r Wc can now define the
worst case and average case complexity of the sorting problem. For a

decis ion tree Tand permutation 7t let /~ be the depth of the leafwhich is

reached on input Kl' ... ,K
11

with K",n s Krr(i) s ... s K"(") (the number of
comparisons needed to sort file K

1
, ••• ,KJ Define

S(n) = min max / 1
r Jt Jt

A(n) = min 1, L ,:
T n. 1t

where T ranges over all decis ion trecs for sorting n elements and 1t ranges

ovcr all permutations of n clements. Since 1: is the number of compari­

sons used on input 7t by dccision trec T, or thc depth of the terminal

vertex with labei 7t, it follows that max Ir = h(T), the height of T. Thus
Jt 1t

S(n) is thc minimum worst case complexity of any algorithm andA(n) is
the minimum averagc case complexity of any algorithm. We prove lower
bounds on S(n) and A(n).

Supposc S(n) s k. A tree of depth s k has at most 2t leaves. A
decision trce for sorting n elements has at least n! leaves. Thus

2S(n)~n! orS(n)~ r1ogn!l (l)

Note that by Stirling 's approximation,

n! ~ ✓2rcn(;)" orlogn! =(n+½)logn- 1; 2 +0(1) =

= n logn - l.43n + O(logn).

Relation (1) is often called thc ,.information theoretic lower
bound". An upper bound for S(n) comes fi-om the analysis of sorting

79
https://biblioteca-digitala.ro / https://unibuc.ro

algorithms. In particular, we infer from the analysis of sorting by selec-

. S(n)
tion that S(n) $ nlogn+O(n), and hencc hm -

1
- = I (2)

n➔=n ogn

Although we know that S(n) ~ nlogn only few values of S(n)
were found (e.g. S(3)=3, S(4)=5, S(5)=6, etc.). In order to find a lower
bound on A(n) consider once again the decision trec T representing a
sorting procedure, as shown in fig.1. The average number of compari-

2 + 3 + 3 + 3 + 3 + 2
sons in that tree is

6
= 2.66 , averanging over al I

permutations.In general, the average number of comparisons in a
sorting rnethod is E(T)/n!, where E(D denotes the externai path length
of thc tree, defined as the sum of the distanccs from the root to each of
thc externai nodes (leaves) of the tree.

Lemma. /JT is a binary tree having N externai vertices then E(T)
is minimum if and only if all externai vertices ofT belong to at most two
consecutive levels (when there are 2q - N externai vertices at levei q - I
and 2N-2q at levei q, where q = flog2Nl, the levei of the root being O).

Proof. Suppose that T contains terminal vertices u and v on levei
L, y and z on levei I, such that L - I ~ 2.

-/ z ---/
z y

_/- I

----L

I u V

CJ-------- l-1
X

Fig. 2.

We shall define anothcr binary tree T
1

(sec fig.2) by transfering u
and v on levei I+ 1 as sons of y; x becomcs an externai vertex and y an
internai one. It follows that E(T) - E(T,) = 2L-(L - I) + / - 2(/ + I) ~·

'

80
https://biblioteca-digitala.ro / https://unibuc.ro

= l-1-1 ~ I and T cannot have a min1mum externai path length. Ilence
Thas all externai vertices on a single leve! if Nisa power of 2 or on two
consecutive levels: q -1 and q otherwise, where q =flog2N1.

The number of vertices on cach levei can be obtained in thc same
way as on pp. 73-74.

lt follows that

A(n)~i[(q-l)(2q -N)+q(2N- 2q)]=~.[(q+l)N-2q], where

N=n!.
lfwe set q =logN+e, where O~ 0 < 1, the formula for minimum

externai path length becomes
N(log N + 1 + 0 - 28)

Toc function 1 + 0 - 28 for O < 0 < 1 is positive but very small,

I+ lnln2
never exceeding 1 - ln

2
= 0.0861 and vanishes for 0 = O and 0 =

I. In this way we get a lower bound for the average number of compari­

sons in any sorting scheme, of the fonn

logn!+ 1 + 0- 2° = n logn - 1; 2 + O(logn)

In general, the problem of minimizing the average number of com­
parisons tums out tobe substantially more difficult than the problem of
detennining S(n).

For cxample, whcn n = 7 it has becn shown that no sorting method
can attain this lower bound on externai path length, but it is possible
to construct procedures which do achieve the lower bound (q + J)N-2q
when n = 9 or I O.

§ 7. Sortlng by distribution

1. Sorting words. Let I: bc a finite alphabet of size m and ~ he a
linear order on I:. We rnay assume w.I.o.g. that r = { 1,2, ... ,m} with the
usual ordering rclation. The ordering on :E is cxtented to an ordcring on
thc words over I: as usual.

Definition. Let x = x, ... x* and y = y 1 ••• y 1 be words over I: , i.e.
x v E I. Then x is smaller than J' in thc alphabetic ordering (denoted

J'-- 1

81

https://biblioteca-digitala.ro / https://unibuc.ro

x
2

~

x3 WLTADBABCDj

Fig. I

x < y) if there is an i, O $ i $ k
such that x = y for I$ 1· $ i and

J J .

~hcri=k<lmi<~i<l~d
x,+i <Y,+i· For example, wc havc
x=ABCE < AD= y becausc x

1
=y

1

and x
2
< y

2
•

We treat thc following
problem in this section: Givcn
n words x1,x2, ... ,.,.n ovcr alphabet

:E = { 1, ... ,m} sort them according to alphabctic ordcr. There are many
diffcrent ways of storing words. A popular method stores all words in a
common storage area called string space. The cha-racters of any word
are stored in consecutive storage locations. Each string variable then
consists of a pointer into the string space and a location containing the
current length of the word. The figure 1 shows an example for
x1 = ABCD, x2 = ADB and x3 = T. The basic idea of bucketsort is most
easily explaincd when we consider a special case first: all words x 1

••• .x"
have length 1, i.e. the input consists of n numbers bctwccn 1 and m.

Bucketsort starts with m cmpty buckcts. Then we process word by word,
throwing ~ ioto the ~-th bucket. Finally, we step through the buckets in
order and collect the words in sorted order. Buckets are linear lists, the
heads of the lists are stored in array .K[l ... m]. lnitially, wc have to
create m empty lists. This îs easily done in time O(m) by initializing
array K. In order to process x we have to access .K[x] and to insert x ioto
the list with head K[x]. This can be done intime 0(1) if we insert x at
the front cnd of thc !ist or at the back end of the list. In the latter case
K[.ij] must also contain a pointer to the end of the !ist. Thus wc can
distribute n words intime O(n). Finally we have to collect the buckets.
We step through array .K[l ... m] and concatenate the front ofthc U + 1)-st
I ist with the cnd of thc j-th !ist. This takes time O(m), if array K also
contains pointers to tl~;; back ends of the lists, and time O(n + m) other­
wise. Note that the total length of all m lists is n. ln eithcr case total
running time is O(n + m). Should wc add x to the front or to the rear cnd
of thc x-th !ist? Ifwe always add to the rear, thcn the order of elements
x, x1 with x' = ,v is unchangcd, i.e. bucketsort is stablc. This wil\ bc
important for what fol\ows. Wc proceed to a slightly more difficult casc

82
https://biblioteca-digitala.ro / https://unibuc.ro

next. The x'' s. I $ i $ n. are propcr "ords and supposc that all ofthcm
han; cqual length, say k Thcn x' x; x; ... x~ with x~ E: 1:. Now one sorts
according to the last lcttcr first After having done so we sort the entire
I ist of n words, \\'hich is sortcd according to the last letter, according to the
nc:xt to last letter. The words are sortcd according to the last two lctters
nm,, because bucketsort is stablc Ne:xt \Ve sort according to the (k--2)-th
lettcr, and so on.

This approach rcquircs k passcs over thc set of n words, cach pass
having a cost of O(n I m) time units. Thus total nmning timc îs O(k(n +
m)). Let us consider an cxample \\'Îth m - 4, n - 5 and k-'" 3. The words
are: 124, 123,324,223.321. Thc first pass yields:

Bucket

Bucket

Buckct

J 321
2 0
3 123, 223
4 324, 124

0

The imput sequence for the second
pass is 321, 123, 223, 324, 124

2 321,123,223. 324, 124
The input sequence for
the third pass is: 321,

123, 223, 324, 124
The third pass yields:

3 0
4 0

123, 124
2 223
3 321,324
4 0

and hence the final resuit
sequence 1s

123, 124, 223, 321, 324

Notice that we collected a total of 3·4 = 12 buckets, but only 7
buckets wherc non-empty altogether. lt would improve running timc ifwe
knew ahead oftime which buckets to collect in each pass. Let us assumc
that s buckets are non-cmpty in the j-th pass. IS j $ k. lf we could
a void {ooking at emp~· buckets then the cost of the j-th pass were only
O(s

1
° n). Since s

1
$ n. the cost of a pass would bc only O(n) instcad of

O(n f m).
There is a very simple method for determining which buckets are

non-empt~· in the j-th pass. i.c. which letters occur in thc J-th position.

Create set ((/. x~). I $} $ k. I $ i $ n} ofsize n·k and sortit by buckct-

83

https://biblioteca-digitala.ro / https://unibuc.ro

sort according to the second component and then according to the first.
Then thej-th bucket contains all c~aracters which appear in thej-th posi­
tiort in sorted order. The cost of the first pass is O(n · k + m), the cost of
the second pass is O(n · k + k). Total cost is thus O(nk + m).

1n order to extend to words of arbitrary length let xi = x; x; ... x; ,
I

l ~ i ~ n; li is the length of xi. We basically proceed as above, however
we have to make sure that xi has to be considered for the first time when
we sort according to the li-th letter. This leads to the following algorithm.

n

Let L = L li "?. n.
i=I

1. Determine the length ofxi, I ~ i ~ n, and create pairs (/,, pointer
to x').

2. Sort the pairs (li, pointer to xi) by bucketsort according to the
first component. Then the k-th bucket contains all words xi with
li = k, i.e. all these strings are contained in a linear list. Call this
list length [k] (I ~ k ~ max (li' ... /,,)).

3. Create L pairs (j, x~), I~ i ~ n, l~j ~ li and sort them according

to the second and then according to the first component. Let
Nonempty [j], 1 ~j ~ l= = max (/1' ... I,,) be thej-th bucket
after the second pass.

Nonempty [j] contains all letters which appear in the j-th position
in sorted order. Delete all duplicates from Nonempty [j].

84

4. We finally sort words x' by distribution. All lists in the follo\\'Îng
program are used as queues; the head of each list contains a
pointer to the J.ast element. Also x is a string variable and x; is
the j-th letter of string x. ,

(I) W t--- empty queue;
(2)/or kfrom 1 tom do S[k] t- empty queue od;
(3)/or jfrom !max to 1
(4) do add length [j] to the front of W and call the new queue W;
(5) while W -:t:- 0
(6) do let x be the first element of W,- delete x from W;
(7) add x to the end of S[x];

J

https://biblioteca-digitala.ro / https://unibuc.ro

od
(8) while Nonempty l/] -;ţ. 0
(9) do let k be the first element ofNonempty [/];
(10) delete k from Nonempty [IL
(11) add S[k] to the end of W;
(12) set S[k] to the empty queue;

od
od
By a careful analysis of the cost of each line of this algorithm we .

deduce that bucketsort sorts n words of total length L over an alphabet of
size m intime O(m + L).

For our example, before step 4) we have:

length [l] = 0
length [2] = 0
length [3} =

I 1 24 I 123 324 223 321

and Nonempty is: 1

2

3

I, 2, 3

2

I, 3, 4

After the first pass we have (now j = 3):

NONEMPTY (1)

NONEMPTY (2)

NONEMPTY (3)

85
https://biblioteca-digitala.ro / https://unibuc.ro

S[l]

S[2]

S[3]

S[4]

(by performing steps(l) - (6)). Now the content of W coincides to
that oflength [3].

After steps (8) - (12) the content of W will be:

u ~3) /- /[
3T3-">--r --- - ,,,--,------

I \ / -- ~L~J~ \ "\ ',

--.: 3 --~ /
I --··------- /

--- ,,,,,,-

I 3 ! J-----------------

86
https://biblioteca-digitala.ro / https://unibuc.ro

3

3

2. Sorting rea/s by distribution We briefly describe distribution
sort applied to real numbers. We assume that we arc given a sequence x,,
1 5 i 5 n, of reals from thc interval (O, I). We use the following simple
algorithm, called Hybridsort.

ex is some fixcd real and k is equal to f 001 l.
I. Create k empty buckets. Put xj into bucket f kxJ for l 5 i 5 n.
2. Apply Heapsort to every bucket and concatenate the buckets.
The correctness of this algorithm îs obvîous.

Theorem. a) Worst case running time of Hybridsort is O(n log n).
b) lf the x; • s are drawn independently /rom a uniform distribution

over the interval (O, 1], then Hybridsort has expected running time O(n).

Proof a) Running time of the first phase is clearly O(n). Let us
asswne that t, elements end up în the i-th bucket, 15 i 5 k. Then the cost

of the secorul phase is o(~ I; togi;} where by definition O log O~ O

and L t; =n.

But L I; logt, 5 L t; logn =nlogn.
I j

b) Let B, bc the random varîable representing thc number of clc-

(n)(k - lr-h
ments in the i-th bucket aftcr pass I. Then P(B; ~- h) = _h _______ =

k"

87

https://biblioteca-digitala.ro / https://unibuc.ro

= c:)(+ r (I - + r-h since any single x„ is in the i-th bucket with proba­

bility l/k.
Expected running time of phase 2 is

But h =(h(h-l)+h =n(n-1) + and 2(n) {n) (n -2) {n -1)
h h h-2 h-1

ţ n(:~l)(:=~X¾r-2(1-¾rh =n(:~l)t (:=~X¾J-2(1-±rh =
=n(:~l);ţ ~(:=:X±f\1-f J h =;

1t follows that E(ţ B, log B,) ~ k(•(:~ I) + f) = O(n) since

k = r cxn l. n

§ 8. The linear median algorithm

Selection is a problem which is related to but simpler than sorting.
We arc givcn a sequence SP ... , S" of pairwise distinct elements and an
integer i, l $; ; $; n, and ,,vant to find the i--th smallest element of the
sequence, i.e. an S such that there are i-l keys S1 with S, < S and n- i
keys s, with s, > ~- For i = ln 2 J such a key is called median. Of course,
selection can be rcduced to sorting. We might first sort scquencc S1, ••. , S"
and then find the i-th smallest element by a singlc scan of the sortcd
sequence. This results in an O(n log n) algorithm.

However, there is a linear time solution. We describe a simple,
linear cxpccted time solution (procedure Find) first and then cxtend it to
a linear worst case time solution (procedure Select).

88

https://biblioteca-digitala.ro / https://unibuc.ro

Proccdun: Find is bascd on the partitioning algorithm used in
Quicksort We choose somc clcmc:nt ofthc scquence, say S

1
, as partition­

ing element and thcn divide thc sequcnce into the elements smaller than S1

and the elcments larger than S
1

. We then call Find recursivcly on the
appropriate subscquencc.

(]) procedure Find (M, i):
co finds the 1-th smallest element of set M;

begin
(2) Sf--- some element ofM:
(3) M

1
f- {m E M; m < S}:

(4) M
2

f--- {m E M; m> S};
(5) case IM11 of
(6) < i - l: Find (M

2
, i -IM

1
! - l):

(7) = i - l: return S;
(8) > I -1: Find (M

1
, i)

(9) esac
end

When set M is stored in an array then lines (2) - (4) of Find are
best implemcnted by lines (2) - (6) of Quicksort. Then a call of Find has
cost O(IM! + the time spent in the recursive call). The worst case running
time of Find is clearly O(n2

) (consider the casei = l and 1M1I = !Ml - l
always). Expected running time of algorithm Find is linear as we show
next. We use the same randomness assumption as for the analysis of
Quicksort, namely the clements of Mare pairw:ise distinct and each pcr­
mutation of thc elements of M is equally likely. In particular, this implies
that element S chosen in line (2) is the k-th largest element of M with
probabili~· I /IM]. lt also implies that both subproblems M

1
and M

2
again

satisfy the randomness assumption (cf. the analysis of Quicksort). Let
T(n, i) be the expectcd runnig time of Find (M i) where IM] = n and let
T(n) = max T(n, i). We have T(l) = O and

i l[i-1 n l
T(n,i)$cn+-;; tt T(n-k,i-k)+k~I T(k-l,i)

for some constant c, sincc the partitioning proccss takes time cn and the
recursive call takes expectcd time T(n - k. i - k) if k = IM

1
I + I <' i a'nd

time T(k - I, i) if k ' IM
1
I + I > i.

89

https://biblioteca-digitala.ro / https://unibuc.ro

Thus

Wc sho\\' T(n)::; 4 cn by induction on n. This is truc for n , l. For n ') I
wc have

[

n-1 n-1 l
T(n)$;cn+~m~x k=~+/ck+?; 4ck $;cn-+

+
4

c max[n(n -1)- (n - iXn - i +I)/ 2- i(i - I) 12] s; 4cn,
li ;

n+I
since the expression in square brackets is maximal for i = -

2
- (notice

that the cxprcssion îs syrnmetric in i and n - i + 1) and then has valuc

3n 2

n(n - I) - n(n - l) /4::; - . We have thus sho,,n:
4

Theorem 1. Algorithm Find has linear expected running time.
Thc expccted lincarity of Find stems from the fact that thc ex­

pccted size of the subproblem tobe solved is only a fraction of the size of
the original problem. However, the ,..,·orst case running time of Find is
quadratic because the size of the subproblcm might bc only one smaller
than the size of the original problem. If one wants a linear worst case
algorithm one has to choose the partitioning element more carcfully. A
first approach is to take a reasonable size sample of M, say of size jM\/5,
and to take the median of the sample as partitioning element.

However, this idea is not good enough yet because thc sample might
consist of small elements only. A better way of choosing the sample is to
divide Minto small groups of say 5 elements each and to make the sample
thc set of medians ofthe groups. Then it is guaranteed that a fair fraction
of clcments are smaller (larger) than thc partitioning element.

This leads to thc following algorithm.

90

https://biblioteca-digitala.ro / https://unibuc.ro

(I) procedure Select (M. 1):

co finds the i-th smallest clement of set M;
begin

(2) n f-- I MI:
(3) if n $ I 00 then sort M and find the i-th smallest clement directly

else
(4) divide M in f n 5 l subsets M

1
, ••• , M,n;sl of 5 elements each (the

last subset may contain less that 5 elemcnts);
(S)sortM; I Jfn sl:
(6) let m be thc median of M;

' ., r l (7) call Select ({ml' ... m-n.51 }, 1n/lO) and determine m, thc
median of the medians;

(8)letM
1
= {mE M: m < m} andM

2
= { mE M; m $m};

(9) if i $ MII
(10) then Select (M

1
, i)

(11) else Select (M~, i - iM1 I)
fi
fi
end

It is vcry hclpful to illustrate algorithm Select pictorially. Jn line
(4) M is dividcd into groups of 5 elements each and the median of each
group is detcnnined in lines (5) and (6).

r---------,
o o o I o o o I
o o o I o o o I

I I
om, 0ml om

n'IO
I o"' o o I L _________ .J

o o o
o o o

o o o o o o

At this point we have n. 5 linear ordcrs of 5 elements each. Next we

find m , the median ofthe medians. Assume w. l.o.g. that m
1
, •.• , m„1Jo < m

and m $ m „10 ,
1

, ••• , m „
5

. ln the diagram represcnting this situation cach
ofthc groups is rcprescnted by a vertical line of 5 elcments, largest element

91

https://biblioteca-digitala.ro / https://unibuc.ro

at the top. Note that all elements in the solid rectangle are smaller than m
and hence belong to M,, and that all points in the dashed rectangle are at
least as large as m and hence belong to M 2• Each rectangle contains 3nl
1 O points, provided that 1 O divides n.

Lemma 1. We have IM, I, 1M2I $ Sn/11.

Proof Note that from the discussion above we have IM11 + IM21 = n

and IM1 I, 1M2I ~ :~ if 1 O divides n. If I O does not divide n then IM, I,
3n IM

2
1 ~ 11 for n ~ 100. Indeed, if 10 does not divide n then there is a

number m, I S m $ 9, such that I Oln - m and in this case

IM I IM,~ 3(n-m) ~ 3(n-9) > 3n
1

'
2 10 10 11

since the last inequality is equivalent to n ~ 99. lt follows that IM, I $ n -

-
3
n = Sn and a similar inequality holds for !Mii- O

11 11
Let T(n) be the maximal running time of algorithm Select on any

set M of n elements and any i.

Lemma 2. There are constants a, b such that
T(n) $ an , for n $ 100
T(n) $ T(2 ln/100) + T(Sn/11) + bn , for n ~ 100.

Proof The claun is obvious for n S 100. So let us assume n ~ 100.
Select is called twice within the body of Select, once for a set of

n+4 21n f n/5 l $ -5- S l OO elements and once for a set of size at most Sn/11.

Furthermore, the total cost of Select outside recursive calls is clearly
O(n). O

Theorem 2. Algorithm Select works in linear time.

Proof We show T(n) $ cn where c = max (a, 1100 b/69) by induc­
tion on n. For n $ 100 there is nothing to show. For n > 100 we have

T(n) $ T(2ln/100) + T(Sn/11) + bn
$ c 21 n/100 + c 8 n/11 + bn $ cn,

by definition of c. □

92
https://biblioteca-digitala.ro / https://unibuc.ro

Chapter 3

SEARCHING TECHNIQUES

We are concemed with the process of collecting information in a
computer's memory, and with the subsequent recovery of that informa­
tion as quickly as possible. Sometimes we are confronted with more data
than we can really use, and it may be ,visest to forget and to destroy most
of it; but at other times it is important to retain and organize the given
facts in such a way that fast retrieval is possible.

Most of this paragraph is devoted to the study of a very simple
search problem: how to find the data that has been stored with a given
identification. For example, in a numerica} application we might want to
find.l{x), given x and a table ofthe values of/; in a nonnumerical applica­
tion, we rnight want to find the English translation of a given Romanian
word.

1n general, we shall suppose that a set of N records has been stored,
and the problem is to locate the appropriate one. Asin the case of sorting,
we assume that each record includes a special field called its key.

We generally require the N keys to be distinct, so that each key
uniquely identifies its record. The collection of all records is called a
table or a file. A large group of files is frequently called a data base.

Algorithms for searching are presented with a so-called argument,
K, and th.e problem is to find which record has K as its key. After the
search is complete, two possibilities can arise: Either the search was
successful, having located the unique record containing K, or it was un­
successful, having determined that is nowhere to be found. After an
unsuccessful search it is sometimes desirable to enter a new record, con­
taining K, into the table; a method which does this is called a "search and
insertion" algorithm.

93

https://biblioteca-digitala.ro / https://unibuc.ro

Although the goal of searching is to find the information storcd in
thc record associated with K. the algorithrns in this section gcnerally ig­
nore cverything but the keys thcmselves. Searching is the most timc -
consuming part of many programs, and the substitution of a good scarch
method for a bad one often leads to a substantial increase in speed.

Sometimes it is possible to arrange the data structure so that scarch­
ing is eliminated entirely, i.c., so that we always know just where to find
the information wc need. For example, if we are allowed to choosc the
keys frecly, we might as well lct them be the numbers { I, 2, ... , N}; then
the record containing K can simply he placed in location TABLE+ K

However, there are many cases when a search is necessary, so it is
important to have efficient algorithms for searching.

Search methods might be classified in severa! ways: for example
we might divide search methods into static vs. d)namic searching, where
''static" means that the contents of the table are essentially unchanging
(so that it is important to minimize the search time without regard for thc
time required to setup the table), and "d)namic" means that the table is
subject to frequent insertions (and perhaps also deletions). We might also
divide searching into those methods which use the actual keys and thosc
which work with transformcd keys (by some hashing methods).

There is a certain amount of interaction between searching and
sorting, as we shall see later. A number of interesting ncw search proce­
dures based on trec structures were introduced, and research about search­
ing is still actively continuing at the present time.

§ 1. Sequential searching

Algorithm S (Sequential search). Given a table of rccords R
1

•

R
2

, ... , R.v, whose respective keys are Kl' K2, ... , K, .. this algorithrn searches
for a given K We assume that N 2: l .

1. Set if- l
2. If K _,. K;, the algorithrn tenninates successfully.
3. i f- i + l
4. If i ~ N go to 2. Otherwise the algorithrn tcnninates unsuccess­

fulh·.
Note that this algorithm can terminate in two diffcrent ,,ays,

succcssfully (having located thc dcsired key) or unsucccssfully (having

94

https://biblioteca-digitala.ro / https://unibuc.ro

rstablishcd that the givcn argument is not present in thc table). Thc samc
will be truc of most other algoritlm1s in this chapter.

lf every input key occurs \\ ith cqual probabilit}·, thc average value
of C, the numbcr of kcy comparisons, in a succcssful search ,,iii be

l+2+ .. .+N N + 1
N -= -2 . A straightforward change makes the algorithm

fastcr, unless the !ist of rccords 'is quite short:

Algorithm Q (Quick sequential search). This algorithm is the
same as Algorithm S, exccpt that it assumes the presence of a "dumrny"
record RN ➔ 1 at the end of the file.

1. Set i f- I, and set K.v , 1 f- K.
2. lf K ~ K,, go to 4.
3. i f- i + l and retum to 2.
4. If i $ N, the algorithm terminates successfully; otherwise it

terrninates unsucccssfully (i - N 1 1).
A slight variation of the algorithm is appropriate if we know that

the keys are in increasing order:

Algorithm T (Sequential scarch in ordered table). Given a
table ofrecords R

1
, R

2
, ... , Rx whose keys are in increasing order K

1
< K

2
< .. < KN, this algorithm searches for a given argument K. For conve­
nience and speed, thc algorithm assumes that there is a dummy record K'- ,

1

whosc key value is KN,
1

= 00 > K.
1. Set i f- 1.
2. I f K $ K;, go to 4.
3. i f- i +- 1 and retum to 2.
4. lf K = K,, the algorithm terminates successfully. Othem•ise it

terminates unsuccessfully.
lf all input keys are equally likely, this algorithm takes essentially

the same average time as Algorithm Q, for a successful search. But
unsuccessful searches are performed about twice as fast. The samc search
procedures can bc used for tablcs ,vhich have a linked representation
since the data are traversed sequcntially. Now suppose that key K, will
occur with probability P;• ,vhere p 1 + p 2 + ... + pN ~ I. The time requiroo
to do a successful search is essentially proportional to the number of
comparisons, C, which now has the averagc value

C.v = P, + 2JJ2+ .+Np,v

95

https://biblioteca-digitala.ro / https://unibuc.ro

lf we havc the option of putting the records into the table in an~

desireci order this quantity EN is smallest when p 1 2'. p2 2'. ... 2'. PN' i.c,

,vhen the mast frequently used records appear near the beginning. lf p
1

cc

l N +l
p

2
= ... = pN ~- N, this formula reduces to CN = --2-. A more t~-pical

d . .b . . "Z" f' l " C - C - C h I 1stn ut1on1s 1p s aw ,p1 = 1,P2 - 2,---,P.v - N'w erec= -.
H.v

This distribution was formulated by G. Zipf, who observcd that the n-th
mast common word in natural language text secms to occur with a fre­
quency inversely proportional ton. lf Zipf's law govems the frequcncy

ofthe kevs in a table, we have immediatelv Ev = _!!___ ; searching such a
- - ' HN

1
file is about - ln N times as fast as searching file with randomlv-ordered 2 .
records.

The above calculations with probabilities are nice, but in mast
cases we do nat know the probabilities are. 1n the ncxt section we discuss
sclf-organizing linear lists.

§ 2. Self-organizing linear lists

The idea of self-organization is quite simple. Suppose that we
havc a data-structure for set S = {xp··-,.x). Whenever we access an
clement of S, say x;, then wc move x; closer to the entry point of the data
structure. For linear lists this means that whencvcr a record has been
successfully located, it is moved to the beginning of the table. This
procedurc is readily implemcnted if thc table is a linkcd linear !ist, espe­
cially because the record being moved to the beginning often has to bc
substantially updated anyway. This procedure will make subsequent
acccsses to x, cheapcr. In this way the elements of S compete for the
''good" places in the data structure and high-frcquency elements are more
likcly to bc there. Notice howcver, that wc do not maintain any explicite

96
https://biblioteca-digitala.ro / https://unibuc.ro

frcquency counts or weights; wc hope that the data structure self­
organizes to a good data structurc. For an average casc analysis we
nced to have probabilitics for thc various operations.

Thc data structurc thcn lcads to a Markov chain whose states are
thc different configurations of thc data structure. We can then usc prob­
abil ity theory to corn pute thc stationary probahilities of thc various states
and usc these prohabilitics to derive bounds on the expected hchaviour
of the data structurc.

Let S= {xl' ... ,x,,}. Wc considcroperations Access (x), where x E S
is assumcd, Insert (x), wherc x 'le S is assumed, and Delete (x), where
x E S is assumed. Wc always organizc Sas a linear !ist which may he
rcalizcd as either an array or a linkcd list. We use pos(i) to denote the
position of clement xi in the list. We assume that the cost of operations
Access (x,) and Delcte (x,) is pos(i) and that the cost of operation Insert
(x) is \S\ + 1.

A popular strategy is thc Move-to-Front rulc.
Move-to-Front Rufe (MFR): Operations Access (x) and Insert (x)

make x the first clement of the !ist and leavc thc ordcr of thc remaining
elcmcnts unchanged; operation Delete(x) removes x from the !ist.

Examp/e: Wc give an cxample for the MFrule:

134 !nsert(2)42134 Accm(4) 4213 Delete(I) 423.

Thc cost of this scqucncc is 4 + 4 + 3 = 11.
For the cxpected case analysis we consider only sequences of

Access opcrations. 1f S = {xp·••.X.} let Pi he the prohability of an Access
to element x,, 1 ::; i::; n. Wc assumc w.1.o.g. that P1 ~ P! ~ ... ~ P •. The
frequency dccrcasing rulc (FOR) arranges Sas list xh ... x. and has

n

minimum cxpectcd acccss timc P FDR = L ip, . The expccted acccss
i=l

time of the frequency decreasing rule is easily seen tobe optimal. Con­
sider a sequcnce ... xx ... in which x. is directly in front of x and1· > i.

J I j I

Exchanging this pair of elements changes the expccted access timc by p
- pi , a non-positivc amount. This shows that thc expected access tim6
of thc FD- rule is optimal.

For the analysis ofthc MF rulc wc use Markov chains. The following
diagram illustrates the move-to-front rule for a set ofthree elements, { l, 2, 3}.

97

https://biblioteca-digitala.ro / https://unibuc.ro

The diagram has 3! = 6 states.
In this diagram 123 denott?S linear list xhx

3
• If x

3
is accessed

(probability f\) then list x1xh is changed into. list x~
1
xi-

The move-to-front rule for n elements induce a Markov chain
with n! states. The states correspond to the n! linear arrangements of set
S, i.e. permutation 1t represents a linear list where x; is at position 1t(i).
Furthermore, there is a transition from state 7t to state p if there is an i
such that p(i) = 1, p(i) = 1t(J) + 1 forj such that 1t{i) < 1t(i) and p(i) = 1t{i)
otherwise. This transition bas probability ~;- This Markov chain is irre­
ducible (the corresponding digraph is strongly connected) and aperiodic
andin these conditions stationary probabilities Îx exist. Îx is the asymp­
totic (limiting) probability that the chain is in state 7t, i.e. that x; is at
position 1t(i) for 1 ~ i ~ n.
Then

lt

is the asymptotic expected search time under the move-to-front rule.

98
https://biblioteca-digitala.ro / https://unibuc.ro

Lemma 1. Let fi(j, i) be the asymptotic probability that x. is in
J

front of x;. Then

a) PMFR = L P;(l + L fi(J,i))
I J"I

fi(. ') pi
b) J,l = pi +Pi

Proof a) Let P; = L Y ir1t(i). Then P MFR = L P;P; and P; is
lt

the expected position of element xr
Furthermore,

Pi = L 'Yir7t(i) = L 'Yir(l+l{J:7t(j) < 7t(i)} I)= l + LL {y,r:7t(j) < 7t(i)} =
IC !t

=l+ L,ll(J,i)
, .. i

since 1:{ Yrr. : rt(j) < rt(i)} is the asymptotic probability that xi is in front

of X.
I

b) xj is in front of xi asymptotically if there is a k such that the last
k+ 1 accesses are: an access to xi followed by k accesses to elements

different from x. and x. Hence
J I

Theorem 1. Let P1 ~ P2 ~ ... ~ p". Then

a) PMFR =1+2 L pipi
1:5j<i:5n Pi +Pi

b)PMFR ~ 2PFDR -1

Proof a) We have by lemma 1,

99
https://biblioteca-digitala.ro / https://unibuc.ro

PMFR = I,P,(1+ I,o(J,i))= I,13;(1+ I -~ _)=
I],,,I I j„l 13, 13]

"j b) Since ll; + i,
1

:,; 1 we deduce from part a)

p~IFR $I+ iL,.13; (i -1) = 2PFDR -1 o

This theorem gives a closed fonn expression for P MFR which is
rcadily evaluated for particular distributions 13 and usually shows that
the expected cost of the MF - rule is only a few percent above the
optimum. It also shows that PMFR is never more than twice the opti­
mum.

I
lf P, = N for I $ i $ N, the self - organizing table is always in

N+l
completely random order, and this formula reduces to P MFR = -

2
-

derived above. When the key probabilities obey Zipf s law one can prove

easy, using harmonic numbers, that PMFR ~ 2N/log2N. This is substan-
1

tially better than 2 N , when N is reasonably large, and it is only about

ln 4 = 1.386 times as many comparisons as would be obtained in the
optimum arrangement (P FDR).

Computational experiments involving actual compiler symbol
tables indicate that the self-organizing method works even better than
the above fonnulas predict, because successive searches are not inde­
pendent (small groups of keys tend to occur in bunches) (cf. D. Knuth).

Tape searching with unequal-length records. Suppose the table
we are searching is stored on tape, and the individual records have
varying lcngths. Let L, bc thc length of record R,, and let P; be the
probability that this record will be sought. The running time ofthe search
mcthod will now be approximately proportional to

100

https://biblioteca-digitala.ro / https://unibuc.ro

P/1 + P2CL1 + LJ + ... + pJL1 + L2 + ... + LN).
The optimum arrangement of programs on a library tape may be

determined as follows.
Theorem 2. Let L, and P; be as defined above. The arrangement

of records in the table is optimal if and only if

.!!.J... > Pi > > PN
/1 - L2 -···- LN (1)

Proof Suppose that R; and R;+i are interchanged on the tape; the
cost changes from

... +p;(Li+ ... +4_, + 4) + P1+1(Li+ ... +L;+1)+ ...

to .. .+P;+1(L1+ .. .+LH + L;+1)+ p„(L1+ .. .+L;+i)+ ... with a difference of

L Th fi "f P; < Pi+I h . . p
1
L,.+1 - P,-+i ;· ere ore 1 4 ½+I t e giyen arrangement 1s nat

optimal. It follows that ifthe arrangement is optimal then (1) holds.
Conversely, assurne that (1) holds; we need to prove that the

arrangement is optimal. We know that any permutation of the records
can be sorted into the order Rl2 .•• RN by using a sequence of inter­
changes of adjacent records. Each ofthese interchanges replaces ... R/;
... by ... R,R

1
... for some i <j, so it decreases the search time by the non­

negative am o unt p L. - p L .
I } } I

If the initial arrangement was optimum, it follows that al! arrange-
ments obtained in this way must be optimum also; therefore the order
R

1
R

2
••• RN must have minimum search time.

§ 3. Searching by comparison of keys

In this section we shall discuss search methods which are based
on a linear ordering of the keys. After comparing the given argument K
to a key K; in the table, the search continues in three different ways,
depending on whether K < K., K = K., or K > K..

I I I

With so many sorting methods at our disposal, we will have little
difficulty rearranging a file into order so that it may be searched conve­
niently. Of coursc, if wc only need to search the table once, it is faster to

101

https://biblioteca-digitala.ro / https://unibuc.ro

do a sequential search than to do a complete sort of the file; but if
we need to make repeated searches in the same file, we are better off
having it in order. Therefore in ibis section we shall concentrate on
methods which are appropriate for searching a table whose keys are in
order, K1 < K2 < ... < KN' making random accesses to the table entries.
After comparing K to K; in such a table, we either have: * K < K; [R;,
Ri+I''"'RN are eliminated from consideration]; or* K = K; [the search is
dane]; or"' K > K; [RI' R2, ... , R; are eliminated from consideration].

In each ofthese three cases, substantial progress has been made,
unless is near one ofthe ends of the table; this is why the ordering leads
to an efficient algorithm.

Let S = {K1 < K2 < ... < KJ be stored in array K[l...n], i.e.
K[i]= K;, and let a e U. 1n order to decide a e S, we compare a with
some table element and then proceed with either the lowerorthe upper part
ofthe table.

This idea leads to the following general algorithm from which
various algorithms can be obtained by replacing lines (2) and (7) by
specific strategies for choosing next:

(1) low f- 1; high f- n;
(2) next f- an integer in [low, high];
(3) while a :I: K [next] and high > low
(4) do if a< K [next]
(5) then high f- next -1
(6) e/se low f- next + 1 fi;
(7) next f- an integer in [low, high]
(8) od;
(9) if a= K [next] then „successful" else „unsuccessful".
Linear search is obtained by next f- low; binary search by next

f- l (low + high)/2 J (or next f- f (low + high)/2) l) and înterpolation

r
a-K[low-1] l

search by· next f- low - 1 + ----"-----(high - low + 1)
· K[high + 1]-K[low -1] ·

We discuss bînary search în greater detail below.
The correctness of the program is independent of the particular

choîce made în line (2) and (7). If a = K [next] then the search is
successful. Suppose now that a ,ţ:. K [next]. We know that a e S implies
a e {K[low] , ... , K[high]}. If high < low then certainly a e S. If
high = low then next = high and hence a e S. In either case the scarch is
unsuccessful.

102
https://biblioteca-digitala.ro / https://unibuc.ro

Finally, the program terminates because high - low is decreased
by at least one in each execution of the loop body.

Note that for interpolation search it is assumed that positions K[O]
and K[n+ 1] are added and filled with artificial elements. The worst case
complexity of interpolation search is clearly O(n); to see this consider

1
the case that K[O] = O, K[n+ 1] = 1, a= --

1
and S i;;;;; (O,a). Ţhen next

n+
= low always and interpolation search deteriorates to linear search.
Average case behaviour is much better. We shall rewrite the binary search
algorithm as follows: ' ·

Algorithm B (Binary search). Giveri a table ofrecords RI, R,, ... ,
R,v whose keys are in increasing order K

1
< K2 < ... < K,,;, this algorithm

scarches for a given argument K.
1. Set / f-- 1, u f-- N.
2. If u < I, the algorithm terminates unsuccessfully. Otherwise,

set i f-- L(I + u)/2J, the approxirnate midpoint of the relevant
table area.

3. If K < K;, go to 4; if K> K;, go to 5; and if K = K;, the algorithm
terminates successfully.

4. Set u f-- i - 1 and retum to 2 .
5. Set / f-- i + 1 and retum to 2.
Note that if u < I at step 2, then u = I - 1 in all cases.

Fig. J A binar;• tree which corresponds to binary search when N = 16.

103
https://biblioteca-digitala.ro / https://unibuc.ro

In order to understand what is happening in Algorithm B, it is
best to think ofit as a binary decis ion tree, as shown in fig. 1 for the case
N= 16.

When N = 16, the first comparison made by the algorithm is
K: K8 ; this is representl.!d by the root node @ in the figure. Then if
K < K8, the algorithm follows the left subtree, comparing K to K

4
; simi­

larly if K > K
8

, the right subtree is used. An unsuccessful search will
lead to one ofthe „externai" square nodes numbered O through N; for
example, we reach node [§Jif and only if K

6
< K < K

1
.

The binary tree corresponding to a binary search on N records can
be constructed as follows:

If N = O, the tree is simply [QJ. Otherwise the root node is @
the left subtree is the corresponding binary tree with I N/2 l- 1 vert1ces,
and the right subtrcc îs thc corresponding binary trec with l,,v12J vcr­
tices and with all vertex numbcrs incrcased by I N/2 l . Here we have
counted only internal vertices corresponding to a succcssful search.

In an analogous fashion, any algorithm for searching an ordered
table of length N by means of nonredundant comparisons can be repre­
sented as a binary trec in which the internai vertices are labelled with the
numbers 1 to N and externa! vertices with O to N.

Conversely, any binary trec corresponds to a valid method for
searching an ordered table; wc simply labei thc vcrtices [QJ (D [JJ
G) W • • • IN - 1 I® [m in symmetric order, from left to right,
ifthe trce has N internai vertices and consequently, N + 1 externai ones.

Ifthc scarch argument input to Algorithm Bis K
10

, the algorithm
makes comparisons K > K

8
, K < K

12
, K = K

10
. This corresponds to thc

path from the root ® to vertex @) in fig. 1. Similarly, the behaviour
of Algorithm B on other keys corrcsponds to the other paths leading
from the root of the tree. The method of constructing the binary trees
coITcsponding to Algorithm B therefore makes it easy to prove the fol­
lowing rcsult by induction on N:

Theorem 1. Jf2k-l :s; N < 2\ a successfu/ search using Algarithm
B requires at mast k camparisans. lf N = 2' - 1, an unsuccessfitl search
requires k camparisans: and ij2•- 1 :s; N < 2' - I, an unsucces!>ful search
requires either k- 1 or k comparisons. This means that for N = 2' - 1 al/
terminal vertices of the binary trec assaciated to Algorithm Bare on
levei k andfor 2k 1 :s; N < 2" - I terminal 11ertices are an levels k - I and k.

104

https://biblioteca-digitala.ro / https://unibuc.ro

Proof: The propcrty is true for
k = I . Let k ~ 2 and suppose that the
property is true for all 2k-I $ N < 2k. lf
2k $ N < 2k+1, we shall distinguish two
cases: A. Nis odd, N= 2p + l; B. Nis
cvcn, N = 2p, where p E N, p ~ 1.

A. In this casc the root of the
binary tree T corresponding to Algo-

rithm B has the labei p + 1 = l N; 1 j ;

p+1

the lcft subtrce T
1

and the right subtree T, contain each exactly p
vertices. Since

1
it follows that p ~ 2*- 1 - 2, hence p 2:: 2*-1, since p îs an integer and also

I
p < 2* - - , , hence p < 2*. Because 2*- 1 $ p < 2* we can apply the

2

induction hypothesis for both T
1

and T,: h(T1) = h(T) = k, hence
h(T) = k + l, the height of T being equal to the maximum number of key
comparisons pcrformed by Algorithm B for a successful search. lf
p = 2k - l all terminal vertices of T, and T, are on levei k, hencc if
N = 2 p + 1 = 2k+1 - I all terminal vertices of T are on levei k + I.
lf 2k 1 $ p < 2* - 1, which implies that 2* $ N < 2k+1 - I since N = 2 p + I
is odd, both r, and T, have terminal vertices on levels k- 1 and k, hence

T has all terminal vertices on two con­
secutive levels, k and k + 1.

B. ln this case the root of the bi-

nary tree bas labei p = l N; 1 j and T,

and r, have not equal sizes: T
1

has p - I
vcrtices and T, p vertices. Since 2k $ 2 p
< 2k• 1, it follows that 2k-i $p < 2k. We

105

https://biblioteca-digitala.ro / https://unibuc.ro

have also 2k-I ~ p - 1 < 2k unless p = 2k- 1, or N = 2k. But in this case the
tree T is similar to the tree in fig. I, p. I 03 for every k ~ 1: it has
h(T) = k + 1, N - 1 terminal vertices on levei k and two terminal vertices
on levei k + 1, and the theorem is proved directly in this case (N = 2k).

It remains to consider the case 2k < N < 2k+1 only. By the induc­
tion hypothesis we deduce that h(T) = h(TJ = k, hence h(T) = k + I and
Algorithm B requires at most k + I comparisons for a successful search.

Since N is even, N '#- 2' - 1 for every s ~ I, hence we must prove
that the terminal vertices of Tare on two consecutive levels k and k + 1.
This follows also by the induction hypothesis for trees T, and T, which
correspond to the same algorithm applied for a set of p - 1 and p keys,
respectively. For T

1
we have p - 1 -:t: 2k - 1 since N is not a power of 2.

lt follows that terminal vertices of T
1

belo,.,g to two consecutive levels
k - 1 and k. For T, all tern1inal vertices belong to levei k (for p = 2k - I)
or to levels k- 1 and k. lt follows that Thas its terminal vertices on two
consecutive levels, k and k + 1 and the proof is complete. O

lt follows that the number of key comparisons in a successful
(or an unsuccessful) search by binary search algorithm is at most
l1og

2
NJ + 1. We have defined on p. 80 E(T), the externai path length of

a binary tree T, as the sum of the lengths (number of edges) of the paths
from the root to all externai vertices of T. In a similar manner, J(T), the
internai path length of Tis defined as the sum ofthe lengths ofthe paths
from the root to all internai vertices of T.

Fig. 2

106
https://biblioteca-digitala.ro / https://unibuc.ro

For example, for tree T in fig. 2 we have E(T) = 2 + 2 + 3 + 3 + 2
= 12 and l(T) = l + 2 + I = 4; E(T) - l(T) = 2 • 4, twice the number of
internai vertices of T. This property holds for any binary tree:

Lemma 2. For any bina1y tree T which is complete we have
E(T) = l(T) + 2 N,

where N denotes the number of interna! vertices ofT.
Proof Suppose that a complete binary tree has ak internai verti­

ces and bk externai vertices at levei k, for k = O, 1 ... (the root is at levei
zero). Thus in fig. 2 we have (a

0
, a

1
, a

2
, •••) = (1, 2, I, O, O, ...) and

(b0, bi' ...)= (O, O, 3, 2, O, 0, ...).
Consider the generating functions associated with these sequences:

-
A(z) = L a1,z" and

k=O

-
B(z) = L bkzk

k=O

where only a finite number of terms are non-vanishing. We have

2ak-1 = ak +b1,

for evcry k :2: O since all at-i internai vertices on levei k- 1 have exactly
two sons on levei k and the number of vertices on levei k is equal to
ak + bk. We deduce

- -
A(z) + B(z) = L(ak +bk)zk =a0 +b0 + L(ak +bk)zk =

k~ k=I

- - -
=l+2L ak-lzk=1+2zL ak_,zk-l=l+2zL akzk=1+2zA(z).

k=I k=I k=O

Wehave
A(z) + B(z) = 1 + 2zA(z) (1)

-
For z = 1 one obtains B(l) = I + A(l); but B(1) = Iik is the

k=O

-
number of externai vertices of T; A(l) = Lat is the number of internai

k=I

107
https://biblioteca-digitala.ro / https://unibuc.ro

verticcs of T, hence the number of externai vertices is one more than the
number of internai vertices. .

By differentiating (I) one gets
A'(z) + B'(z) = 2 A(z) + 2 zA'(z). lf A(l) = N, then for z = 1 this

-
equality yields: B'(l) = A'(l) + 2 N. But A'(])= Lkak = l(T) and

k=I

-
B'(J) = Lkbk = E(T), hence E(T) = l(T) + 2 N. □

k=I

The tree representation of algorithm B shows us also howto corn­
pute the average number of comparisons in a simple way.

Let C_,. be the average number of comparisons in a successful
search, assuming that each ofthe Nkays is an equally likely argument;

and let c;v be the average number of comparisons in an unsuccessful

search, assuming that each ofthe N + 1 intervals between keys is equally
likely. Then we have

l(T) C' = E(T) C,.,=1+--; ,,
' N " N+1

From E(T) = l(T) + 2 N we deduce

C,v = (1 + ~)c.~. -1 (2)

This formula holds for search mcthods which correspond to
binary trees, i.e., for all methods which are based on nonredundant com-

parisons. lt follows that CN is minimum if and only if c~ is minimum,
or by lemma on p. 80 if and only if all externai vertices of T belong to at
most two consecutive levels. By theorem 1 this is the case for binary
search which minimizes the average number of comparisons in both
cases of a successful or an unsuccessful search.

§ 4. Binary tree searching

We proved in the preceding section that for a given value of n, the
trec corresponding to binary scarch achicvcs the theoretical minimum
number of comparisons that are necessary to search a table by means of

108

https://biblioteca-digitala.ro / https://unibuc.ro

key comparisons. But the methods of the preceding section are appro­
priate mainly for fixed - size tables, since the sequential allocation of
records makes insertions and deletions rather expensive. If the table is
dynamically changing, we might spend more time maintaining it than
we save in binary searching it. The use of an explicit binary tree struc­
ture makes it possible to insert and delete records quickly, as well as to
search the table efficiently.

As a result, we essentially have a method which is useful both for
searching and for sorting. This gain in flexibility is achieved by adding
two link fields to each record of the table.

Techniques for searching a growing table are often called symbol
table algorithms, because assemblers and compilers and other system
routines generally use such methods to keep track of user - defined
symbols.

By representing the tree explicitely by pointers and not implicitely
by an array the operations Insert and Delete can also be executed fast as
we will see shortly.

This leads to the following definition:
A binary search tree for set S = {x1 < x

2
< ... < x.} is a binary

tree with n interna} vertices {vp···,v.}. These vertices are labelled
with the elements of S, i.e. there is an injective mapping CONTENT:
{vp···,v.} ➔ S.

The labelling preserves the order, i.e. if v;(v) is a vertex in the lefi
(right) subtree ofthe tree with root vk then CONTENT [vJ < CONTENT
[vk] < CONTENT [v)-

An equivalent definition is as follows: a traversa} of a search tree
for Sin symmetric order reproduces the order on S. We will mostly
identify internai vcrtices with their labellings, i.e. instead of speaking of
vertex v with labcl x we speak of vertex x and write x. Vertex x corre­
sponds to the test: if a < x then go to the lefi son else if a = x then
terminate search else go to the right sonfifi. The n + 1 leaves represent
unsuccessful access operations. lt is not necessary to store leaves
explicitely. Each leaf represents one of the n + 1 open intervals of the
universe U generated by the elements of S. We draw the leaf corre­
sponding to interval x; < a < x;+i as I (x;, x;+i) I- An example of a binary
search tree for n = 6 is the following:

109
https://biblioteca-digitala.ro / https://unibuc.ro

and it corresponds to a binary search algorithm when at step
2 i f- r (/ + u)/2 l instead of i f- Lu+ u)/2J (see p. 103).

Leaf (, x
1
) represents all a E U with a < x1• If a searching algo­

rithm terminates in vertex v then a = CONTENT [v], if we perform
operation Access (a, S) in T, a binary search u-ee for set S.

Otherwise it terminates in a leaf, say (.x;, x;+1). Then x; < a< x;+i ·
Operation Insert (a, S) is now very easy to implement. We only have to
replace leaf (x„ x;+i) by the tree

Deletion is slightly more difficult. A search for a yields internai
vertex v with content a. We have to distinguish two cases.

Case 1: At least one son of v is a leaf, say the left. Then we
replace v by its right son and delete v and its left son from the tree.

Case 2: No son of vis a leaf. Let w be the rightmost vertex in the
left subtree of v (the last internai vertex produced by traversing the
left subtree of v in symmetric order). Vertex w can be found by follo­
wing the left pointer out of v and then always the right pointer until a
leaf is hit.

11 O
https://biblioteca-digitala.ro / https://unibuc.ro

We replace CONTENT [v] by CONTENT [w] and delete w as
described in case 1. Note that w, s right son is a leaf.

The following figure illustrates both cases ... The vertex with con­
tent 4 is deleted, leaves are not drawn.

Case 1

Case2

Of co urse, the height of the search tree plays a crucial role for the
efficiency of the basic operations.

The following algorithm spells out the searching and insertion
processes in detail.

Algorithm T. (Tree search and insertion). Given a table
of records which forrn a binary tree as described above, this algorithm
searches for a given argument K.

lf K is not in the table, a new vertex containing K is inserted into
the tree in the appropriate place.

The vertices of the tree are assumed to contain at least the follo­
wing fields:

111
https://biblioteca-digitala.ro / https://unibuc.ro

KEY (P) = key stored in NODE (P)
LLINK (P) = pointer to lefi subtree of NODE (P)
RLINK (P) = pointer to right subtree of NODE (P).
Null subtrees are represented by the null pointer A. The variable

ROOT points to the root of the tree. We assume that the tree is not
empty (i.e., ROOT'# A).

I. Set P f-- ROOT.

2. If K < KEY (P), go to 3; if K > KEY (P), go to 4; and if
K = KEY (P), the search terminates successfully.

3. If LLINK (P) '# A, set P f-- LLINK (P) and go back to 2.
OtheIWise go to 5.

4. If RUNK (P) '# A, set P f-- RLINK (P) and go back to 2.

5. (The search is unsuccessful; we will now put K into thc trec).
Set Q ~ A V AIL, the address of a new node. Set KEY (Q) f-- K, LLINK
(Q) f-- RLINK (Q) f-- A. If K was less than KEY (P), set LLINK (P) f-­

Q, otheIWise set RLINK (P) ~ Q and terminate the algorithm. It can be
proved that the average height ofa randomly grown trec is O (log n) and
that tree search will require only about 2 ln N = 1.386 log

2
N compari­

sons, if thc keys are inserted into the tree in random order. Hence well­
balanced trees are common, and degenerate trees are very rare.

There is a simple pro of of this fact.
Let us assume that each ofthe N! possible orderings ofthe Nkcys

is an equally likely sequence of insertions for building the trec. The
number of comparisons needed to find a key is exactly one more than
thc number of comparisons that were needed when that key was cntercd
into the trec. Therefore if CN is thc average number of comparisons

involved in a successful search and c,~ is the average numbcr in an

unsuccessful scarch, wc have

C' C'+ +C' C = I + o + 1 .. · .v -I
N N ())

But the rclation betwecn internai and cxtemal path length implies

C\. = (1 + ~) C1~ - 1 (2)

112

https://biblioteca-digitala.ro / https://unibuc.ro

This is Eq. (2) p. 108. Putting this together with (1) yields

(N + l)C\ "--- 2N + c; + C{+ ... +C~_1

Subtracting the equation

NC~._ 1 :.= 2(N - o+ c; + c;+ ... +c~_2

we obtain

C' C' 2 (N+I)C~-NC,~._1 =2+C~._1,or t,;= ,v-1+--. . N+1

Sincc c~ = O, this means that

c,, = 2H - 2
" !V+ I

Applying (2) and simplifying yields the desired resuit

CN = 2(1 + -~· f N - 3 - 2 ln N .

§ 5. Weighted trees

1n this section we consider opcration Access applied to weighted
sets S. We associate a weight (access probability) with each element of
S. Large weight indicates that the element is important and accesscd
frequently; it is desirable that these elements are high in the tree and can
therefore be accessed fast.

Let us now expiare the problem offinding the optimum trec. When
N = 3, for examplc, let us assumc that the keys K

1
< K

2
< K

3
have

respective probabilities p, q, r. Thcre are five possible binary trces with
three internai vertices:

3p + 2q + r 2p + 3q + r 2p + q + 2r

1 i3
https://biblioteca-digitala.ro / https://unibuc.ro

p + 3q + 2r p + 2q + 3r

We obtain in this way five algebraic expressions for the average
number of comparisons in a search.

\Vhcn N is large. the number of binary trees having N interna]

vertices (the N-th Catalan number C_,. = N ~ 1 (:)) is asymptoti­

cally equal to 4 N / (N .J;ii) by Stirling' s formula, so we cannot try

them all and see which is best.
So far we have considered only the probabilities for a successful

search; in practice, the unsuccessful case must usually be considered as
well. Therefore let us set the problem up in the following way:

Let S = {K1 < K2 < ... < K"} and Jet P; (q) be the probability
ofoperation Access (a, S) where a =K, (JS <a <JS_) for 1 $ iS n (O$)$ n).
By convention, % is the probability that the scarch argument is lcss than
K

1
and q" is the probabilicy that the scarch argument is greater than K,,.

n n

Then p1, qi ~ O and L /J; + L q i = l .
1=1 j=O

The (2n + 1) - tuple (q0 , pi' qp···,P,,, q,,) is callcd access
(probability) distribution.

Let T be a search trce for set S, let a.; be the depth (leve]) of
interna] vertex i (the i-th internai vertex in symmetric order) and let

P ~· be the depth of leaf j (the U + 1) - st externai vertex or leaf

(Ki' Kj+I)).

114

https://biblioteca-digitala.ro / https://unibuc.ro

Consider a scarch for element a of the uni verse. If a = K then we
I

compare a with ex.;+ I elements in the tree; if K
1

< a < K
1

+
1

then we

compare a with P~ elements in the tree. Hence

n n

pT = L, A(l+a;)+ L, q;~}
i=I j=O

is the average number of comparisons in a search. pr is called weighted
path length of tree T (or the cost of T relative to the given access
probability distribution).

We take pr as our basic measure for the efficiency of operation
Access; the expected number of comparisons in the search is propor­
tional tor.

We will suppress index T if tree T can be inferred from the
context.

For ex ample the expected number of comparisons (or the weighted

path length) for the binary tree T
1

is

2qo + 2p1 + 3q1 + 3P2 + 3q2 +A+ q3,
since cx.

1
= 1, ((2 = 2, ~=O,

Po = 2, P1 = 3, P2 = 3, P3 = 1.

We associated with every search
tree for set Sa real nurnber, its weighted
path length (or shortly, its cost). We can
therefore ask for the tree with the mini­
mal weighted path length (cost). This
tree will then also optimize average
access time.

If (q
0

, p" qp ... ,p", q) is a fixed access distribution for
S = { K

1
< K

2
< ... < K"}, tree T is said to be an optimum binary search

trec for set S if its weighted path length is minimal among all search
trees for set S. In this definition there is no need to require that the p's
and q's sum to unity, we can ask for a minimum - cost trec with any
given sequence of"weights" (%,Pl' ql' ... ,p,,. qJ

115
https://biblioteca-digitala.ro / https://unibuc.ro

Wc usc dynamic programming, i.c. we will construct in a sys­

tematic way optimal solutions for increasingly largcr subproblems

to show that an optimum binary search trec for set S and distribution

of weights (%, p
1

, qp··-,P,,, q) can be constructcd in timc O(n-1
) and

space O(n 2
).

A search tree for set S has internai vertices 1, 2, ... ,n and externai

ve1tices O, 1, ... , n (or (, K), (Kl' K) , ... , (K.,)). A subtree might havc

internai vertices i + l , ... ,j and leaves i, ... ,j for O::;; i,j $ n, i ::;;J- I. Such

a subtree is a search tree for set { K,~i < ... < f\}.
lfwc dcnotc w(i,j) = P,+i + ... +pi+ q1 + ... + qi' the cost of such a

subtree by P(i, j), and if its root is k(i < k ::;; j), then the cost of this

subtree is related to the costs of its subtrees (left and right) by:

P(i, j) = w(i, j) + P(i, k-1) + P(k, j)

lndeed, the left subtree of thc root k has lcavcs i, i + I, ... , k-1 ; thc

right subtree has leaves k, k + l , ... ,j and the leve! of each vertex in the

left or right subtree of k is less by 1 than the leve] of that vertex in the

trec having root k. Let c(i, j) be the cost of an optimum subtree with

weights (p,+l'···,Pp. q
1
, ••• ,q) and suppose that c(i,j) and w(i,j) are defincd

for O::;; i ::;;J::;; n. lt follows that

c(i, i) = O
c(i, j) = w(i, j) + min (c(i, k-1) + c(k, j))

i < k::;;J
for i <j (I)

sincc both left and right subtrees of root k must be optimum.

When i < j, lct R(i, j) be the set of all k for which the minimum is

achieved in (I); this set specifies the possible roots of thc optimum trees.

Eq. (1) makes it possible to evaluate c(i, j) for j - i = 1, 2, ... ,n;

(n) 1 ,
thcrc arc

2
- 2n· such valucs, and the minimization opcration is

carried out

times.

116

https://biblioteca-digitala.ro / https://unibuc.ro

This means wc can dctenninc an optimum tree in O(n3
) units of

time, using O(n2) cclls of memory. Howevcr. time complexity can bc
decreased to O(n 2) using a monotonicity property of R(i, j).

Examplc:
Let n = 4; % = 4, p

1
= I, q

1
= O, p

2
= 3, q

2
= O, p

3
= 3, q3 = 3, p 4 = O,

q4 = 10. We get: c(O, I)= w(0,1) = % + p
1
+ q

1
= 5; c(l,2) = w(l, 2) = 3,

c(2,3) = w (2,3) = 6, c(3,4) = 13.
Now we computc c(i, j) for j - i = 2, i.e.,

c(0,2) = w(0,2) + min (c(O,k- 1) + c(k, 2)) =
k= 1, 2

= 8 + min (3, 5) = 11 (k = 1)
c(l,3) = w(l,3) + min (c(l, k-1) + c(k, 3)) =

k= 2,3
= 9+min(6,3)=12(k=3)

c(2,4) = w(2,4) + min (c(2, k-1) + c(k, 4)) =
k = 3,4

= 16 + min (13, 6) = 22 (k= 4).
The values of k in parentheses indicate the points where mini­

mum was reachcd. Further, letj - i = 3:
c(0,3) = w(0.3) + min (c(O, k-1) + c(k,3)) =

k = 1, 2, 3
= 14 + min (12, 11, 11) = 25 (k = 2, 3).

c(l,4) = w(I, 4) + min(c(l, k- I)+ c(k, 4)) =
k= 2, 3, 4

= 19 + min (22, 16, 12) = 31 (k = 4).
Numbers w(i, j) can be computcd by rccurrencc sin cc w(i, j + 1) =

= W(i, j) + pj + I + q! + I.

Finally,
c(0,4) = w(0,4) + min(c(O, k-1) + c(k, 4)) =

k=l,2,3,4
= w (0,4) + min(31, 27, 24, 25)(k = 3).

It follows that the root of thc mini­
mum search tree is 3, hence the root ofthe
right subtree of 3 is 4 and the right subtree
of 3 is completely detcrmincd.

117

https://biblioteca-digitala.ro / https://unibuc.ro

The left subtree of3 has leaves O, I, 2; it corresponds toi= O and
j = 2. The cost of a minimum subtree of this type is precisely c(0,2) = 11
and its root is 1. 1t follows that optimurn search tree for this distribution
of weights is represented as above.

Of course, we can transform our initial access weight distribution
into an access probability d.istribution by dividing each component by 24.

§ 6. Balanced trees

The tree insertion algorithm will produce good search trees, when
· the input data is random, but there is still the annoying possibility that a

degenerate tree will occur.
A solution to the problem ofmaintaining a good search tree was

discovered in 1962 by G.M. Adelson-Velskii and E.M. Landis. Their
method requires only two extra bits per node, and it never uses more
than O(log N) operations to search the tree or to insert an item.

In fact, we shall see that their approach also leads to a general
technique that is good for representing arbitrary linear lists oflength N,
so that each of the following operations can be done in only O(log N)
units of time:

i) Find an item having a given key.
ii) Find the k-th. item, given k.

iii) Insert an item at a specified place.
iv) Delete a specified item.
lf we use sequential allocation for linear lists, operations (i) and

(ii) are efficient but operations (iii) and (iv) take order N steps; on the
other hand, if we use linked allocation, operations (iii) and (iv) are effi­
cient but operations (i) and (ii) take order N steps. A tree representation
of linear lists can do all four operations in O(log N) steps. And it is also
possible to do other standard operations with comparable efficiency, for
example list concatenation.

The method for achieving all this involves what we shall call
,,balanced trees" (or AVL - trees).

However in applications which do not involve all four of the above
operations, we may be able to get by with substantially less overhead
and simpler programming. Furthermore, there is no advantage to use
balanccd trees unless N is reasonably large. Balanced trees are appro-

118
https://biblioteca-digitala.ro / https://unibuc.ro

priate chicfly for internai storagc of data; since internai memories
seem to bc gctting larger and largcr as time gocs by, balanced tree are
becoming more and more imp01tant.

A binary trce is called balanced ifthe height ofthe lelf subtree of
every vertex never diffcrs by more than ± I from the height of its right
subtree. The balancc factor within each vertex is by definition the height
of the right sub trec minus thc height of the left subtree. If a binary trec is
balanced, then the balance factor in each vertex is I, O or -1.

An important class of balanced trees is thc class of Fibonacci
trees, defined as follows:

Consider first the sequcnce (F).:;-
1
of Fibonacci numbers, defined

by F
1
= F

2
= 1 and

F
11

_
2

= F
11

•
1
+ F„ for evcry n ~ 1. (I)

ln ordcr to find an explicit formula for Fibonacci numbers, wc
shall find a solution for recurrence (I) of thc form F = r". lt follows •
that r verifies the quadratic equation:

r2 -r-1=0

. . I±Js
havmg solut10ns r:1 , =c -- • .• 2

Hence general solution of (1) is

F -(' n+c· n
PI- 'J'i 2'2

whcre constants CI' C
2

will be detcrmined from initial conditions F
1
= I

and F
2

= I. llencc by solving thc linear system of equations

C
I+ Js (' 1 - ..fs _ l

l + '2 -2 2

C }_ + Jş_ + Co]~ ✓5 = I
l 2 • 2

(, 1 (' I
we get ,1 = Js and ·2 = -J5 , hence

(2)

This îs the so-called Bi net' s fommla for Fibonacci numbers.

119

https://biblioteca-digitala.ro / https://unibuc.ro

Thc first tenns of Fibonacci sequence are:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Fibonacci trces, denoted by FTk ; k = O, 1, 2, ... are labelled binary
trees defined by recurrence as follows: FT

0
and FT

1
consist each of a

single (externai) vertex: @].
Now for every k 2: 2, Fibonacci tree of order k, FTk has a root

having labei Fk; the left subtree ofthe root is FTk
I

and the right subtree
is FTk 2 having all labels of the vertices (internai and externai) increased
by Fk, the labei of the root of FTk.

FT/+5)

Thc basic propcrties of such kind oftrees are contained in Lemma

1; an extrema! property of Fibonacci trces will be provcd in Theorem 2.
Lemma 1. For-eve,y k2: I, Fibonacci tree FTk is a balanced tree

having height h(FTk) = k - 1, Fk+J externai vertices and Fk+i - 1 inter­
nai vertices.

120

https://biblioteca-digitala.ro / https://unibuc.ro

Prvof: For k = 1 and k ~. 2 the property is veri ficd. Supposc that
it is true for all Fibonacci trees FT, witb k' < k and let FTk a Fibonacci
tree of order k (k 2'. 3). Then frorn tbe recursive definition wc get
h(FTk) = h(FTk-i) + 1 = k - I, thc number of externa! vertices of FTk is
cqual to Fk + Fk-i = F,+i , bencc tbe number of interna! vertices is equal to
F k+l - 1.

Tbe balance property is veri fied by tbe induction bypothesis for
all vertices different from tbe root of FTk. For tbe root of FTk its left
subtree bas beight k- 2 and tbe right subtree heigbt k- 3, hence FTk is
a balanced tree also . I]

Tbis definition ofbalance represcnts a compromise between opti­
mum binary trees (with all externai vertices rcquired to be on two
adjacent levels) and arbitrary binary trees (unrestricted). lt is tberefore
natural to ask how far from optimum a balanced tree can be.

Tbe answer is tbat its searcb paths will nevcr be more than 45
percent longcr than the optimum.

Theorem 2. The height of a balanced tree T with N internai ver­
tices always !ies between logiCN + I) and 1.4404 log/N + 2) - 0.328.

Proof: A binary trec of height b cannot bave more than 2h exter­
nai vertices; so N + 1 ::,; 2h(7) that is, h(n ~ log2 (N + I).

In order to find the maximum valuc of h, let us turn the problem
around and ask for tbc minimum number of interna] vertices possible in
a balanced trec of beigbt h.

Let T„ be such a trec with fewest possible vertices; thc one of tbe
subtrees of tbe root, say the lefi subtree, bas heigbt h - 1, and the other
subtree bas heigbt h - 1 or h - 2.

Since wc want Th to have tbc minimum number of vertices, we
may assume that tbe lefi subtrce bas beigbt h - 1, and the right subtrec
bas height h - 2. So we may suppose that the left subtrce of the root is
Th- i, and that the right subtree is Th 2 • This argument shows that it can
be provcd by induction that thc Fibonacci tree of order h + 1, FTh+J' has
thc fewest possible vertices among all balanced trees of height h and
this minimum number of vertices is Fh~

2
- I by Lemma 1. Thus

N ?F, -1=-] (1+✓5)h+2 ___ 1 (1- ✓5)h+2 -]
h+2 ✓5 2 ✓5 2

121

https://biblioteca-digitala.ro / https://unibuc.ro

1-✓5
In this expression, --E (-1,0), hence

2

1 l-v5 1 h+2 1+ ✓5
(

r;-)h+2
- ~ -- '?. -1 and N '?. rr <p - 2 where cp = -- > 1

...;5 2 ...;5 ' 2

1
It follows that log2 (N + 2) '?. (h + 2) log 2 cp - 2 log2 5, hence

h=h(T)~-1-Iog2(N+2)+ log2 S -2
log2 cp 21og2 cp

Now _l_ < 1.4404 log2 5 - 2 < -0.328. ,,
log2 cp and 2log2 cp l-

The proof of this theorem shows that a search in a balanced tree
will require more than 25 comparisons only if the tree contains at least
F

21
- 1 = 196, 417 vertices.

Consider now what happens when a new vertex is inserted into a
balanced tree using tree insertion. The problem arises when we have a
vertex with a balance factor of I whose right subtree gat higher after the
insertion; or, dually, if the balance factor is - I and the lefi: subtree got
higher, when some adjustment will be needed. It is nat difficult to see
that there are essentially only two cases which cause trouble:

A@ A~
h{~ +I B h{LJx -I B

hr ~ } h + l h -l { ~ }

-~ w½'½

Case I
Casc 2

https://biblioteca-digitala.ro / https://unibuc.ro

Two other essentially identica! cases occur if we reflect these
diagrams, interchanging lefi and right. In these diagrams the rectangles
o:, J3, y, o represent subtrees having the respective heights shown.
Case 1 occurs when a new element bas increased the height of vertex
B' s right subtree from h to h + 1, and Case 2 occurs when the new
element has increased the height of B' s lefi subtree. In the second case,
we have either h = O (so thatX itselfwas the new vertex), or else vertex
Xhas two subtrees ofrespective heights (h-1, h) or (h, h-1).

Simple transformations will restore balance in both of the above
cases, while preserving the symmetric order of the tree vertices and the
height of the subtree which is rebalanced:

B

'Y

h + I
h

Case I Case 2

In Case 1 we simply rotate the tree to the lefi, attaching J3 to A
instead of B and changing the root from A to B. This transformation is
like applying the associative law to an algebraic formula, replacing o:(J3y)
by (o:J3)y.

In Case 2 we used a double rotation, first rotating (X, B)
right, then (A, X) lefi; in this case X is the new root of thc tree undcr
consideration.

Io both cases only a few links ofthe tree need tobe changed (3 in
the first case and 5 in the second one). Furthermore, the new trees have

123
https://biblioteca-digitala.ro / https://unibuc.ro

height h + 2, which is cxactly thc height that was prcsent beforc thc
inscrtion; hence thc rest of the trce (if any) that was originally abovc
vertex A always remains balanced.

The following algorithm avoids the need for a stack in ordcr to
keep track of which vertices will be affected by the rebalancc process.

Algoritm A. (B a 1 an ce d t r ce s ea r c h an d insert i o n).
Givcn a table ofrecords which fom1 a balanced binary tree as described
above, this algorithm searches for a given argument K.

lf K is not in the table, a new vertex containing K îs inserted into
the trce in the appropriate place and the trec is rebalanced if necessary.

Thc vertices ofthe tree are assumed to contain KEY, LLINK, and
RLINK fields as in Algorithm T (Trec se arc h an d i ns e r t i o n).
Wc also have a new ficld:

B(P) = bal an ce factor of NODE(P), the height of the right subtrce
minus the height of the left subtrce; this field always contain 1, O
or - 1. A special header vertex also appcars at thc top of the tree, in
location HEAD; thc value ofRLINK (HEAD) is a pointer to the root of
thc trce, and LLINK (HEAD) is used to keep track ofthc overall height
of thc tree. We assume that the trec is nonempty, i. e., that RLINK
(HEAD) -:t:A.

For convenience in description, the algorithm uses the notation
LINK(a, P) as a synonym for LLINK(P) if a= - 1, and for RLINK(P)
if a= I.

I. Set T f- HEAD, Sf- P f- RLINK (HEAD).
(The pointer variable P will move down the trec; S will point to the
place wherc rebalancing may bc neccssary, and T always points to the
father of S).

2. If K < KEY(P), goto 3; if K > KEY(P), go to 4; and if
K = KEY(P), thc scarch terminates succcssfully.

3. Set Q f- LLINK(P). If Q = A, set Q <= A V AIL and LLINK(P)
f- Q and go to step 5. Othcrwise if B(Q) t:- O, set T f- P and Sf- Q.
Finally set P f- Q and retum to stcp 2.

4. Set Q f- RLINK(P). lf Q = A, set Q <= A V AIL and RLINK(P)
f- Q and go to stcp 5. Othcrwisc if B(Q) '#- O, set T f- P and Sf- Q.
Finally set P f- Q and rcturn to stcp 2.

124

https://biblioteca-digitala.ro / https://unibuc.ro

5. Set KEY(Q) f- K, LLINK(Q) f- RLINK(Q)f- A, B(Q) f- O
(Thc ficlds of NODE(Q) arc initialized).

6. lf K < KEY(S), set R f- P f- LLINK(S), othcrwise set R f- P
f- RLINK(S). Then repcatedly do the following operation zero or more
times until P = Q:

lf K < KEY(P) set B(P) f- - 1 and P f- LLINK(P); if K > KEY(P),
set B(P) f- I and P f- RLINK(P). (If K = KEY(P), then P = Q and wc
may go on to the ncxt step).

(The balancc factors on vcrtices between S and Q havc becn
changed from zero to ± I).

7. lf K < KEY(S) set a f- - I, otherwise set a f- I. Severa! cases

now anse:
i) lf B(S) = O (the trec has grown highcr), set B(S) f- a,

LLTNK(HEAD) f- LLINK(HEAD) + I, and tcm1inate the algorithm.
ii) lf B(S) = - a (thc trec has gottcn more balanced), set B(S) f- O

and terminate the algorithm.
iii) lf B(S) = a (thc trce has gottcn aut ofbalance), go to step 8 if

B(R) = a, or to 9 if B(R) = -a. (Case (iii) corrcsponds to Cascs I and 2 on
p. 122 whcn a= I; S and R point, respectively, to vcrtices A and B, and
LINK(-a,S) points to cc LINK(-a,R) points to~ (or to X in Casc 2) etc.).

8. Set P r R, LINK(a,S) f- LINK(-a,R), LINK(-a,R) f-S, B(S)

f- B(R) f- O. Go to 10. (Singlc rotation).

9. Set P f- LINK(-a,R), LINK(-a,R) f- LINK(a,P), LINK(a,P)
r R, LINK(a,S) f- LINK(-a,P), LINK(-a,P) f- S. Now set

{

(-a,0) if B(P) = a:

(B(S),R(R)) ~ (O.O) if B(P) = O;

(0,a) if B(P) = -a:

and thcn set B(P) f- O. (Doublc rotation).

JO. lf S = RLINK(7) thcn set RLJNK(7) f- P, othcrwisc set
LLINK(7) f- P (P points to the new root and T points to thc fathcr of
thc old root).

125
https://biblioteca-digitala.ro / https://unibuc.ro

This algorithrn is rather long, but it divides into three simple parts:
Steps 1-4 do the search, steps 5-7 insert a new vertex, and steps 8-10
rebalance the tree if necessary.

This algorithrn takes about C log N units of time, for some con­
stant C, by theorem 2.

An example is considered below. After step 7, a f-- 1 since
K > KEY(S), B(S) =a= 1 and the tree has gotten out ofbalance;

T

s

p

Q

Insertion of a new vertex Q
at steps 3 or 4 plus 5. T is the

father of S; B(S) * O but all bal­
ance factors on vertices between

S and Q are equal to zero.

R

Changing the balance fac­

tors on vertices between S and
Q from O to ± 1 at step 6 and

defining the pointer R to the root
of the right (lcft) subtree of

S, depending on whether

K > KEY(S) or K < KEY(S).

now a doublc rotation is necessary since B(R) = -1 = -a etc.

Note that if B(S) = O at step 7i) then S points to the root of the tree,
i.e. S = RLINK (HEAD) and al! vertices between S and Q have a balance
factor equal to zero.

Linear list representation. Balanced trees can be used to repre­

scnt linear lists in such a way that we can insert items rapidly (overcom-

126
https://biblioteca-digitala.ro / https://unibuc.ro

ing the difficulty of sequential allocation), yet can also perform random
accesses to list items (overcoming the difficulty of linked allocation).
The idea is to introduce a new field in each vertex, cal!ed the RANK
fie Id. This fie Id indicates the relative position of that vertex in its subtree,
i.e., one plus the number of internai vertices in its left subtree. The fig­
ure below shows the RANK valucs for a binary tree, as well as the
balance factor in each internai vertex.

We can eliminate the KEY field entirely; or, if desired, we can
have both KEY and RANK fields, so that it is possible to retrieve items
either by their key value or by their relative position in the !ist. Using
such a RANK field, retrieval by position is a straightfmward modifica­
tion of the search algorithms we havc becn studying.

127

https://biblioteca-digitala.ro / https://unibuc.ro

Algorithm B. (Tree search by position) Given a linear !ist

represented as a binary tree, this algorithm finds the k-th element of the

!ist (the k-th vertex of the tree in symmetric order), given k. The binary

trec is assumed to have LLINK and RLINK ficlds and a header as in

Algorithm A, plus a RANK field as described above.
1. Set M f- k, P f- RLINK(HEAD).

2. If P=A, the algorithm terminates unsucccssfully. (This can

happen only if k was greater than the number of vcrtices in the tree, or

k $ O). OtheIWise if M < RANK(P), go to 3; if M > RANK(P), go to 4;
and if M = RANK(P), the algorithm terminatcs successfully (P points to

the k-th vertex).

3. Set P f- LLINK(P) and return to 2.
4. Set M f- M-RANK(P) and P f- RLINK(P) and returu to 2.

We can modify the insertion procedure in a similar way:

Algorithm C. (Balanced trec insertion by position). Given

a linear !ist represented as a balanced binary tree, this algorithm inserts

a new vertex just before the k-th element ofthe !ist, given k and a pointer

Q to the new vertex. If k=N+ 1, the new vertex is inserted just after the

last element of the !ist.

The binary tree is assumed to be noncmpty and to have LLINK,

RLINK, and B fields and a header, as in Algorithm A, plus a RANK
field as describcd above. This algorithm is merely a transcription of

Algorithm A; the differencc is that it uses and updates the RANK fields

instead ofthe KEY fields.
1. Set T f- HEAD, Sf- P f- RLINK(HEAD), U f- M f- k.
2. If M $ RANK(P), go to 3, otherwisc go to 4.

3. Set RANK(P) f- RANK(P) + I (wc will be inserting a new

vertex to thc lefi of P). Set R f- LLINK(P).

If R=/\., set LLINK(P) f- Q and go to 5. Otherwise if B(R) :t:. O set

T f- P, Sf- R, and U f- M. Finally set P f- R and return to 2.
4. Set M f- M-RANK(P), and R f- RLINK(P).

Jf R=/\., set RLINK(P) f- Q and go to 5. Otherwisc if B(R) :f:. O set

T f--- P, Sf- R, and U f--- M. Finally set P f--- R and retum to 2.

128
https://biblioteca-digitala.ro / https://unibuc.ro

5. Set RANK(Q) r I, LLINK(Q) r RLINK(Q) r A, B(Q) r O.

6. Set M r U. (This restores thc former value of M when P was S;

all RANK fields are now properly set).

lf M < RANK(S), set R r P ~ LLINK(S), otherwise set R ~ P f­

RLINK(S) and M ~ M - RANK(S). Then rcpeatedly do the following

operation until P=Q:
If M < RANK(P), set B(P) f- -1 and P r LLINK(P); if

M> RANK(P), set B(P) f- 1 and M r M-RANK(P); P f- RLINK(P).

(If M=RANK(P), then P=Q and wc may go on to the next step).

7. If U < RANK(S), set a f- -1, otherwise set a f- 1. Severa) cases

now arise:

i) lf B(S)=O, set B(S) f- a, LLINK(HEAD) f- LLINK(HEAD) + I,
and terminate the algorithm.

ii) If B(S) = -a, set B(S) f- O and terminate the algorithm.

iii) If B(S) = a, go to step 8 if B(R) = a, and to 9 if B(R) = -a.

8. Set P f- R, LINK(a,S) f- LINK(-a,R), LINK(-a,R) f- S, B(S)

r B(R) f- O. I f a= 1, set RANK(R) f- RANK(R) + RANK(S); if

a = -1, set RANK(S) f- RANK(S) - RANK(R).

9. Do all the operations of step 9 (Algorithm A).
Then if a= I, set RANK(R) r RANK(R) - RANK(P), RANK(P)

r RANK(P) + RANK(S); if a = -1, set RANK(P) f- RANK(P) +
+ RANK(R), then RANK(S) f- RANK(S) - RANK(P).

10. If S = RLINK(D then set RLINK(T) f- P, otherwise set

LLINK(1) f- P.
AII known classes ofbalanced trees can be divided into two groups:

height - balanced and weight - balanced trees. In height - balanced

trees one balances the hcight of the subtrees, in weight - balanced trees

onc balanccs the number of verticcs in the left and right subtrees.

A VL - trecs are an cxample in the class ofheight - balanced trecs.
Wc will discuss a representative of wcight - balanced trees.

129

https://biblioteca-digitala.ro / https://unibuc.ro

§ 7. Weight - balanced trees

l Jz
Let ex be a fix ed real number, - < a s; I - - = 0.2928 .

4 2
Definition: a) Let T be a binary tree with lefi: subtree T, and right

subtree T,.• Then

P<n = ITil = 1 _ lr,I
171 ITI

is called the root balance of T. Here 171 denotes the number ofleaves of
tree T.

b) Tree T is of bounded bal an ce ex, if for every subtree T' of Tone
has:

ex$ p(T') $ 1 - ex
c) BB[ex] denotes the set of all trees ofbounded balance ex.
In thc following tree the subtrees with internai root u have root

1
balance writen near u. The tree is in BB[cx] for ex$ 3.

5/14

1/2

2/3

1/2~

Trecs of bounded balance have logarithmic depth and logarithmic
avcragc internai path length.

n

Let l(T) = L ex; be the internai path length of T, where exr denotes
1=1 I

thc depth (or leve I) of internai vertex i in tree T.

130

https://biblioteca-digitala.ro / https://unibuc.ro

Theorem 1. Let TE BB[cx] bea tree with n internai vertices. Then

a) /(T) $(1+_!._)log(n+l)/ H(a,l-a)-2
n n

where entropy H(cx,1-a.) = -ex log a-(1-cx)log(l-cx);
b) h(]):;; 1 + (log(n+ 1)-1)/log(l/(1-a)).
Proof' We show J(T):;; (n+ l)log(n+ 1)/H(a, 1-a.)-2n by induction

on n. For n=l we have /(7)=0. Since O< H(a,1-cx)::; 1 this proves the
claim for n= 1. So let us assume n > 1.

Thas a left (right) subtree with /(r) vertices and internai path length
~(/,). Then n =I+ r+ 1 and /(7) = /1+ I,+ n-1. Since TE BB[a] we can
write

/+1
a$;--$l-a

n+ 1
Applying the induction hypothesis yields

l
l(T)=n-1 +11 +I,:$;---[(!+ l)log(/+ 1) +(r+ l)log(r+ 1)]-n+ l=

H(a,1-a)

n+l I /+1 /+1 r+l r+1l
= H(o:,l-o:)llog{n+l)+ n+llogn+l + n+llogn+iJ-n+l=

smce

JI+l r+lJ
(n+l)log(n+l) nln+1' n+l

=------n+]- (n+1)~--~~
H(o:,1-a) H(a,1-a)

(n + l)log(n + I) $; ...;.__ ___ ---'- - 2n
H(a,1-a)

(
/+l r+l)

H~,~ >1·
H(a,1-a) -

Indeed, H(x,1-x) is monotonically increasing in x for O< x $½
1

since by denotingflx) = H(x,1-x) = H(l-x,x),f (O, 2] ➔ R, we have

131
https://biblioteca-digitala.ro / https://unibuc.ro

1- X]
f'(x) = log -- ~ O for every x E (O,-

x 2

I+ 1 1
lf n +

1
S 2, (2) follows from this property of the function/and

from (1).

I+ 1 I
Otherwise, --> -

n+ 1 2

r + 1 1
but in this case we have -- < -- smce

n+l 2

1+1 r+I
their sum --+ --= I and (I) implies also

n+1 n+1

r+1
aS--Sl-a (3)

n+1

Now rf I+ 1, r+ 1)= rf r+ 1, I+ 1)~ H(a,1-a)
nln+ln+I nln+ln+I and(2)is

proved. Noticethat .r(½)=i½,½)=1.
b) Let TE BB[a] bea tree with n vertices, let k=height(T), and lct

v0,vp···,vk-l bea path from the root to a vertex vt- 1 of depth (levei) k-1.
Let w. be the number of leaves in the mbtree with root v, O S i S k-1.

I I

Then wk-J = 2 and w;.,_1 S (1-a)w; for OS i < k-1, since T is of
bounded balance a.

Indeed, since TE BB[a] it follows that both IT,I I 171 and IT,I I 171 are
bounded above by 1-0t. We deduce

2 = wk-t $ (1-a)wk_2 S ... S (1-al-1
li1

0 = (1-a)k-t(n +I).

Taking logarithms finishes thc proof sin ce log(1-a)
= -log(l/(1- a))< O. O

For a = 1- fi 12 = 0.2928,

J(T) $ I.I s(1 + ~ }og(n + 1)- 2 and h(T) $ 21og(n + I) - I.

132

https://biblioteca-digitala.ro / https://unibuc.ro

Hence a comparison with binary search algorithm shows that the

avcragc search timc in trces in BB [1--✓2 / 2] is at most 15% and that

thc maximal scarch timc is at mast by a factor of 2 above the optimum.
Opcrations Access, Insert and Dclete are performed usually as for

binary search trees.
However, inscrtions and deletions can move the root balance for

sorne vertices on the path of search outside the perrnissible range [ex, 1--a].
As for A VL trecs, there are two transforrnations for remcding such

a situation: rotation and double rotation. In the following figures inter­
nai vertices are drawn as circles and subtrees are drawn as triangles.

The root - balances are given beside each vertex. The figures show
transformations „to the lefi". The symmetrical variants alsa exist.

Y y I = P1 + P2 (1 - P1)

Y
_ P1

2-
P1 +P2Cl-P1)

C

a

double rotation

The root balances of the transformed trees can be computed from
the old balances pi' p

2
and p

3
as given in the figurc. Let a, b, c be the

133

https://biblioteca-digitala.ro / https://unibuc.ro

number of leaves in the subtrees shown. Then for the rotation we have

a b
P1 = b ,P2 =-b- and

a+ +c +c

()
a b b+c

'Y1 =pi +P2 1-pl =---+-----­
a+b+c b+c a+b+c

a+b

a+b+c'

'Y2=P1l(p1+pi{l-p1))= a __ I =-a-;
a+b+c y1 a+b

for double rotation the computation îs similar.
Let us consider operation Insert first. Suppose that vertex a is added

to the tree. Let v0,vl' ... ,vl be the path from the root to vertex vl= a. Op­
eration Insert (a) creates the following subtree with root - balance 1/2.

We will now walk back the path towards the root and rebalance all
vertices on this path. So let us assume that we reached vertex vi and that
the root balances of all proper descendants of vi are in the range [ex, I -ex].

Then O s; i s; k-1. If the root - balance of vertex v. is still in the
I

range [C(, 1-cx] then we can move on to vertex vi-l. If i t is outside the
range [o:, I -a.] we have to rebalance as described in the following lemma.

Lemma l. For al! C(E (1/4, 1 -✓2 / 2] there are constants d E

[C(,}-C(] and B 2". O (i/C(< 1-✓2 / 2 then B > O) such thatfor Ta binary

tree with subtrees T1 and T, and

134

(1) T1 and T, are in BB[cr];
(2) 1n I 171 < ex and either

(2.1) ln / (171 -1) ~ C((i.e. an insertion into the right subtree of
T occured) or
(2.2) (IT,!+ 1) / (171 + 1) ~ ex (i. e. a deletionfrom the lefi subtree
occured);

https://biblioteca-digitala.ro / https://unibuc.ro

(3) p2 is the root balance of T,,
we have:

(i) if p
2
~ d then a rotation rebalances the tree, more precisely '(1, '(2

E [(I +S)cx, 1-(I +8)cx] where y
1
, y

2
are as shuwn in the figure describing

rotation.

(ii) if p2 > d then a double rotation rebalance the tree, more pre­

cisely y"y
2
,y3 E [(I +S)cx, 1-(1 +8)cx] where y" y2, y3 are as shown in the

figure describing double rotation.

A complete proof is long and unelegant.
Notice only that one can find expressions for S and d as functions of ex.

[J
Lemma I implies that a BB[cx] - tree can be rebalanced after an

insertion by means of rotations and double rotations. The transfom1a­
tions are rcstricted to the vertices on the path from the root to the
inserted element. Thus height (T) = O (log n) transforrnations suffice;
each transforrnation has a cost of 0(1).

We still have to clarify howto find the path from the inserted ele­
ment back to the root and how to determine whether a vertex is out of
balance. The path back to the root is easy to find. Notice that we traverscd
that very path when we searched for the leaf where the new clement had
tobe insertcd. We only have to stare the vertices of this path in a stack;
unstacking will lead us back to the root. This solves the first problem.

In order to salve the second problem we stare in each vertex v of
the tree not only its content, the pointers to the left and tight son, but
also its size, i.e. the number of leaves in the subtree with root v. So the
format of a node representing a vertex is:

I CONTENT I LLINK I RLINK I SIZ~

Thc root balance of a vertex is then easily computed. Also the SIZE
fie Id is easily updated when we walk back the path of search to the root.

Theorem 2. Let a E (1 /4, 1- ✓2 / 2] . Then operations Access

(a,S), Insert (a,S), Delete (a,S) andMin (S) take time O (log n) in BB[cx.]

- trees, where n = ISI.

135

https://biblioteca-digitala.ro / https://unibuc.ro

Proof An operation Insert (a,S) takes time O (log ISI). This is alsa
truc for operation Delete (a,S). Delete (a,S) removes one vertex and one
leaf from the tree as described for binary search trees. (The vertex re­
moved is not necessarily the vertex with content a). Let v

0
, ... ,vk be the

path from the root v
0

to the father vk of the removed vertex. We walk
back to the root along this path and rebalancc the trec as described abovc.
Thc minimum of S can be found by always following lefi pointers star­
ting at thc root; once found the minimum can alsa bc deleted in time
O (log n). O

§ 8. Hashing

So far we have considered search methods based on comparing the
given argument K to the keys in thc table. Another possibility is to
avoid this by doing some arithrnetical calculation on K, computing a
function.l(K) which is the location of K and the associated data in the
table.

With direct addressing, an element with key K is stored in slot K.
With hashing, this element is stored in slot h(K); that is, a hash function
h is used to compute the slot from the key K.

Here h maps the uni verse U of keys into the slots of a hash table
n:o ... m-1]:

h: U➔ {0,1, ... , m-1}
We say that an element with key Khashes to slot h(K); we also say

that h(K) is the hash value of key K. The point of the hash function is to
reduce the range of array indices that nced to be handled. Instead of I Ul
values, we need to handle only m values. Storage requirements are cor­
respondingly reduccd. Two keys may hash to the same slot, or K; ::;:. Ki
hash to thc same value h(K,) = h(JS).

Such an occurrence is callcd a collision, and there are effectivc
techniques for resolving the conflict crcated by collisions.

Figure 1 illustrates the basic idea.
These search methods are commonly known as hashing or scatter

storage techniques; the idea in hashing is to chop off some aspects ofthc
key and use this partial information as the basis for searching. The valuc
of hash function h(K) is the address whcre the search for key K begins.

136

https://biblioteca-digitala.ro / https://unibuc.ro

T

h(K)

m- 1

Fig. 1

In order to use a scatter table, a programmer must take two almost
independent decisions: he must choose a hash function h(K), and he
must select a method for collision resolution. We shall consider these
two aspects ofthe problem in turn.

Of course, the ideal solution would be to avoid collisions altogether.
Wc might try to achieve this goal by choosing a suitable bash function h.

One idea is to make h appear to be „random", thus avoiding colli­
sions or at !cast minimizing their number. Of course, a bash function h
must be deterministic in that a given input K should always produce the
same output h(K).

lflUJ > m, however, therc must be two keys that have the same hash
value; avoiding collisions altogether is therefore impossible.

Thus, while a well-designed bash function can minimize thc num­
bcr of collisions, we still need a method for resolving the collisions that
do occur.

§ 9. Hash functions

In this section, we discuss some issues regarding the design of good
hash functions and then present threc schcmes for their creation: has­
hing by division, hashing by multiplication, and universal hashing.

137
https://biblioteca-digitala.ro / https://unibuc.ro

Let us assume that our hash function h takes on at most m different

vai ues, or h(K) E { O, 1, ... , m-1} for all keys K. A good hash function
sal .sfics (approximately) the assumption of simple unifo1111 hashing: each
ke:, is equally likely to hash to any of the m slots.

More fom1ally, let us assume that each key is drawn independently

frc m U according to a probability distribution P; that is, P(k) is the

pn bability that k is drawn. Then the assumption of simple uniform hash­

ini is that

L P(k) = _!_
m k:h(k)=J

for)= 0,1, ... ,m-1 (1)

Unfortunately, it is generally not possible to check this condition,
sin ce P is usually unknown. Sometimes we do know thc distribution P.
Fo · example, supposc the keys are known tobe random real numbers K,
inl ependently and uniformly distributcd in the range O :5 K < 1.

In this case, the hash function h(K) = L Km J can be shown to

sat sfy equation (1).
Jn practice, heuristic techniques can be used to create a hash func­

tio 1 that is likely to perform well. Qualitative information about P is
soi ,1etimes useful in this design process.

For example, consider a cornpiler's syrnbol table, in which the keys
arc arbitrary character strings representing identifiers in a program. Jt is
coi nmon for closely rclated symbols, such as X1, X2 and X3, to occur in
thc same program.

A good hash function would minimize the chancc that such vari­
ant ~ hash to the same slot.

A common approach is to derive the hash valuc in a way that is
ex1 ,cctcd to be independent of any pattems that might exist in the data.

For example, the „division method" computes the hash value as
thc remainder when the key is dividcd by a specified prime number.

We note that sorne applications of hash functions might requirc
stn 1nger properties than are provided by simple unifo1111 hashing. For
ex, mple, we might want keys that are „clase" in somc scnse to yield

ha~ h values that arc far apart.

13)

https://biblioteca-digitala.ro / https://unibuc.ro

Most hash functions assume that the universe of keys is the set
N = { O, 1,2, ... } of natural numbers. Thus, if the keys are not natural
numbers, a way must be found to interpret them as natural numbers. For
example, a key that is a character string can be interpreted as an integer
expressed in suitable radix notation.

Thus, the identifier pt might be interpreted as the pair of decimal
integers (112, 116), since p = 112 and t = 116 in the ASCII character set;
then, expressed as a radix - 128 integer (an integer in basis 128), pt
becomes 112•128 + 116 = 14452. lt is usually straightforward in any
given application to dcvise some such simple method for interpreting
each key as a natural numbcr. In what follows, we shall assume that the
keys are natural numbers.

§ 1 O. The division method

In the division method for creating bash functions, we map a key K
into one of m slots by taking the remainder of K divided by m. That is,
the bash function is h(K) = K (mod m). Since it requires only a single
division operation, hashing by division is quite fast. When using the
division method, we usually avoid certain values of m. For example, m
should nat be a power of 2, since if m = 2P, then h(K) is just the p
lowest-order bits of K. Unless it is known a priori that the probability
distribution on keys makes all low-order p-bit pattems equally likely, it
is better to make the bash function depend on all the bits of the key.

Good values for m are primes not tao clase to exact powers of 2.
For example, suppose we wish to allocate a bash table, to hold

roughly n = 2000 character strings, where a character has 8 bits.
We don 't mind examining an average of 3 elements in an unsuc­

cessful search, so we allocate a bash table of size m = 701.
The number 701 is chosen because it is a prime near 2000/3 but not

near any power of 2. Treating each key K as an integer, our hash func­
tion would be h(K) = K (mod 701).

§ 11. The multiplication method

The multiplication method for creating bash functions operates in
two steps. First, we multiply the key K by a constant A in the range
O < A < 1 and extract the fractional part of KA.. Then, we multiply this

139
https://biblioteca-digitala.ro / https://unibuc.ro

value by m and take the integcr part of the resuit. ln short, the hash
function is h(K) = Lm(KA mod I)J , where KA mod I means the frac-

tional part of KA, that is, KA - L KA J.
We typically choose m to be a power of 2, i.e., m = 2P for some

integerp, since we can then easily implement the function on most com­
puters as follows. Suppose that the word size of the machinc is w bits
(p $ w) and that K fits into a single word (K $ 2"- I).

Referring to figure 2, we first multiply K by the w - bit integer
A•2" (suppose that A • 2"' E Z). The resuit is a 2w - bit value r

1
2" + r

0
,

where r 1 is the high-order word of the product and r
0

is the low-order
word ofthe product. The

w bits

I K _J

I A• zw I
rl I I h(K) ro I

T
I

p bits
Fig. 2

desired p - bit hash value consists of the p most significant bits of r
0

•

Indeed, suppose that the binary representation of AK is:

A K = r1 ro
...........,_.'--.--J

L,,J
ro

Then AK mod 1 is O, ~---__.J and 2P AK is ~ and
ro P

h(K) is thc binary word consisting of the p most significant bits of r0 .

p bits

Since A•2" is an integer, it follows that AK2" = (A•2")K = ~ g
r1 ro

as is reprcsented in the last line in figure 2. If LA•2"" J Ţ. A•2" then thc
method represented in figure 2 is not longer valid.

140

https://biblioteca-digitala.ro / https://unibuc.ro

For examplc, let A= 2 4 + 2 '.p = 2, w = 4, K= 23
.

Then h(K)=l2 2
(r 1 + r 2)J =L 2+ 1J = 3;

K-lA-2HJ=8lI+2-1J=8= 1000, hence r1 =0,r0 =l(XXl and

h(23) -:ţ. I OL = 2. L_J

Although this method works with any value of the constant A,
it works better with somc values than with others. The optimal choice
dcpends on the characteristics of thc data being hashed. For example, if

A = cp = JL-:I = 0.618034, the golden ratio, then this choice of func-
2

tion h is called the Fibonacci hashing and it works reasonably well for
sets of keys in arithmetic progressions.

An interesting technique is based on algebraic coding theory; the
idea is analogous to the division method above, but we divide by a
polynomial modulo 2 instead of dividing by an integer. For this method,
m = 2', and we make use of ans-th degree polynomialP(x)=x' + p,....

1
r-1 + ...

+ p
0

• Ann - digit binary key K = (k._
1

... k
1
k0) 2 can be regarded as the

polynomial K(x) = k._
1
x"- 1 + ... + k

1
x + k

0
, and we compute the rcmainder

K(x) mod P(x) = h,
1
x'- 1 + ... + h

1
x + h

0
using polynomial arithmetic

modulo 2.
Then h(K) = (h,_

1
, ... , hl' h0) 2•

If P('I:) is chosen properly, this hash function can be guaranteed to
avoid collisions between nearly-equal keys. For example, if n = 15,
s = 10, and P(x) = x10 + x8 + x5 + x4 + x2 + x + I, it can be shown that
h(K

1
) "# h(K) whenever K

1
and K2 are distinct keys that differ in fewcr

than seven bit positions.

§ 12. Universal hashlng

For a fixed hash function we can choose n keys that all hash to the
same slot, yielding an average retrieval time of O(n).

Any fixed hash function is vulncrablc to this sort of worst-case
behaviour; the only eff ective way to improve the situation is to choose
the hash functions randomly in a way that is independent of the kcys
that are actually going to be storcd.

141

https://biblioteca-digitala.ro / https://unibuc.ro

This approach, called universal hashing, yields good performance
on the average, no matter what keys are chosen.

The main idea behind universal hashing is to select the bash func­
tion at random at run time from a carefully designed class offunctions.
As in the case of quicksort, randomization guarantees that no single
input will always evoke worst-case behaviour. Because of the rando­
mization, the algorithm behave differently on each execution, even for
the same input. This approach guarantees good average-case performance,
no matter what keys are provided as input. Returning to the example of
a compiler's symbol table, we find that the programmer's choice of
identifiers cannot now cause consistently poor hashing performance.

Let J-/be a finite collection of bash functions that map a given
uni verse U of keys into the range { O, 1, ... , m-1}. Such a collection is
said to be universal if for each pair of distinct keys x, y E U, the number
of hash functions h E J{ for which h(x) = h(y) îs precisely I.Hl/m. ln
other words, with a bash function randomly 1.;hosen from J{, the chance
of a collision between x and y when x * y is exactly 1/m, which is exactly
the change of a collision if h(x) and h(y) are randomly chosen from the
set {O, 1, ... , m-1}.

The following theorem shows that a universal class of bash func­
tions gives good average-case behaviour.

Theorem 1. lf h is chosenfrom a universal collection ofhashfunc­
tions and is used to hash n keys into a table of size m, where n 5 m, the
expected number of co//isions involving a particular key x is less than 1.

Proof- For each pair y, z of distinct keys, let c:rz bea random vari­
able that is 1 if h(y) = h(z) (i.e., if y and z collide using h) and O other­
wise. Since, by definition, a single pair ofkeys collides with probability
1/m, we have E[c] = 1/m. Let C be the total number of collisions

Y" X

involving key x in a hash table T of size m containing n keys. We deduce

E[C] == LE[c xy] == n - l . Since n ~ m, we have E[Cx] < 1. D
X n,

)'E T
y~x

But how easy is it to design a universal class ofhash functions? Let
us choose aur table size m tobe prime, asin the division method. We
dccompose a key x into r + 1 bytes (i.e .. characters, or fixed-width

142
https://biblioteca-digitala.ro / https://unibuc.ro

binary substrings), so that x =0 <x,,,x
1

, ... , x, >; the only requiremen is
that the maximum value of a bytc should be less than m. Let a = < ri

0
,

a
1
, ••• , a,> denotc a sequcncc of,.+ 1 elements chosen randomly from he

set { O, 1, ... , m-1}. We define a corresponding hash function h
0

E :f :

hJx) = 'Ia;x, (mod m)

With this definition, J-f = LJ {ha} has mr-+1 members.
a

Theorem 2. The class J-f defined by equation (2) is a univer ;a/
class of hash functions.

Proof Consider any pair of distinct keys x, y. Assume that x
0

-:t. v
0

.

(A similar argument can be made for a difference in any other positio n).
For any fixed values of a

1
, a

2
, ... , a,., there is exactly one value 01 a

0

that satisfies the equation h(x) = h(y); this a
0

is the solution to

r

aoCx
0

- y
0
) = - La, (x, -- Y,} (mod m)

i=I
Indeed, since m is prime, the nonzero quantity x

0
- y

0
has amu ti-

plicative inverse modulo m, and thus there is a unique solution fot a
0

modulo m.
Therefore, each pair of keys x and y collides for exactly m' vali ies

of a, since they collide exactly once for each possible value of < ril'

a
2

, ••• ,a,> (i.e., for the uniquc value of a
0

determined from (3)). Si11ce
there are mr-+1 possible values for the sequence a, (hence for hash fu.1c­
tions h

0
E JlJ keys x and y collidc with probability m' I mr-+1 = 1,m.

Therefore, J-{ is universal. [J

§ 13. Hashing with chaining

In chaining, we put all the elements that hash to the same slot i 1 a
linked !ist, as shown in figurc 3. Slot j (O -5. j -5. m-1) contai ns a pointer
to the head ofthe list of all stored elemcnts that hash to); ifthere are no
such elements, slotj contains NIL. In general, if there are n keys am m
liked lists, the average !ist size is nlm; thus hashing decreases the amrnmt
of work needed for sequential searching by roughly a factor of m.

A set S ~ U is represented as m linear lits; the i - th list contains -dl
elements x E S with h(x) = i. Operation Access (x, S) is realized by , he
following program:

113
https://biblioteca-digitala.ro / https://unibuc.ro

T

/1.

~

[;O

EG-EEJ
Fig. 3

1) compute h(x)
2) search for element x in list T{h(x)].
Operations Insert (x, S) and Delete (x, S) are implemented simi­

larly. We only have to add x to or delete x from list T{h(x)].
lt is often a good idea to keep the individual lists in order by key, so

that insertions and unsuccessful searches go faster. Altematively wc can
make use of the „self-organizing file" concept; instead of keeping the
lists in order by key, they may be kcpt in order according to the time of
most recent occurrcnce.

For the sake of speed we would like to make m rather large. But
when m is large, many ofthe lists will be empty and much ofthe space
for the m list heads will be wasted. This suggests another approach,
when the records are small: we can overlap the record storage with the
list heads, making room for a total of m records and m links instead of
for n records and m+n links. The following algorithm is a convenient
way to salve the problem.

Algorithm C. (C hai ne d s ca tt e r tab 1 e se arc h an d i n­
s c r t i o n). This algorithm searches an m-node table, looking for a
givcn key K. If K is not in the table and the table is not full, K is insertcd.

Thc nodcs of the table are dcnoted by TABLE [i], for O~ i ~ m, and
they are oftwo distinguishable typcs, empty and occupied. An occupicd
node contains a key field KEY [i], a link field LINK [i], and possibly
othcr fields. Thc algorithm makes usc of a hash function h(K). An

144

https://biblioteca-digitala.ro / https://unibuc.ro

auxiliary variable R is alsa used, to help find empty spaces; when the
table is cmpty, wc have R = m + I. and as inscrtions are made it will
always bc truc that TABLE Ul îs occupied for allj in the range R Sj s m.
By convcntion, TABLE [O] will always be empty.

1. Set i ~ h(K) + I (now I s i s m).
2. lfTABLE [i] is empty, go to 6. (Otherwise TABLE [i] is occu-

pied; we will look at the list of occupied nodes which starts bere).
3. If K = KEY [i], the algorithm terminates successfully.
4. If LINK [i] -:t- A, set i ~ LINK [i] and go back to 3.
5. (The search was unsuccessful, and we want to find an empty

position in the table). Decreasc R one or more times until finding a
value such that TABLE [R] is empty. lf R = O, the algorithm terminates
with overtlow (thcre are no cmpty nodes lefi); otherwisc set LINK [i] ~
R,i~R.

6. (Insert a new kcy). Mark TABLE [i] as an occupied node, with
KEY [i] ~ K and LINK [i] ~A.

This algorithm allows severa! lists to coalcsce, so that records need
not bc moved after they have bccn inserted into the table .

.----........-----.
For example, sec fig. 4, where

42 A
m = 7 and keys TABLE [I)

5, I 9, 42, 75, 23, I 8, 50 50 A

werc insertcd in this order, for h(K)
TABLE [2]

A = K (mod 7). TABLE [3) 23

So 18 appears in the same list
18

as 5, I 9 and 75, but we have h(S) = TABLE [4]

h(l 9) = h(75) = 5, and h(l 8) = 4.
TABLE [5] 75

Wc shall make some corn-
plexity considerations in thc case TABLE [6] 5

whcn no two lists coalesce.
Toc timc complexity of bash- TABLE [7] 19

ing with chaining is casy to detcr-
mine: thc timc to evaluate bash Fig. 4.

function h plus the time to scarch through !ist T [h(x)].
Wc assume in this section that h can ve cvaluated in constant

time and therefore define thc cost of an operation referring to key x as

145

https://biblioteca-digitala.ro / https://unibuc.ro

O(1 + 8,.(x, S)) where S is the set of stored elements and

(

l,if x -ţ; y and

~\(x,S) = L8,,(x,y),and oh(x,y) = h(x)= h(y)
veS
· 0,othe1wise

Thc worst case complexity of hashing is easily detem1ined. The
worst case occurs when the hash function h restricted to set S is a con­
stant, i.e. h(x) = i

0
, for all x E S. Then hashing deteriorates to searching

through a linear !ist; any one of the three operations costs O(ISI) time
units.

Theorem 1. The time complexity (in the worst case) of operations
Access (x, S), Insert (x, S) and Dclete (x, S) is O(ISI).

Average case behaviour is much better. We analyse thc complexity
of a sequence of n insertions, deletions and accesses starting with an
empty table, i.e. of a sequence Op/x1) , ••• , Op/x), where Op* E { Insert,
Delcte, Access} and xk E U, under the following probability assump­
tions:

1) Bash function h : U ➔ { O, 1, ... , m-1 } distributes the uni verse
uniformly over the interval {O, ... , m-1 }, i.e. for all i, i'E {O, ... , m-1 }:
W1U)I = lh-1(()1.

2) Ali elements of U are equally likely as argument of any one of
the operations in the sequence, i.e. argument of the k- th operation of
the sequence is equal to a fixed x E Uwith probability I/ IUI-

Our two assurnptions imply that value h(xk) of the hash function on
thc argument of the k-th operation is uniformely distributed in { O, 1, ... ,
m-1}, i.e. P(h(xk) = i) = 1/m for all kE { 1, ... ,n} and i E { O, ... , m-1 }. We
call this the assurnption of simple uniform hashing.

Theorem 2. Under the assumption of simple uniform hashing, a
sequence of n insertions, deletions and access - operations takes time
O(n(1 + P/2)) where p = n Im is the load factor of the table.

Proof- Wc will first compute the cxpected cost ofthe (k+l)-st op­
cration. Assurne that h(xt-.-

1
) = i, i.e. the (k+l)-st operation acccsscs the

i-th !ist. Let P(lk(i) =j) be the probability that the i-th list has lengthj
aftcr thc k-th operation. Then

146
https://biblioteca-digitala.ro / https://unibuc.ro

ECk+I :5 2,P(lk(i) = J)(J + 1),
;?.O

where ECt+1 is the expected cost of the (k+ 1) - st operation. Notice that

[k)m-1)k-J
P(Ik(i)=J)s j mk [:}1/m)1(1-1/m)k-j

with equality if the first k operations are insertions. (see also pp. 87-88
for a similar formula).
Hence

k ~k-1) =1+- __
1

(1/m)1- 1(1-l/m)k-J

m j~I J

=I+ ! , since t} k(~ =:)
Thus the total expected cost of n operations is

We will next discuss the probability assumptions used in the
analysis of hashing. The first assumption is easily satisfied. Suppose
U= {O, ... ,N-1}, and mjN. Then h(x) =x (mod m) will satisfy the first
requirement: bash function h distributes the uni verse U uniformly over
the bash table for the division method. If m does not divide N but N
is much larger than m then the division method almost satisfies
assumption 1).

147
https://biblioteca-digitala.ro / https://unibuc.ro

The second assumption is more critica! because it postulates a cer­
tain behaviour of the user of the hash function. In general, the exact
conditions oflatter use are not known when the hash function is designed
and therefore one has to be very careful about applying theorem 2.

We discuss one particular application now and come back to thc
general problem.

Syrnboltabels in compilers are often realized by hash tabels. Iden­
tifiers are strings overthe alphabet {A, B, C, ... }, i.e. U= {A, B, C, ... }*.

The usage of identifiers is definitely not uniformly distributed over
U. For example, identifiers /I, /2, /3, Jl, .n, ... are very popular and
XYZ is not. We can use this nonuniformity to obtain evcn better behaviour
than predicted by theorem 2.

Inside a computer identifiers are represented as bit-strings; usually
8 bits (a byte) is used to represent one character.

In otherwords, we assign anumbernum(C) E {O, I, ... , 28
- I= 255}

to each character of the alphabet and interpret a string C,C,_
1

•.• C
0

as a
r

number in base 256, namely I num (C) 256'; moreover, consecutive
i=O I

numbers are usually assigned to characters 1, 2, 3, ... Then strings /0, /1,
/2, and .XO, Xl, X2 lead to arithmetic progressions of the form (a+i) and
(b+i) respectively, where i = O, 1, 2, ... and 2561 a-b. Because identifiers
of the form /0, /1, /2, and .XO, Xl, X2 are used so frequently, we want
that.

h(a+i) * h(b+J) for O :5 i,j :5 9 and 2561 a-b.
If h(x) = x (mod m) then we want

(b-a) + U-i) * O (mod m).
Since 256lb-a we should choose m such that m does not divide

numbers of thc form 256 c+d, where ldl :5 9. In this way onc can obtain
even better practicai performance than predicted by theorem 2.

§ 14. Hashing with open addressing

Another way to resolve the problem of collisions is to do away
with the links entirely, simply looking at various entries of the table one
by one until either finding the key K or finding an empty position. The
idea is to formulate some rule by which every key K determines a „probe

148
https://biblioteca-digitala.ro / https://unibuc.ro

sequence' ', namely a sequence of table positions which are to be in­
spected whenever K is inserted or looked up. If we encounter an open
position while searching for K, using the probe sequence determined by
K, we can conclude that K is not in the table, since the same sequence of
probes will be made every time K is processed. This general class of
methods was named open addressing by W. W. Peterson [IBM J.
Research & Development 1 (1957), 130 - 146].

Thus, in open addressing all elements are stored in the hash table
itself; the hash table can ,,fill up" so that no further insertions can be
made. The load factor ~ can never exceed 1.

The advantage of open addressing is that it avoids pointers alto­
gether. Instead of following pointers, we compute the sequence of slots
to be examined. The extra memory freed by not storing pointers
provides the hash table with a larger number of positions for the same
amount of memory, potentially yielding fewer collisions and faster re­
trieval.

The simplest open addressing scheme, known as linear probing,
uses the cyclic probe sequence

h(K), h(K)-1 , ... , O, m-1, m-2, ... , h(K)+ 1 (1)
as in the following algorithrn.

Algorithm L. (Op e n s c a t te r t a b 1 e s e arc h an d i n­
s e r t i o n). This algorithrn searches an m- node table, looking for a
given key K. If K is not in the table and the table is not full, K is inserted.
The nodes ofthe table are denoted by TABLE [i], for O::;; i::;; m-1, and
they are of two distinguishable types, empty and occupied. An occupied
node contains a key, called KEY [i], and possibly other fields. An aux­
iliary variable n is used to keep track of how rnany no des are occupied;
this variable is considered tobe part ofthe table, and it is increased by l
whenever a new key is inserted.

This algorithrn makes use of a hash function h(K) and it uses the
linear probing sequence (1) to address the table.

1. Set i f- h(K). (Now O::;; i::;; m-1).

2. If TABLE [i] is empty, go to 4. Otherwise if KEY [i] = K, the
algorithrn terminates successfully.

3. Set i f- i-1; ifnow i < O, set i f- i + m. Go back to step 2.

149
https://biblioteca-digitala.ro / https://unibuc.ro

4. (T he se arc h w as unsu cc e s s fu 1). If n = m-1, the
algorithrn terminates with overflqw. (This algorithrn considers the table
to be full when n = m - 1, not when n = m). Otherwise set n f- n+ 1,
mark TABLE [i] occupied, and set KEY [i] f- K.

For example, see fig. 1 where m ;= 7 and keys 5, 19, 42, 75, 23, 18
were inserted by Algorithm L in this order with hash function

h(K) = K(mod 7)
Now n = m- 1 = 6 and the table is

full; no other insertion can be made.
Experience with linear probing

shows that the algorithm works fine
until the table begins to get full; but
eventually the process slows down, with
long drawn - out searches becoming
increasingly frequent. Consequently the
performance oflinear probing degrades
rapidly when n approaches m since sepa­
rate lists are cornbined into long lists
where the search is slow.

In fact, when n = m-1, there is only
one vacant space in the table, so the
average number of probes in an unsuc­
cessful search is (m+l)/ 2.

TABLE [O]

TABLE [1]

TABLE [2]

TABLE [3]

TABLE [4]

TABLE [5]

TABLE [6]

42

18

23

75

19

5

Fig. 1

A way to protect against the consecutive bash code problem is to
use the following idea:

instead of being fixed in the order (1) irnplying consecutive posi­
tions of the table, the sequence of positions probed depends upon the
key being inserted.

To determine which positions to probe, we extend the bash func­
tion to include the probe number (starting from O) as a second input.
Thus, the bash function becomes

h:U x {0,1, ... ,m-1} ➔ {0,1, ... ,m-1}-
With open addressing, we require that for every key K, the probe

sequence < h(K,O), h(K, l), ... ,h(K, m-1) >bea permutation of< O, 1,

150

https://biblioteca-digitala.ro / https://unibuc.ro

, ... , m-1 >, so that every hash - table position is eventually considcrcd
as a slot for a ncw key as the table fills up. Following this stratcgy for
inscrtion and searching thc algorithm L bccornes:

Algorithm Ll. (Open scat te r tab 1 c se arc h an d
i ns c r t i o n u s i n g a t w o v ari a b le h ash fu n c t i o n).

1.Scti~0.
2. Set)~ h(K, i).
3. IfTABLE [i] is ernpty, go to 5.
Othcrwise, if KEY [i] = K, thc algorithm terminates successfully.
4. lf i = m-1, the algorithm tcrminates with overflow. Othcrwise

set i ~ i+ I and go back to step 2.
5. Mark TABLE [i] occupicd, and set KEY [i] ~ K. (The key K

was inserted into the table).
Since thc algorithm for searching for key K probcs the samc se­

qucnce of slots that the insertion algorithm exarnined whcn key K was
inserted, the search can terminate (unsuccessfully) when it finds an ernpty
slot, since K would have becn inscrted thcre and not later in its probe
sequence. (Note that this argument assumes that keys are not deletcd
from thc hash table).

Delction from an open - addrcss hash table is difficult. When we
deletc a key from slot i, we cannot sirnply mark that slot as empty.
Doing so might make it irnpossible to retrieve any key K during whosc
inscrtion we had probed slot i and found it occupied. For this reason
chaining is more commonly selected as a collision resolution tcchnique
whcn keys must be deleted.

Three techniques are commonly used to computc the probe
scquences required for open addrcssing: linear probing, quadratic
probing, and double hashing. These techniques al! guarantec that
< h(K, O), h(K, I), ... , h(K, m - 1) > is a permutation of< O, 1, ... , m-1 >
for each key K.

Linear probing. Givcn an ordinary hash function h': U ➔{O, I, ... ,
m-1}, the mcthod of linear probing uses the bash function h(K, i) =
= h'(K) + i (mod m) for i = O, I, ... , m-1. Note that (1) corresponds to
h(K, i) = h'(K) - i (mod m).

Given key K, the first slot probed is]1h'(K)].

151

https://biblioteca-digitala.ro / https://unibuc.ro

We next probe slot 7Ţ_h'(K) + I], and so on up to slot T[m-1].
Then we wrap arround to slots 710], JŢl] , ... , until we finally probe slot
7Ţ_h'(K) - 1].

Linear probing is easy to implement, but it suffers from a problem
knmvn as primary clustering. Long runs of occupicd slots build up,
increasing the average search time.

Quadratic probing uses a hash function ofthc form
h(K, i) = h'(K) + c/ + c/ (mod m),

where h' is an auxiliary hash function, ci' c
2

-:ţ:. O are auxiliary constants,
andi=0, I, ... ,m-1.

The initial position probed is T[h'(K)]; later positions probed are
offset by amounts that depend in a quadratic manner on the probe num­
ber i. This method works better than linear probing, but to make full use
of the hash table. thc va lues of ci' c

2
and mare constrained.

Alsa, if two keys have sarne initial probe position, then their
probe sequcnces are the same, since h(K,, O)= h(K

2
, O) irnplies /z(KI' i) =

= h(K
2

, i) for any i. This leads to a milder form of clustering, called
secondary clustering.

As in linear probing, the initial probe dctcrmines the entire scquence,
so only m distinct probe sequences are used.

One way to select parameters c1 and c2 îs to irnposc that c 1i + c/ =

- 1 2 · . · · ·2 - i(i + l) h. h . 1· · h - - _!_ - + + ... + z, l.C., CIi + C2l - 2 ' w IC 1mp iest at c, - c2 - 2.

Lemma l. If m = 2s for an integer s ~ l and

()
1 1 ,

h K,i = h'(K) +-; + -;· (mod 2'),
2 2

where h'(K) is an auxi/iary hashfunctiun, thenfor each key K, < h(K, 0),
h(K, I), ... , h(K. m-1) > is a permutation of< O, 1, ... , m-1 >.

ProoJ- We shall prove that for each i = O, 1, ... , m-1 all valties

1 1
h'(J....1 +-i +-i2 (mod 2') are pairwise diffcrent, which will prove

2 2
the assertion. Suppose, to the contrary. that therc exist two indices

. 1 1 , I l ,
i,jE {0, ... ,m-1},i>j,suchthat h'(K)+ 2i+?·=h'(K)+ 2J+ 2F

(mod 2"'). This irnplies that there exists an integer p > O such that

152

https://biblioteca-digitala.ro / https://unibuc.ro

1

2 (i
2 -_j2 + i -_j) = p2', Of (i -_j)(i +] + 1) = p2s+l. (2)

In this equality i-j and i+j have the same parity, since thcir diffe­
rencc is 2), an cvcn number. Ilencc the greatest power of 2 in the prime
number factorization of (i - j)(i + j + 1) is less than or equal to that in the
prime number factorization of the numbcrs in the set { 1, ... , i + j + 1 }.
But i + j + 1 ::; m - 1 + m - 2 + 1 = 2m - 2 = 2s+i - 2. lt follows that this
greatest power of 2 is 2', which contradicts (2).

Thc property is proved. Ll

Double hashing is onc of the best methods available for open
addressing because thc pcrmutations produced have many of the charac­
tcristics of randomly chosen permutations.

Doublc hashing uscs a hash function of thc fonn:
h(K, i) = h

1
(K) + ihiK) (mod m),

where h 1 and h
2

are auxiliary bash functions and hiK) E { 1, ... ,
m-1} for every K. The initial position probed is 7Ih

1
(K)]; successive

probe positions arc offset from previous positions by the amount hi(K)
modulo m.

Thus, unlike the case of linear or quadratic probing, the probe
sequcnce here depends in two ways upon the key K, sincc thc initial

probe position, the offset, or both, may vary. T
Figurc 2 gives an example of insertion by

double hashing.
Lct m = 7 (a prime number),
h

1
(x) = x (mod 7) and

hiCx) = I + (x (mod 4)).
lf we insert 5, 19, 42, 75, 23, 18, 50 in

that order, wc obtain
h(5, i) = 5 + 2i (mod 7), i = O works
h(l9, i) = 5 + 4i (mod 7), i = I works
h(42, i) = 3i (mod 7), i = O works
h(75, i) = 5 + 4i (mod 7), i = 2 works
h(23, i) = 2 + 4i (mod 7), i = 2 works
h(l 8, i) = 4 + 3i (mod 7), i = O works
h(50, i) = 1 + 3i (mod 7), i = O works

o

1

2

3

4

5

6

42

50

19

23

18

5

75

Figure 2

153

https://biblioteca-digitala.ro / https://unibuc.ro

Thc value h
2
(K) must be rclatively prime to the bash-table size m

for the entire bash table tobe searched. OtheIWise, if m and h
2
(K) have

greatest common divisor d > 1 for some kcy K, thcn a search for key K
would examinc only (1/d) th ofthe bash table.

Lemma 2. If h(K,i) = h/K) + ihz(K) (mod m) where hz(K) E {I, ... ,
m-1} for every key K and the greatest common divisor (h2(K), m) = I,
then for each key K, < h(K,O), h(K, 1), ... , h(K, m-1) > is a permutation
of< O, 1, ... , m-1 >.

Proof As for Lcmma 1 wc shall show that for each i = O, 1, ... , m-1,
all values h1(K) + ihz(K) (mod m) are pairwise different. lf there exist
two indices iJ. E { O, 1, ... , m-1}, i > j, such that

h
1
(K) + ih/K) = h

1
(K) + jh/K) (mod m),

then thcrc cxists an integer p > O such that
(i-j)hz(K) = pm (3)

But (3) cannot hold since I :s; i - j :s; m - 1 and (h
2
(K), m) = 1. r]

A convenient way to ensure these conditions on h
2

is to Jet m be a
power of 2 and to design h

2
so that it always produces an odd number.

Another way is to Jet m be prime and to design h
2

so that it always
retums a positive integer less than m. For example, we could choose m
prime and Jet

h
1
(K) = K (mod m)

hz(K) = 1 + (K(mod m')),
where m' is chosen tobe slightly !css than m (say, m - l or m - 2).

By summarizing the discussion abovc, hashing with open address­
ing does not require any additional spacc. Howcver, its performance
becomes poorly whcn the load factor is nearly one and it does not
support dcletion.

Analysis of open - address hashing. Our analysis of open
addrcssing, like our analysis of chaining, is expresscd in terms of thc
load factor p of thc bash table, as n and m go to infinity. Recall that if
n elemcnts are stored in a table with m positions (slots), the averagc
numbcr of elements per slot is p = nlm.

Of course, with open addressing, wc have at mast onc element per
slot, and thus 11 ~ m, which implics P :s; 1.

154

https://biblioteca-digitala.ro / https://unibuc.ro

We assume that uniform hashing is used. In this idealized scheme,
the probe sequence < h(K,O), h(K, 1), ... , h(K, m-1) > for each key K îs
equally likely tobe any permutation on < 0,1, ... , m-1 >, orthis probe
sequence is a random pcrmutation ofthe set {0,1, ... m-1 }. That is, cach
possible probe sequence is equally likely to be used as the probe se­
quence for an insertion or a search. Of course, a given key has a unique
fixed probe sequence associated with it; what is meant here is that,
considering the probability distribution on the space of keys and the
operation of the hash function on the keys, each possible probe sequence
is equally likely.

We now analyse the expected number of probes for hashing with
open addressing under the assumption of uniform hashing, beginning
with an analysis ofthe number of probes made in an unsuccessful search.

Theorem 3. Given an open-address hash table with load factor
P = n/m < 1, the expected number of probes in an unsuccessful search

I
is at most

1
_ p assuming uniform hashing.

Proof In an unsuccessful search, every probe but the last accesses
an occupied slot that does nat contain the desired key, and the last slot
probed is empty.

Let us define P; = P { exactly i probes access occupied slots} for
i = O, 1, ... For i > n, we have P; = O, since we can find at mast n slots
already occupied. Note that P; does not depend on the probe sequence by
our assumption ofuniform hashing. Thus, the expected number of probes

..
is I+ '".i)P; . We define alsa q; = P { at least i probes access occupied

i=O

slots} for i = O, I, 2, ... Since P; = q, - q;+i it follows that
~ ~

"i)P; = ~q,
i=O i=O

Now we will evaluate the value of q; for i ~ I. The probability that

n
the first probe accesses an occupied slot is nlm; thus, q

1
= - .

m
With uniform hashing, a second probe, if necessary, is to one of

the remaining m - 1 unprobed slots, n - 1 of which are occupied. We

155
https://biblioteca-digitala.ro / https://unibuc.ro

make a second probe only if the first probe accesses an occupied slot;

n n-1
thus, q2 =-·--.

m m-1
1n general, the i-th probe is made only if the first i - 1 probes

access occupied slots, and the slot probed is equally likely to be any of
the remaining m - i + 1 slots, n - i + 1 of which are occupied.

n n-1 n-i+I (n) .
Thus q =---- ---< - =W

' ' m m-1 ··· m-i + 1 - m

n-j n
for i = I, 2, ... , n, since --. ::; - if n::; m andj ~ O.

m-; m
After n probes, all n occupied slots have becn seen and will not be

probed again, and thus q;= O for i > n. Given the assumption that p < 1,
the average number ofprobes in an unsuccessful search is

- - 1
l+ LiP, =l+ Lqj ~1+13+13

2
+ ... =-- □

i=O i=l l - l3
The last equation has an intuitive interpretation: one probe is

always made; with probability approxirnately p a second probe is needed;
with probability approximately P2 a third probe is needed, and so on.

If 13 is a constant, Theorem 3 predicts that an unsuccessful search
runs in 0(1) time.

For example, if the bash table is half full (13 = 0.5), the average
number ofprobes in an unsuccessful search is 1/(1-0.5) = 2; if it is 90
percent full, the average number ofprobes is 1/(1 - 0.9) = 10.

The cost of operation Insert (K) is I + min {i: 1T(h(K,i)) is not
occupied}. Theorem 3 gives us the perforrnance of the insertio:1 proce­
dure almost immediately.

Corollary 4. lnserting an element into an open-address hash table

1
with load factor {3 requires at mast l-l3 probes on average, assuming

uniform hashing.
Proof An element is inserted only if there is available space in the

table, and thus p < 1.

156
https://biblioteca-digitala.ro / https://unibuc.ro

lnserting a key requires an unsuccessful search followed by place­
ment ofthe key in the first empty slot found. Thus, the expected number

1
of probes is l -P . O

Theorem 5. Given an open-address hash table with load factor
P < 1, the expected number of probes in a successful search is at mast

1 1 1
-In--+-
p 1-p p·

assuming uniform hashing and assuming that each key in the table is
equa/ly likely to be searched for.

Proof: A search for a key K follows the same probe sequence as
was followed when the element with key K was inserted. By Corollary
4, if K was the (i+ 1) - st key inserted into the hash table, the expected

1 m
number of probes made in a search for K is at most .

1
=

l-1 m m-i
Averaging over all n keys in the bash table gives us the average number
of probes in a successful search:

1 n-l m m n-l 1 1 -I-. =-L-. =P.(Hm-Hm-n),
n i=O m-1 n i=O m-1 I-'

j 1
where H = L-:- is the i-th harmonic number. Using thc bounds

I j=l}

ln i :::;; H :::;; ln i + 1, we obtain
I

1 1 -(H -H)~-(Inm+l-In(m-n)) p m m-n p

1 m 1
=-ln--+­p m-n p

l 1 1
=-ln--+-

p 1-p P

157
https://biblioteca-digitala.ro / https://unibuc.ro

for a bound on the expected number of probes in a successful search. □
Corollary 4 and Theorem 5 state that Insert and Access time will

go up steeply as p approaches 1, and that open addressing works fine as
long as p is bounded away from one, say PS 0.9.

p
0.5 0.9 0.95 0.99 0.999

I -- 2 10 20 100 1000 1-p

1 1 1
-ln--+- 3.38 3.66 4.20 5.66 7.9
P t-P P

For example, it follows that if the bash table is half full, the
expected number of probes is less than 3.387; if the bash table is
90 percent full, the expected number of probes is less than 3.670.

§ 15. d - heaps

A heap (or, a priority queue) is a data structure for efficiently stor­
ing and manipulating a collection H of elements (or objects) when each
element i E H bas an associated real number, denoted by key (i). We
want to perform the following operations on the elements in the heap H:

158

create (lf). Create an empty heap H.
insert (i,lf). Insert an element i in the heap.
find-min (i,H). Find an element i with the minimum key in the

heap.
delete-min (i,lf). Delete the element i with the minimum key from

the heap.
delete (i,lf). Delete an arbitrary element i from the heap.
decrease-key (i, value, lf). Decrease the key of element i to a smaller

value, denoted by value.
increase-key (i, value, lf). Increase the key of element i to a larger

value, denoted by value.

https://biblioteca-digitala.ro / https://unibuc.ro

In this section wc discuss thc J-hcap and binary heap data struc­
tures (thc binary heap is a well-known special case of the d-hcap with
d=2). In the ncxt scction wc dcscribe a more efficient (and also more
complex) heap known as the Fibonacci heap. In our discussion ofheaps,
we shall usc thc word „clement" and „node" intcrchangeably.

Heaps find a varicty of applications: Two such a~plications are
Dijkstra's algo1ithm for the shortcst path problem and Pnm's algorithm
for the minimum spanning trec problem.

Wc have secn anothcr important application of heaps in the sorting
of n numbers in a nondecreasing order: First, we create an empty heap.
Then, one by one, we add n numbers to the heap by perfonning n insert
operations, lctting the key for thc i - th entry be one of the numbers we
wish to sort. Next, we rcpcat the following stcp iteratively: Select an
element .i with thc minimum key using the operation find-min and then
delete it from the heap using the operation deletc-min. We tenninate
this proccdure when the heap is empty. It is easy to sec that wc dcletc
the elements from the heap in a nondecreasing order of their values.

Definition and properties of a d-heap. In a d - heap, wc store the
nodes of thc heap as a rooted trec whose arcs represent a predecessor­
successor (or parcnt-child) relationship.

Wc storc the rooted tree using predecessor indices and sets of suc­
cessors, as follows:

pred (i): thc predecessor (or the parent) of nodei in thc d-heap. The
root node has no prcdccessor, so we set its predecessor equal
to zero.

succ (i): the set of successors (or childtcn) of nodei in the d-heap.

In the d-heap we define thc depth of a node i (or its levei numbcr,
the root having levei zero) as the number of arcs in the unique path from
nodei to the root. For example, in the d - heap shown in Figure I, node
5 has a depth of O and nodes 9, 8, and I 5 have a depth of I etc.

Each node in thc d-heap has d successors (with cventually a single
exception on thc last levei) and these successors wc assume to be or­
dered from left to right. We add nodes to the heap in an increasing order
of depth values, and for the samc depth valuc we add nodcs from lcft
to right, and this propcrty we maintain inductively. We refer to this

159
https://biblioteca-digitala.ro / https://unibuc.ro

Root

Figure 1: Example of a d-heap for d = 3

property as the contiguity property. In the example given in Figure I we
assume for convenience that key (i) = i for each i = I to 52 (in this
particular example we have stored only a subset of the nodes in the
heap). Note that nodes 12, 48 and 8 have the predecessors 9, 18, and 5,
respectively.

The contiguity property implies the following results:
Property 1

(a) At mast d1' nodcs have depth k.

(b) At most (dt+1-l) I (d-l) nodes have depth between O and k.

(c) Toc depth of ad-heap containing n nodes is at most llogdnJ + l.

If wc dcnote by h the height of the d - heap, then for each levei
k, O ~ k ~ h-1 we have dk nodes and on the levei h we have at most d"
nodes, hence (a) is veri fi ed; the number of no des having depth between

dk+I _I
O and k is at mast I +d+d2+ ... +dk = d ; we get n ~ dh-l, hence

-]
h ::=: llogd,d +1.

For the d-heap in Figure 1 this inequality is an equality sincc
3 = L log

3
26 J + 1.

Storing ad-heap. The structure of ad-heap permits us to storcit as
an array and manipulate it quite efficiently. We order the nodes in the
increasing va lues of their dcpths, and wc order the nodcs with the samc

160
https://biblioteca-digitala.ro / https://unibuc.ro

depth rrom left to right. We then store the nodes, in order, in an array
DHEAP. For examplc, ifwc apply this method to the d- heap shown in
Figure 1, then

DHEAP={5, 9, 8, 15, 23, 12, 16, 18, 29, 10, 31, 22, 27, 28, 36, 32,
14, 13, 20, 38, 17, 41, 52, 42, 48, 39}.

We also maintain an array position that contains the position of
each node. For this examplc, position (8) = 3 and position (23) = 5. We
maintain an additional parameter last that specifies the number of nodes
stored in the array DI-IEAP. For this example, last = 26. This storage
scheme has one rather nice property that permits us to easily access the
predecessors and successors of any node:

Property 2
(a) The predecessor of the node in position i îs contained in posi­

tion l(i-1)/dl.
(b) The succcssors of thc intemal node in position i are contained

in positions id- d+ 2, id- d+ 3, ... ,min (id+ I, last).
For exam_ple, node 18 is in position 8, so its predeccssor is in posi­

tion 1 (8-1)/3 I= 3 and its successors are in positions 3• 8 - 3 + 2 = 23
to 3 • 8 + I= 25.

This property implies that if wc maintain the array DHEAP, we
need not explicitly maintain the predeeessor index and thc set of succes­
sor indices of a node. We can compute these when required during the
course of an algorithm. A heap ~lways satisfics the following property,
which we subsequently refer to as the heap order property.

Property 3. The key ofnode i in the heap is less than or equal to thc
key of each of its successors. That is, for each nodei, key (i) ~ key(j) for
every j E SUCC (i).

We notice that we might violate this property while performing
a heap operation but will always satisfy it at the end of any heap
operation.

The example shown in Figure 1 satisfies the heap order property if
for every node in the heap we assume that key (i) = i.

The following resuit is an immcdiatc consequence ofthc heap or­
der propcrty.

Property 4. The root node of the d-heap has the smallcst key.
In the d - heap data structure, we reduce each heap operation into a

scquence of a fundamental operat ion, each call ed swap (i.j). The opera-
•

161

https://biblioteca-digitala.ro / https://unibuc.ro

tion swap (i,j) swaps (or interchanges) nodes i andj. Figure 2 gives an
example of a swap. In terms of the array used to store a d-heap, as a
result of applying swap (iJ), we store node i at the position where node
j was stored, and store node j at the position where node i was stored.
For example, if we perform swap (4,6) in the DHEAP = {5, 6, 7, 4, 8,
11, 12, 9}, as shown in Figure 2, then the new array representation of
the d - heap becomes DHEAP = {5, 4, 7, 6, 8, 11, 12, 9}. Clearly, the
swap operation requires O (I) time.

Figure 2. Example of swap (4,6): a) heap before the swap; b) heap after the swap.

Restoring the heap order property. In the course of applying an
algorithm, we will frequently change the value of some key and so
temporarily violate the heap order property. How can we restare this
property?

Suppose that we decrease the key of some nodei. Letj = pred (i).
If after the change in the value of key (i), key (j) ~ key (i), the heap still
satisfies the heap order property and we are done. However, if key
(j) > key (i), we need to restare the heap order property.

The procedure siftup (i) accomplishes this task.
procedure siftup (i);

begin

end;

while i is nota root node and key (i) < key (pred (i))
do swap (i, pred (i));

An inductive argument shows that at the termination of the siftup
procedure, the he!p satisfies the heap order property. The procedure

162

https://biblioteca-digitala.ro / https://unibuc.ro

siftup requires O (logdn) time because each execution ofthe while loop
decreases the depth of nodei by one unit and, by Property 1, its original
depth is O(logd n).

Suppose next that we increase the key of some node i. If after the
change in the value of key (i), key (i) ~ key (j) for allj E SUCC (i), the
heap still satisfies the heap order property and we are done; otherwise,
we need to restare the heap order property.

The procedure siftdown (i) described below accomplishes this task.
In the description we let minchild (i) denote the node with smallest key
in SUCC (i).

procedure siftdown (i);
begin

while i is nota leaf node and key (i) > key (minchild (i)) do
swap (i, minchild (i));

end;
An inductive argument will again show that at the termination of

the siftdown procedure, the heap satisfies the heap order property. The
procedure requires O(d logd n) time because each execution of the while
loop increases the depth of node i by one unit and each execution re­
quires O (d) time to compute minchild (i).

Performing heap operations. We are now in a position to describe
how we can perform various operations in the d-heap.

- find-min (i,J{). The root node of the heap is the node with the
minimum key and it is located at the first position ofthe array DHEAP.
Therefore, this operation requires 0(1) time.

- insert (i,H). We increment last by one and store the new nodei at
the last position of the array DHEAP. Then we execute the procedure
siftup (i) to restare the heap order property. Clearly, this operation re­
quires O (logd n) time.

- decrease-key (i, value, H). We decrease the key of node i and
execute the procedure siftup (i) to restare the heap order property. This
operations requires O(logd n) time.

-delete- min (i, H). Clearly, nodei is the root node of the heap. Let
nodej be the node stored at the last position ofthe array DHEAP. We
first perform swap (i, j) and then decrease last by 1. Next, we perform
siftdown (j) to restare the heap order property. Clearly, this heap opera­
tion requires O (d logd n) time.

163
https://biblioteca-digitala.ro / https://unibuc.ro

The remaining two heap operations, delete (i, H) and increase-key
(i, value, H) can be performed in a similar way in 0(d logd n) time. We
summarize our discussion as follows:

Theorem 1. The d-heap data structure requires O (1) time to per­
form the operation find-min, and 0(log~) time to pe,form the opera­
tions insert and decrease-key, and O (d logd n) time to perform the op­
erations delete-min, delete, and increase-key.

A binary heap is ad-heap with d = 2. For binary heaps, this theo­
rem assumes the following special form.

Theorem 2. The binary heap data structure requires 0(1) time to
perform the operationfind - min, and O (logn) time to perform each of
the operations insert, delete, delete-min, decrease-key, and increase-key.

As an example of applying heaps, consider a sorting algorithm;
while sorting n numbers, we perform n inserts, n find-mins, and n
delete-mins. Consequently, the running time of the sorting algorithm
using d-heaps is O (nd logd n), which is O (n log n) for any fixed value
of d.

§ 16. Fibonacci heaps

Toc Fibonacci heap is a data structure that allows the heap opera­
tions to bc performed more efficiently than d-heaps. This data structure
performs the operations insert, find-min, and decrease-key in 0(1) am­
ortized time and the operations delete-min, delete, and increase-key in
0(log n) amortized time. Recall that the amortized complexity of an
operation is thc average wor~t-case complexity of performing that
operation.

In other words, the amortized complexity of an operation is 0(g(n))
if for a sequence of k (sufficiently large) operations, the total time re­
quired by these operations is O (kg(n)). Fibonacci heaps were developed
by Fredman and Tarjan in 1984.

Some properties of Fibonacci numbers. Researchers have given
the Fibonacci heap data structure its name because the proof of its time
bounds uses properties of the well-known Fibonacci numbers. Before
discussing the data stmcture, we first discuss thesc propcrties.

164
https://biblioteca-digitala.ro / https://unibuc.ro

Thc Fibonacci numbers are defined recursively as F(l) = I,
F(2) = I, and F(k) = F(k - 1) + F(k - 2), for all k ~ 3. These numbers
satisfy the following properties:

Proposition 1. The following properties hold:
(a) For k ~ 3, F(k) ~ 2ct-1Y2

(b) F(k) = I+ F(l) + F(2) + ... + F(k- 2).

Proof The facts that F(k) = F(k-1) + F(k-2) and F(k-1) ~ F(k- 2)
imply that F(k) ~ 2F(k- 2).

Consequently, if k is odd, F(k) ~ 2F(k - 2) ~ 22F(k - 4) ~
~ 23F(k- 6) ~.2 2Ck-l)/2F(l) = 2fk-1P. If k is even, we argue by induc­

tion. The claim is true if k = 4. Suppose it is true for even numbers less
than k. We have

F(k) = F(k-1) + F(k-2) ~ 2(k-2)12 + 2(k-3)12

by the result for k odd and the induction hypothesis. But then
F(k) ~ 2ct- 3J. 2 [2 Iii+ I J > 2(k-l),'2 and so by induction the conclusion is
true for all k ~ 3.

To prove part (b) let us observe that 1+ F(l) = F(2) + F(l) = F(3);
F(3) + F(2) = F(4) ; ... ; F(k-1) + F(k- 2) = F(k). □

Proposition 2. Suppose that a series of numbers G{k) satisfies the
properties that G{l) = 1, G(2) = 1, and G{k) ~ 1+ G(l) + G(2) + ...
+ G(k- 2) for all k ~ 3. Then G{k) ~ F(k).

Proof: We prove inductively that G{k) ~ F(k) for all k. This claim
certainly is true for k =1 and k =2. Let us assume that it is true for all
values of k from I through q - 1. Then G(q) ~ 1 + G{l) + G{2) + ... + G(q
- 2) ~ 1 + F(l) + F(2) + ... + F(q -2) = F(q), the equality following from
Proposition l(b). □

Dejining and storing a Fibonacci heap. As we noted earlier, a
heap stores a set of elements, each with a real-valued key. A Fibonacci
heap is a collection of directed rooted in-trees; each node i in the tree
represents an element i and each arc (iJ) represents a predecessor-suc­
cessor (parent-child) relationship: node} is the predecessor (parent) of
node i . Figure I gives an example of a Fibonacci heap.

To represent a Fibonacci heap nurnerically (i.e., in a computer) and
to manipulate it effectively, we need the following data structure:

165

https://biblioteca-digitala.ro / https://unibuc.ro

0

Figure 1: Fibonacci heap

pred (i): the predecessor (or the parent) of nodei in the Fibonacci
heap;

We refer to a node with no parent as a root node and we set its
predecessor to zero. This convention permits us to determine whether a
node is a root node or a nonroot node by looking at the node's predeces­
sors index.

We also need the following data structures: SUCC (i): the set of
successors (or children) of nodei. We maintain this set as a doubly
linked list.

rank (i): the number of successors of node i (i.e., rank (i) =
= ISUCC (i)I).

minkey: the node with the minimum key.
Below is given this data structure for the rooted trees given in

Figure 1.

i 1 2 3 4 5 6 7 8 9 10 11 12 13

pred (,) o o 2 2 o 5 o 2 5 7 4 3 3

succ (,) 0 {3,8,4} {13,12} {11} {6,9} 0 { 1 O} 0 0 0 0 0 0

ran1c (i) o 3 2 1 2 o 1 o o o o o o -
We need additional data structures to support various heap opera­

tions; we will introduce these data structures later, when we require
them.

A subtree hanging at any node i of any rooted tree is the subtree
with root i; it contains the node i, its successors, successors of its suc­
cessors, and so on.

166

https://biblioteca-digitala.ro / https://unibuc.ro

For example, in Figure I, thc subtree hanging at node 5 contains
the nodes 5, 6, and 9.

!,inking and cutting. In using the Fibonacci heap data structure,
we reduce each heap operation into a sequence of two fundamental
operations: link (iJ) and cut (i).

We apply the operation link (iJ) to two (distinct) root nodes i andj
of equal rank; it merges the two trees rooted at these nodes into a single
tree. The operation cut (i) cuts nodei from its predecessor and makes ia
root node.

• link (iJ). If key (j) ::; key (i), then add arc (iJ) to the Fibonacci
heap (thus making node} the predecessor of nodei).

lf key (j) > key (i), then add arc (j,i) to the heap.
• cut (i). Delete arc (i, pred (i)) from the heap (thus making nodei

a root node).
We illustrate these two operations on the examples shown in

Figure 2. For simplicity, we assume that for every node i, key (i) = i.

A
CD 0J

(a)

0
/

®,
I\

@) @

(c)

(b)

Figure 2: Hlustrating link and cut
operations: (a) original heap; (b)

heap after the operation link (3,6);
(c) heap after the operation cut (I O)

167
https://biblioteca-digitala.ro / https://unibuc.ro

Notice that the link operation increases thc rank of node i or of
node j by I . Moreover, each of these operations changes the pred and
SUCC and rank information forat most two nodes; consequently, we
can perform them in 0(1) time. Later in this section we dcscribe the
additional data structurcs that ,ve maintain to manipulate the Fibonacci
heap cffectively; we can also modify thcm in constant time as we
perfom1 a link and a cut opcration. We havc dcduced the following
property.

Proposition 3. The operations link(ij) and cut(i) require 0(1) time
to execute.

Whilc manipulating thc Fibonacci heap data structurc, wc perfom1
a sequence of links and cuts. There is a close relationship bctween the
numbcr oflinks and cuts. To observe this rclationship, consider a func­
tion cp defined as thc numbcr of rootcd trccs in Fibonacci heap. Each
link operation decreases cp by 1 and each cut opcration increases (j) by 1.

Initially we have n trees, each consisting of the root. Thc following
resuit holds:

Proposition 4. The number of links is at mast n - I plus the number
ofcuts.

lnvariants in Fibonacci heaps. The Fibonacci heap data structure
maintains a set of rooted trees that change dynamically as wc perform
various linking and cutting operations. Thcse rootcd trecs satisfy certain
invariants that arc essential for deriving thc claimed time bounds for thc
heap opcrations. The nodes of the Fibonacci heap always satisfy the
heap order property (which states that the key of a node is lcss than or
equal to the kcys of its successors).

The Fibonacci heap also satisfies the following two properties:
Property 1. Each 11onroot node has fost at most one successor

0;/ier hecoming a nonroot node.
Property 2. No two root nodes have the same rank.
As before, although we might violate thcse invariants at intermedi­

ate steps of somc heap operations, thc heap will satisfy them at the con­
clusion of each heap operation.

One important consequence of properties I and 2 is that the maxi­
mum possiblc rank of any node is 2logn + I. We establish this resuit
ncxt.

168

https://biblioteca-digitala.ro / https://unibuc.ro

Proposition 5. Any node in the Fibonacci heap with n nodes has
rank at most 21ogn + 1.

Proof Let G(k) denote the minimum number of nodes contained in
a subtree hanging at a node of rank k in a Fibonacci heap. We shall
prove that G(k) 2'. F(k).

lndeed, let w be a node in a Fibonacci heap with rank k. Arrange
the successors of node w in the same order in which the previous opera­
tions linked them to w, rrom thc earliest to the latest. We claim that the

rank ofthe i - th successor ofw is at least i - 2. To establish this resuit,
Jet y be the i - th successor of node w and consider the moment whcn y

was I inked to w. Just before this link operation, w had at least i -1
successors since y is the i - th successor (It might have had more than
i -1 successors at that time, some having bccn cut since then). Sincc at
thc time of this link operation nodcs y and w both have the same ra11k,
node y had at least i -1 successors just before we performed this link
operation.

Furthermorc, notice that since that time node y has lost at most one
successor (from property 1). Therefore, node y (which is the i - th suc­
cessor of node w) has rank at least i - 2. As a resuit, the subtree hanging
at node w contains at least
I+ 2 + G(l) + G(2) + ... + G(k - 2) > I+ G(l) + G(2) + ... + G(k- 2)
nodes.

To summarize, we have shown that
G(k) ~ l+ G(l) + G(2) + ... + G(k-2),

which in view of Proposition 2 implies that G(k) ~ F(k). Since no subtree
can contain more than n nodes, wc have

n ~ G(k) ~ F(k) ~ 2(t 1i:2

by Proposition I, which implics that k $ 2 logn + 1. [J

The following property follows directly from Property 2 and
Proposition 5.

Proposition 6. A Fibonacci heap with n nodes contains at mos/
I+ 2 logn rooted trees.

We next discuss how to rest ore properties 1 and 2 i f they becomc
violated at intermediate steps of a heap operation.

Restoring Property I. To restorc Property 1, we maintain an addi­
tional index !ost (i) for every nodei, defined as follows.

169

https://biblioteca-digitala.ro / https://unibuc.ro

!ost (i): For a nonroot i, !ost (i) represents the number of successors
the node has !ost after it became a nonroot node. For a root node i,
lost(i) = O.

Suppose that while manipulating a Fibonacci heap, we perform the
operation cut (i). We refer to this cut as the actual cut. Letj = pred (i). In
this operation, node j loses a successor. If node j is a nonroot node, we
increment !ost (j) by 1. If !ost (j) becomes two, Property 1 requires that
we make node j a root node. In that case we perform cut (j) and make j
a root node. Let k = pred (j). This cut increases !ost (k) by 1. If k is a
nonroot node and !ost (k) = 2, we must make it a root node as well, and
so on.

Thus an actual cut might lead to severa! cuts due to a cascading
effect: We keep performing these cuts until we reach a node that has not
!ost any successor so far or is a root node. We refer to these additional
cuts that are triggered by an actual cut as cascading cuts, and the entire
sequence of steps following an actual cut as multicascading.

8

I
A\

®~@
(a)

@ @)

Figure 3: lllustrating how
we satisfy Property I by
pe1fonning cut (17), if
]ost (l l) ~)ost (8) = l

170

We illustrate this process
on the Fibonacci heap shown
in Figure 3(a) where we sup­
pose that !ost (11) = I and !ost
(8) = 1. Suppose that we cut
node 17 from its predcccssor.

(b)

https://biblioteca-digitala.ro / https://unibuc.ro

This operation also requires that we also cut nodes 11 and 8 from
their predecessors. Figure 3(b) shows the resulting Fibonacci heap that
satisfies Property 1. We now summarize the preceding discussion.

Proposition 7. /f we perform an actual cut in a Fibonacci heap, we
might a/so need to pe1form severa/ cascading cuts so that the heap again
satisfies Property I; the time needed for these operations is propor­
tional to the total number of cuts performed.

Suppose that we perform a number of actual cuts at different times
while manipulating a Fibonacci heap and that these cuts cause addi­
tional cascading cuts. What is the relationship between the total number
of actual cuts and the total number of cascading cuts? We shall show
that the total number of cascading cuts cannot exceed the total number
of actual cuts. To prove this resuit, consider the potential function

cp = L 10st(i) . Suppose that we perform cut (i) and j = pred (i). This
, m heap

operation sets lost (i) to zero and increases lost (j) by one if j is a nonroot
node. If the cut is an actual cut, lost (i) equals O or I before the cut, and
if it is a cascading cut, !ost (j) equals 1 before the cut.

Therefore, an actual cut increases lost (i) + lost (j), and hence the
value of the potential function q> by at mast one, and a cascading cut
decreases lost (i) + lost (j) by at least one. If we start with a potential
value of zero, the total decreases in the potential function are bounded
by the total increases. The following property is now apparent.

Proposition 8. The total number of cascading cuts is less than or
equal to the total number of actual cuts.

Restoring Property 2. The Property 2 requires that no two root
nodes have the same rank. To maintain this property, we need the fol­
lowing index for every possible rank k = 1, 2, ... , 2 llogn J + 1:

bucket (k): If the Fibonacci heap contains no root node with
rank equal to k, then bucket (k) = O; and if some root nodei bas
a rank equal to k, then bucket (k) = i.

Suppose that while manipulating a Fibonacci heap, we create a
root node j of rank k and the heap already contains another root node i
with the same rank. Then we repeat the following procedure to restare
Property 2.

171
https://biblioteca-digitala.ro / https://unibuc.ro

We perform the operation link (iJ), which merges the two rooted
trees into a new tree of rank k + 1. _ Suppose that node / is the root of the
new tree. Then by looking at bucket (k + 1), we check to see whether the
heap already contains a root node of rank k + 1. If not, we are dane.
Otherwise, we perform another link operation to create another rooted
tree of rank k + 2 and check whether the heap already contains a root
node of rank k + 2.

W e repeat this process until we satisfy Property 2. We refer to this
sequence of steps following the addition of a new root as multilinking.

We illustratc this process of re-establishing Property 2 on a nu­
merica! example. Consider the Fibonacci heap showu in Figure 4(a),
assuming that the key of node i equals i. Suppose that we add a new
rooted tree containing a singleton node 1 O. The heap already contains
anothcr root node of rank O, namely node 9. Thus we perfmm a link
operation on nodes 9 and 1 O, obtaining the rooted trees showu in Figure
4(b). Now two trees in the heap, with roots 7 and 9, have rank 1.

(c)

A'
00 0®

(d)
Figure 4: Illustrating how we satisfy Property 2 by rnultilinking.

172
https://biblioteca-digitala.ro / https://unibuc.ro

We perform another link operation, producing the structure shown
in Figure 4(c). But now two trees, with roots 1 and 7, have rank 2. We
perform another link operation, producing the structure shown in Figure
4(d). At this point, Property 2 is fullfiled and we terminate.

We summarize the preceding discussion as follows:

Proposition 9. Jf we add a new root ed tree to a Fibonacci heap, we
might need to pe1form severa/ links to restare Property 2; the time needed
for these operations is proportional to the total number of links.

Heap operations. Finally, we show how we perform various heap
operations using the Fibonacci heap data structure and indicate the amount
of time they take.

• find-min (i,H). We simply retum i = minkey, since the variable
minkey contains the node with the minimum key.

• insert (i,H). We create a new singleton root nodei and add it to H.
After we have performed this operation, the heap might violate Property
2, in which case we perform multilinking to restore the invariant.

• decrease-key (i, value, H). We first decrease the key ofnode i and
set it equal to value. After we have decreased the key of node i, every
node in the subtree hanging at node i still satisfies the heap order pro­
perty; the prcdccessor of node i might, however, violate this property.
Letj = pred (i). Ifkey (j) :5: value, we are done. Otherwise, we perform
an actual cut, cut (i), make nodei a root node, and update minkey. After
we have performed the cut, the heap might violate Property 1, so we
perform multicascading to restore this invariant. The resulting cascad­
ing cuts generate new rooted trees whose roots we store in a !ist, LIST.
Then one by one, we remove a root node from LIST, add it to the previ­
ous set of roots, and perform multilinking to satisfy Property 2. We
terminate when LIST becomes empty.

• delete-min (i){). We first set i = minkey. Then one by one, we
scan each node IE SUCC (i), perform an actual cut, cut(/), and update
minkey.

We apply multilinking after performing each such actual cut. When
we have cut each node in SUCC (i), we scan throu~h all root nodes
(which are stored in bucket (k), for k= O, 1, ... ,2 L logn J + 1), identify the
root node h with minimum key, and set minkey = h.

173
https://biblioteca-digitala.ro / https://unibuc.ro

Recall that jSUCC (i)I ::5: 2 logn + 1, because Proposition 5 implies
that each node has at most 2 log n + 1 successors. Therefore, the delete­
min operation performs 0(log n) actual cuts, followed by a number of
cascading cuts and links. Then we scan through O (log n) root nodes to
identify the root with the minimum key. Summarizing, for the heap
operation: find-min (i,H), step Retum i = minkey, time taken is O (1);
for insert (i,H); add a new singleton nodei, time: O (1); for decrease-key
(i, value, H); decrease the key of nodei: 0(1); perform cut (i) and update
minkey: 0(1); for delete-min (i,H): perform cut (l) for each node I E

SUCC (i): O (log n) and compute minkey by scanning all root nodes:
time taken O (log n).

We now consider the time required for multicascading and
multilinking. We claim that the time taken by these two steps is O (log
n), so we can ignore this time further.

To establish this claim, we use the follcwing facts: (1) Proposition
8, which states that the number of cascading cuts is no more than the
number of actual cuts; and (2) Proposition 4, which states that the num­
ber of links is no more than n - 1 plus the number of actual and cascad­
ing cuts. Consequently, if we perform a sufficiently large number of
operations (relative to n), the number of actual cuts will count the num­
ber oflinks and cascading cuts within a constant factor; therefore, in the
big O notation, we can ignore the time required for the latter operations.

In a similar way we can prove that the operations delete and in­
crease-key also require O (log n) amortized time.

We summarize the discussion in this section as follows:

Theorem 10. The Fibonacci heap data structure requires O (1)
amortized time to perform each of the operations insert, find-min, and
decrease-key, and O (log n) amortized time to perform each of the op­
erations delete-min, delete, and increase-key.

lt is clear that the role of data structure is criticai in designing effi­
cient algorithms and in writing computer programs for implementing
algorithms. We illustrate this idea further by considering Dijkstra's
algorithm for the shortest path problem.

Let G = (V,E) he an undirected graph and let / he a function assig­
ning a nonnegative length to each edge. Extend / to domain V x V by
defining /(v,v) = O and /(u,v) = 00 if (u,v) e E. Define the length ofapath

174
https://biblioteca-digitala.ro / https://unibuc.ro

n

p = e
1
e

2
••• e" written as a sequence of edges to be /(p) = LA e,). For

i=l

u,v E V, define the distance d(u,v) from u to v tobe the length ofa shortest
path from u to v, or oo if no such path exists. Notice that d(u,u) = O for
every u E V.

The single-source shortest path problem is to find, given s E V, the
value of d(s,u) for every other vertex u in the graph.

There is an algorithm due to Dijkstra that solves this problem; we
will give an O (m + n log n) implementation using Fibonacci heaps,
where m = IEI and n = 1~-

This algorithm is a type of greedy algorithm: it builds a set X vertex
by vertex, always taking vertices closest to X.

Dijkstra's Algorithm
x~ {s};
D(s) f-- O;

for each u E V\ { s} do
D(u) ~ /(s,u);

whileX* V do
let u E V\ X such that D(u) is minimum
X f--Xu {u}; for each edge (u,v) with v E V\X do
D(v) f-- min (D(v), D(u) + l(u,v))

end while
The final value of D(u) is d(s,u). This algorithm can be proved

correct by showing that the following two invariants are maintained by
the while loop:

• for any u, D(u) is the distance from s to u along a shortest path
through only vertices in X;

• for any u E X, v e X, D(u) ~ D(v) holds.
Dijkstra's algorithm performs n inserts, 11 find - mins, n delete -

mins, and at most m decrease - key operations.
The time requirements of the heap operations imply that the algo­

rithm requires O (m + n log n) time, plus the time for O (n log n) actual
cuts, plus the time for multicascading and multilinking. Using the facts
that the number of cascading cuts and links are no more than rnrice the
number of actual cuts, and that each actual cut requires O (I) time, we
immediately see that the shortest path algorithm runs in O (m + n log n)
time.

175

https://biblioteca-digitala.ro / https://unibuc.ro

The following algorithm, known as Prim 's algorithm, produces a
minimum spanning tree T in a connected undirected graph with edgc
wcights.

lnitially, wc choose an arbitrary vertex and Jet T be the tree con­
sisting of that vertex and no edgcs. We then repeat the following step
n -1 times: find an edge of minimum weight with exactly one endpoint
in T and include that edgc in T.

Using the Fibonacci heap, there exists an implementation of this
algorithm that runs intime O (m + n log n).

§ 17. Splay trees

A splay trec is a data structure invented by Sleator and Tarjan (1983)
for maintaining a set of elcments dra\\n from a totally ordercd set. Splay
trees are a particular kind of self-organizing tree structure.

Toc most interesting aspect of the structure îs that, unlike balanced
trec schemes such as AVL trees, it is not necessary to rcbalance the tree
cxplicitly aftcr evcry operation - it happens automatically.

Data are represented at all nodes of a splay trce; they are distinct
and drawn from a totally ordered set U having a weight function w :
U ➔ N*. The data items will always be maintained in inorder; that îs, for
any node x, the elements occupying the lefi subt rec of x are all lcss than x,
and those occupying the right subtree of x are all greater than x. Splay
trees support thc following opcrations:

· Access (x, 7): if item x is in trce T then retum a pointer to its
location, otherwise return nil.

· Insert (x, 7): insert x into tree T and return the resulting tree (i.e. a
pointer to its root) .

· Dcletc (x, 7): delete x from tree T and retum the resulting tree.
· Join 2 (T

1
, 1): retum a trec rcpresenting thc items in T; followed

by th~ itcms in r", dcstroying T
1

and T2 (this assumcs that all clcmcnts of
'f

1
arc smaller than all clements of T

2
).

· Join 3 (1'1' x, T): return a trec representing thc itcms in T
1

followed by x, followed by the items in T
2

, destroying T1 and T: (this
assumes that al! clements of T

1
are smallcr than x which in turn is smaller

than all items in 7':).

176

https://biblioteca-digitala.ro / https://unibuc.ro

· Split (x, /): rcturn two trccs T
1

, and T
2

: 7'
1

contains all items of T
smallcr than x and T, contains all itcms of T larger than x (this assumes
that X is in trec J); trec T is dcstroycd.

· Change wcight (x. T, 8): changc thc weight ofelementx by O. It is
assumed that x belongs to trec T. The operation returns a trec rcprescnt­
ing the same set of clcmcnts as trec T.

Ali these opcrations are implemented in terms of a single basic
opcration, called opcration Splay. ,,hich is unique to splay-trecs and gives
thcm their name:

Splay (x, J): rcturns a tree representing the same set of elemcnts as
T. lf x is in the trec, thcn x bccomes the root. lf x îs not in the tree then
cithcr thc immediatc predeccssor x of x (x =, max { k E T I k < x}) or thc
immediate successor x' of x in Tbccomes the root. (x+ = min {k E TI k> x}).
This opcration dcstroys J'.

AII of thc opcrations mcntioncd abovc can be performed with a
constant numbcr of spla~ s in addition to a constant numbcr of other low­
lcvcl operations such as pointer manipulations and comparisons and can
bc rcduced to operation Splay. For examplc, in order to do Access (x, 7)
wc do Splay (x, 7) and then inspect the root. Notice that x is stored in tree
T iff x is storcd in thc root of thc trce rctumcd by Splay (x. 7). To do
Insert (x. J) wc first do Splay (x, T), then split the resulting trec into onc
containing all itcms lcss than x and one containing all items greater than
x, onc brcaks onc of the links leaving thc root and thcn build a ncw tree
with the root storing x and the two trees bcing the lefi and right subtrec.

To do Delctc (x, J) we do Splay (x, T), discard thc root andjoin the
two subtrccs T1• T2 by Join 2 (Ti' TJ To do Join 2 (Tl' T

2
) wc do Splay

(+ 00 , 1) ,,·herc + 00 is assumcd tobe larger than all clcmcnts of U and
thcn make T2 thc right son of thc root of the resulting tree. Notice that
Splay (+ <X>, T

1
) makcs thc largest clement of T

1
the root and hence creates

a trce with an empty right subtree. To do Join 3 (7'
1
, x, T) wc make T

1
and

T, thc subtrees ofa tree with root x. To do Split (x. T) we do Splay (x, 7)
and then brcak the two links Ieaving the root. Finally, to do Change weight
(x, I. O) wc do Splay (x, T). Thc following diagram illustrates hmv all
othcr opcrations arc rcduced to Spla~·:

/>.._ Splay (x, T) A_ _inspect root
Access (x, 7): ~ ~

177
https://biblioteca-digitala.ro / https://unibuc.ro

~ or

Insert (x, T): Splay (x,M/
~ T1 1'2 ~

Delete (x, T): Splay (x,_]) A Join 2 (TJ. Tz)

/}i && -/6,

p ay +""I I Join 2(T1, Tz): S I (Ţi

& &---- T'1 &-~
Join3(T1,x,T2):

0
&& -

Split (x, T): Splay (x, T) • ~ - 0

8 & &&&
Change wcight (x, T, 8): Splay (x, T)

178

https://biblioteca-digitala.ro / https://unibuc.ro

It remains to describe the operation Splay (x, D- We first locate the
node which is made the root by the splay operation.

V f-ROOT;
while v -:t; A and key (v) -;t; x
do u f- v;

if x < key (v)
then v f- LUNK (v) else v f- RLINK (v) fi

ad
if v -:t; A then u f- v fi

If x is stored in tree T then clearly u points to the node containing x.

If x is not stored in tree T then u points to the last non-nil node on the

search path, i.e. to a node contai ning either the predecessor or the succes­

sor of x. We will make node u the root ofthe tree by a sequence of rota­

tions. More precisely, we move u to the root by a sequencc of splay steps.

For the splay step we distinguish three cases.

Case 1: Node u has a father but no grandfather. Then we perforrn a

rotation at v = father (u) and terminate the splay operation. The operation

rotate (u) moves u up and v do,\n and changes a few pointers. A very
simple but important observation to make at this point is that the rotate
operation preserves inorder numbering.

rotate (u)

rotate (v)

Case 2: If u has a father v and a grandfather, and if u and v are
either both left children or both right children, we first rotate (v) and then

rotate (u).

179
https://biblioteca-digitala.ro / https://unibuc.ro

Case 3: lf u has a fathcr v and a grandfather, and if one of li, v is a
lefi child and the other is a right child. wc first rotate (u) and then rotah:
(u) again.

Remark: lt is very important that the rotations in case 2 are
applied in this unconventional order. Note that this order moves node u
and its subtrees A and B closer to the root. This is a/so Inie for case 3
and will be very important for the analysis.

This finishes the description of the splay opcration. The following
figure shows an example.

Apply Splay (I, 7) to the following tree T:
Applying splay to node 2 in thc trec denotcd by Splay (l, 7) wc get

another trec ,vhich is denoted Splay (2, Splay (1, 7)) and so on.

180

https://biblioteca-digitala.ro / https://unibuc.ro

,r

case(2) case(2) - - case(2)
6 -1 I

2

7

2 2
3

3
3

10

y case(]) 9 casc(2) - 2

2 2

7
Splay (I, 7) 5

2 2

case(l)
10

3

5
5

7

Splay (2, Splay (1, 7))

Analysis. Before we can analyse splay trees ,,.,e need some
more notation. For x E U we write w(x) to denote the weight of element
x (w(x) > O). For va node of a splay tree we write tw(v) to denotc the sum
of the weights of all elcments which arc storcd in dcscendants of node v.
Notice that the total weight of a node changes ovcr time. If T is a splay
trce we writc tw(7) instead of tw(root (7)).

181
https://biblioteca-digitala.ro / https://unibuc.ro

Let

bal (D = - L llogtw(v)J

v node of T

or with the definition of a rank r(v) = llog tw(v)J of a node v, bal

Lr(v) . L J . (D = . We define r(D = log tw(D . For the follov.ing lemma
v node of T

we assume that each splay step takes time 1 (for the constant number of
low - levei operations such as pointer manipulations and comparisons).

Lemma J. The amorhzed cost of operation Splay (x, n is at most
1 + 3 (r(D -r(u)) where u is the node o/Twhich is made the root by the
splay operation.

Proof: We shall prove that if u, v and w are as defined in the figures
illustrating the three cases of the splay step, then the amortized cost of
casc I is at most l + 3 (r(v) - r(u)), and of cases 2 and 3 is at most
3(r(w)- r(u)).

Notice also that the amortized cost of operation Splay (x, n is
equal to thc number of splay steps plus the difference in balance of the
tree after this operation.

In this proof we use r'(u), r'(v), r'(w) to denote the ranks of the
various nodes after the splay step. Notice that r'(u) = r(v) în case l and
r'(u) = r(w) in cases 2 and 3.

We will frequently use the follO\\-ing simple observation about ranks.
If zis a node ''"ith sons z

1
and z

2
and r(z1) = r(zJthen r(z):?: r(z) + l. This

follows since r(z
1

) = r(z) = k implies
2k $ tw(z

1
), tw(z:) < 21c+1

and hence tw(z) :?: tw(z
1
) + tw(z

2
) :?: 21c+ 1

.

Thus r(z):?: r(z
1
) + l. Also r(father(z)):?: r(z) for all nodes z.

We are now ready to discuss the various cases of the splay step.
Notice that the actual cost is one in all three cases.

182

Case 1: The amortized cost ofthis splay step is
l + r'(v) + r(u) - r(v) - r(u)

= l + r'(v) - r(u), since r'(u) = r(v)
$ l + r(v) - r(u) , since r'(v) $ r'(u) = r(v)

$ l + 3(r(v) - r(u)), since r(v):?: r(u).

https://biblioteca-digitala.ro / https://unibuc.ro

Case 3. The amortized cost of this splay step is
l + r'(u) + r'(v) + r'(u) - r(u) - r(v) - r(w) =

= I + r'(v) + r'(w) - r(u) - r(v), since r'(u) = r(w).

Assumc first that r(w) > r(u). Then we conclude further, using
r'(v) $ r'(u) = r(w), r'(w) $ r'(u) = r(w), r(v) 2 r(u) and I$ r(w) - r(u),

that the amortized cost is bounded by

r(w) - r(u) + r(w) + r(w) - r(u) - r(u) = 3(r(w) - r(u)).

This finishcs the proof if r(w) > r(u).
Assumc ncxt that r(w) = r(u). Thcn r(w) = r(v) = r(u) = r'(u). Also

r'(»') $ r'(u) = r(u) and r'(v) $ r'(u) = r(u). Hence r'(w) - r(u) $ O and
r'(v) - r(v) $ O since the subtree with root v after rotation contains subtrces
C and D and before rotation it had contain B, C, D and node u.

lfthL:sL: t"o incqualitics arc cqualities ,ve have r'(w) = r'(v) and by
thc obscrvation abovc r'(u) 2 r'(w) + I, which implies that r'(w)- r(u) =

r'(w) - r'(u) < O and this inequality shows that at least one of the
inequalities r'(w) - r(u) $ O and r'(v) - r(v) $ O is strict. ln this case

I + r'(v) - r(v) + r'(w) - r(u) $O= 3(r(w) - r(u)).

Case 2: Thc amortized cost ofthis splay step is
I + r'(u) + r'(v) + r'(w) - r(u) - r(v) - r(w) = l + r'(v) +

-t r'(w) - r(u) - r(v), since r'(u) = r(w).
Assume first that r(w) > r(u). Then we conclude furthcr, using

I $ r(w) - r(u), r(u) $ r(v) $ r(w) and r'(w) $ r'(v) $ r'(u) = r(w), that thc
amortized cost is

$ r(w) - r(u) + r(w) + r(w) - r(u) - r(u) = 3(r(w) - r(u)).
Assume next that r(w) = r(u). Thcn r(w) = r(v) = r(u) = r'(u) and

r'(u) 2 r'(v) 2 r'(w).
lf r'(u) > r'(w) then r'(w) - r'(u) $ - 1 or r'(w) - r(u) $ - l since

r'{u) = r(u) and r'(v) $ r'(u) = r(v). Hencc the amortized cost îs boundcd
by zero (= 3(r(w) - r(u)) and wc arc dane. So assume r'(u) = r'(w).
Consider the middle tree in the figure illustrating case 2. We use f{u),
F(v), F(w) to denote the ranks in this tree. We have F(u) = r(u), F(w) =
0 r'(w) and F(v) = r(w). lf r'(w) = r'(u) then

F(w) "."" r'(w) = r'(u) = r(w) = r(u) = fi'(u) and hence J,(v) > F(w) and
therefore r'(u) > r'(w), a contradiction. Hence r'(u) > r'(w) always. This
finishes thc proof in case 2.

183

https://biblioteca-digitala.ro / https://unibuc.ro

The proof of lt:mrna l is complelcd by summing thc costs of tht:
individual splay stcps. Noticc that thc sum tclescopes. L ·

Thc amortizcd cost of the other opcrations îs no\\ readily
computed.

Theorem 2. The amortized cost of Splay (x, T) is O (log tw(]) I
tw(x)); The amortized cost of Access (x, 7) îs O (log tw('l) I tw(x)):

(
tw(T)]

The amortized cost (!{Dcletc (x,1) is O log . (() (.. ·)·)·· , where
mm tw x ,tll-' x

x is the predecessor of x in tree T; The amortized cost of Join 2 (1'
1
, T~)

where x is the largest element in tree 1'
1

: The

j tw(fi) + tw(T2) l
amortized cost of Join 3 (TI' x, T2) is ~log w(x) ;

The amortized cost of Insert (x, 1) is O (logtw'(T) I min (tw(x),
tw(x+), w(x))), where x„ is the predecessor, x· is the succes sor of x in the
final tree and tw'(1) is the weight (!{T after the operation;

The amortized cost of Split (x, T) is O (log tw(1) I tw(x)); The
amortized cost of Change weight (x, T,8) is O (log (tw(T) + 8) / tw(x)).

Proof: The bound for thc Splay operation was shO\\TI in lemrna I .
Operation Access is identica) to Splay and thc cost of Split (x, 7) is the
cost of Splay (x, 7) plus l. The bound on the amortized cost of Join 2 (T

1
,

T
2

) is O (log tw(1) I tw(x) + 1 + log (tw(T) + tw(T)) - log tw(T)) = O
(log (tw(T

1
) + tw(T

2
)) I tw(x)) where x is the largest clement in trec T

1
. In

this bound, the first terrn accounts for the cost of Splay (+ 00 , 1) and thc
second and third terrn account for thc actual cost ofmaking a sem ofx and
thc changc in the rank of x causcd by making T

2
a son of x. Thc cost of

Join 3 (T1, x, T) is O (1 + log (tw(T) + w(x) + tw(T)) - log 1-r(x))) wherc
thc last terrn accounts for the rank change of x. Thc arnortized cost of
Dclete (x, 1) is O (log tw(1) I tw(x) +log tw(7) I tw(x)) whcrc the first
tcrm accounts for thc cost of Splay (x, '/) and thc sccond tcnn accounts

184

https://biblioteca-digitala.ro / https://unibuc.ro

for the Join 2 opcration Thc cost of Insert is O (log tw(l) I min (tw(x).
tw(x+)) + l + log (tw(1) + w(x)) - log w(x)) = O (log (tw(n + w(x)) / min
(tw(x), tw(x·), w(x))) where thc first terrn accounts for the splay opcra­
tion and the last tcrrn accounts for the ran1c changc of x. Finally, the cost
of Change "eight (x, T, o) is O (log tw(D / tw(x)) + O (log (tw(D + o) -
- log tw (n) = O (log (tw(l) + o)/ tw(x)) where the first terrn accounts
for the Spla~ opcration and thc second tcrm accounts for the rank
change of x.

In order to complete the analysis, we must consider thc effects of
insertion, deletion, join and split on the ran1cs of nodes. To simplify mat­
ters, Jet us define the individual wcight of every item to he I . Then every
node has a ran1c in the range {O, I, ... , llog nJ}, and lemma I gives a bound
of 3 llog n J+ I for splaying. The actual cost of a scquence of m opera­
tions Op,, . .. , Op m starting with weight function w: V➔ R

0
, w(x) = I for

every XE V and a forest of single node trees is bounded by the sum of the

amortized costs of the operations and thc initial balance L l log w(x) J = O.
,:el:,'

By thcorem 2 the amortized cost of a single opcration is O (log n). Thus
we have the following corollary:

Corollary 3. The total time required for a sequence of m sorted
set operations using splay (self-adjusting) trees, starting with no sorted
sets is O (m log n), where n is the number of items.

§ 18. Random search trees

In this lecture we ,vili describc a probabilistic data structurc that
allows insertions, delctions, and membership tests (among other opera­
tions) in cxpected logarithmic timc and is closcly rclated to the sclf­
adjusting (splay) trccs presented in the last lecture.

Consider a binary trec, nat nccessarily balanced, with nodes dra\\11
from a totally ordered set, ordcrcd in inorder; that is, if i is in thc lcft
subtree of k andj is in the right subtrce of k, then i < k < j. Recall that the
rotate opcration discusscd in thc previous lecture preservcs this
ordcr

185

https://biblioteca-digitala.ro / https://unibuc.ro

rotate (x)

rotate (v)

Now suppose that each element k has a unique priority p(k) drawn
from some other totally ordercd set, and that the clcments are ordered in
heap order according to priority: that îs, an element of maximum priority
in any subtrce is found at thc root of that subtrec. A trec in which the data
, alu1.:s k are ordered in inorder and the priorities p(k) an; ordcrcd in heap
order is called a treap (for trec-heap). lt may not be obvious that treaps
always exist for cvery priority assignment. Moreover, if thc priorities arc
distinct, then the trcap is unique.

Lemma 1. Let X and Y he totally ordered sets. and let p be a func:­
fion assigning a distinct priority in Y to each element of X. Then there
exists a unique treap with nodes X and priori/ies p.

Proof: Let k be the unique element of X of maximum priority: this
must be the root. Partition the remaining elcments into two sets

{iE X:i<k} and (iE X:i>k}

Inductively build thc unique treaps out of thcse two sets and make
thcm the lefi and right subtrees of k, respectively. □

A random treap is a treap in which the priorities havc becn assigned
randomly. This is best donc in practice by calling a random number
generator each time a new clement m is presented for insertion into the
treap to assign a random priorit~· to m. Under some highly idealized but
reasonable assumptions about the random numbcr generator (whichgives
a uniformly distributed random real number in the interval 10, 1), and
successive calls are statistically independent), two clements receive the
same priority with probability zero, and if all elements in the treap are
sortcd by priority, then every pe1mutation is cqually likcly. When a ne\\
clement m is prcscnted for insertion or to test membcrship, wc start at thc
root and work our \\ay down some path in the treap as in any binary

186

https://biblioteca-digitala.ro / https://unibuc.ro

search tree, cornparing m to e!ements along the path to see which way to
go to find m' s appropriate inorder position. If we see m on the path on
the way down, we can answer the mernbership query affirmatively. If
we make it all the way down without seeing m, wc can answer:the mem­
bership query negatively. If m îs to be inserted, we attach m as a new
leaf in its appropriate inorder position. At that point we call the random
number generator to assign a random priority p(m), which by Lemma 1
specifies a uniquc position in the treap. We then rotate m upward as long
as its priority is greater than that of its parent, or until m becomcs the
root. At that point the trec is in heap order with respect to the priorities
and in inorder with respect to the data values.

To delete m, we first find m by searching do\\n from the root as for
any bina~ search tree, then rotate m dmm until it is a lcaf, taking care
to choose the direction of rotation so as to maintain heap order. For
example, if the children of m are J and k and p(j) > p(k), then we rotate m
do,.,n in the direction of J, since the rotate operation will make j an
ancestor of k. When m becomes a leaf, we prune it off. The beaut)· ofthis
approach is that the position of any element in the treap is determined
once and for all at the time it is inserted, and it stays put at that levei until
it is deleted; there is nat a lot ofrestructuring going on as with splay trees.
Moreover, as wc will show below, the expected number of rotations for
an insertion or deletion is at mast two. We now show that, averaged over
all random priority assignments, the expected time for any insertion,
deletion or membership test is O(log n) We will do the analysis for de­
letes only; it is nat difficult to see that the time bound for membership
tests and insertions is proportionally no worse than for deletions. Sup­
pose that at the moment, the treap contains n data items (without loos of
generali!)·, say {I, 2, ... ,n}), and we wish to delete m. The priorities have
been chosen randomly, so that if the set { 1,2, ... ,n} is sorted in decreasing
order by priori!)' to obtain a permutation s of { 1,2, ... ,n}, every s is equally
likely. In order to locate m in the treap, we follow the path from the root
down to m. The amount of time to do this is proportional to the length of
the path. Let us calculate the expected length of this path, averaged over
all possible random permutations cr.

187
https://biblioteca-digitala.ro / https://unibuc.ro

LetL(m) = {l, 2, ... ,m} and G(m) = {m, m + 1, ... ,n}. LctA bc thc
set of anccstors of m, including m itsclf. The dcfinitions of L(m) and
G(m) do not depend -0n O", but the dcfinition of A docs. Let X be the
random variable defincd as follows: X= lcngth of thc path from thc root
down tom= IL(m) n Al+ IG(m) n Al-2(m is counted in both L(m) and
G(m)). Wc are interested in E(X), thc expected value of X; by linearity of
cxpectation, \\·e have E(X) = E(IL(m) n Al) + E(IG(m) n Al) - 2. By
s~mmctry, it will suffice to calculate R(IL(m) n Al). Notice that if the
clemcnts of /,(m) arc sorted in dcsccnding order by priority, then: every
pemmtation of L(m) is equally likely: and an element of /,(m) is in A if
and only if it is greater than al! prcvious elements of L(m) in sortcd ordcr.
ln other words_ permute L(m) randomly, then scan the rcsulting !ist from
lcft to right, chccking off thosc clemcnts k that are largcr than anything to

thc lcft of k: thc quantity E(IL(m) n A I) is thc cxpectcd numbcr of chccks.

Example. Let n =lO and m = 8. Supposc that when priorities
are assigned randomly to { 1,2, ... ,I O} and thesc clements are sorted
in decreasing ordcr by priority, wc get thc pcrmutation: cr =
(4,5,9,2, L 7,3, 10,8,6).

This results in the fol!O\ving treap:

Then J,(m) = { 1,2,3,4,5,6, 7,8}. lf we restrict the random permuta­
tion cr to this set, wc obtain the permutation (4,5,2, l,7,3,8,6). Scanning
în this pemmtation from lefi: to right and checking only those elements k
that arc grcatcr than all elcments to the lefi: of k, wc get the scquencc

188

https://biblioteca-digitala.ro / https://unibuc.ro

(4.5, 7 .8). This is exactly the sequcnce of elements in l(m) appearing on
thc path from the root down tom in the trcap. A similar argument using
G(m) givcs the sequence (9,8) which is the sequence of elements în
G(m) appcaring on the path from the root down tom in the trcap. The
lcngth of the path is thc sum of the two lengths of these scqucnces less
2, i.e. 4 + 2 - 2 = 4. Wc are thus lcft with the problem of determining the
cxpected value of the random variable Ym, the number of checks ob­
taincd when scanning a random permutation of { 1,2, ... ,m} from lcft to
right and checking cvety element that îs greater than anything to its left.

Supposc wc pemrntc { 1, ... ,m} randomly to get the random permu­
tation cr. Deleting 1 from cr, wc get a random pemrntation a· of { 2.3 ,m}.
Notice that an element other than I is checkcd when scanning cr if and
011 ly if it îs checked when scanning cr'; thus thc prcsencc or absence of
I docs not affect whcthcr other element îs checked since I îs the small­
est element.

Thus thc expected number of checks on elcments other than I îs thc
same in cr as in cr', or E(Ym_). The element I îs checked if and only if it

I
occurs first in cr, and this occurs with probability -- . Thus thc cxpccted

m
number of checks on thc element I, averaged over al! permutations, is

I
--- . By linearity of expectation,
m

l
E(Y) = E(Y _,) + - .

m m m

Since E(Y
1

) = I the solution of this rccurrcnce îs

. m l
t:(r,,,) = L·k =Hm, thc m - th harmonic numbcr and Hm - ln m; in par-

k=I

ticular we have Hm= O(ln m).
A similar analysis allows us to calculate the cxpected number of

rotations ncccssaty to delete m from its position în thc trcap; thc resuit is

m-1 11-m
------ + --- < 2

m n-- m+ 1

189

https://biblioteca-digitala.ro / https://unibuc.ro

§ 19. Multidimensional data structures

By reconsidering scarching problems in higher dimensional space,
a number of problems become interesting only in higher dimensions.
Let U be some ordered set and Jet S ~ Ud for some d. An element x E S
is ad- tuple (x0,xp ... ,xd_J The simplest searching problem is to specify
a point y E Ud and to ask whether y E S; this is called an exact match
query and can in principie be solved by the mcthods that use a balanced
search tree sincc Ud can be totally ordered by lexicographic order. A
very general form of query is to specify a region R ~ Ud and to ask for
all points in R n S. General region queries can only be solved by ex­
haustive search of set S. Special and more tractable cases are obtained
by restricting the query region R to some subclass ofregions. Restrict­
ing R to polygons gives us polygon searching, restricting it further to
rectangles with sides parallel to the axes gi• 1es us range searching, and
finally restricting the class of rectanglcs even further gives us partial
match retrieval. In one-dimensional space balanced trees solve all these
problems efficiently. In higher dimensions we will necd different data
structures for different types of queries: d-dimensional trees, range trees
and polygon trees. lt seems to be very difficult to deal with insertions
and deletions to balance these structures after insertions and deletions in
many dimrnsions.

Multict1111ensional searching problems appear in numerous applica­
tions, most notably database systems. In these applications U is an
arbitra1y ordered set, e.g. a set of names or a set of possible incomes.
Region queries arise in these applications in a natural way. E.g. in a
database containing information about persons, say name, income, and
number of children, we might ask for all persons with:number of chil­
dren=3, a partial match query; number of children = 3, 2000 S income S

3000, a range query; income = 2000+ I OOO • (number of children), a
polygon query.

Definition. Let Tl'T2,T3 be sets. A searching problem Q oftype TI'
T

2
, T

3
is a function Q: T

1
x 2ri ➔ Tr

A searching problem takes a point in T
1

and a subset of T
2

and
produces an answer in T

3
• For example, in the member problem wc have

T
1
= T

2
, T

3
= { true, false} and Q(x, S) = ,,x E S'' In the nearest neighbour

190
https://biblioteca-digitala.ro / https://unibuc.ro

problem in the plane wc have r, -~ T
2
= R7, T

3
= R and Q(x, S) = 8(x,y),

wherc y E S and 8(x, y) $ 8(x, z) for all z E S. I-Icre 8 is some metric. 1n
thc inside thc convex hull problem wc have T

1
= T

2
= R.2, T

3
=""{huc,falsc}

and Q(x, S) = ,,is x ins ide the convex hull of point set S ".
A statistic data structurc S for a searching problem supports only

query opcration Q, i.c. for every S !;;;; T
2

one can build a static data
structure S such that function Q(x, S): T

1
➔ T

3
can be computcd effi­

cicntly. A semi-dynamic data structurc D for a searching problem sup­
ports in addition operation Insert, i.e. wc can not only query D but also
insert ncw points into D. A dynamic structure supports Insert and Dc­
lete. There exists a general method for tuming static data structures into
semi-dynamic data structures; this method is only applicable to a sub­
class of scarching problcms. thc dccomposablc scarching problcms.

Let V;, O $ i < d, be an ordered set and let V= U
0
xU

1
x ... xl)d-i. An

element x = (x
0

, .•. ,xd
1
)E U is also called point or record or d - tuple; it is

customary to talk about points in geometric applications and about records
in database applications. Components x; are also cal\ed coordinates or
attributes. A region searching problem is specified by a set f!;;;;2u of
rcgions in V. The problem is then to organize a static set S \;;;; U such
that queries of thc forrn " !ist al\ elements in S n R " or " count thc
number of points in S n R " can bc answcred efficiently for arbitrary
RE r. Since region searching problems are decomposable searching prob­
lcms, \\'e have d~11amic solutions for region searching problcms once a
static solution is found.

We address faur types of region querics.
a) Orthogonal Rangc Queries : Here r is a set of hypercubes in V,

i.e. r oR = {R: R = [/
11

, h0] x l/1, h1 Jx ... x [Id-I, hd_ 1] where /
1
, hi E Ui and

I, ::; hi}.
b) Partial Match Queries: Hcre r is thc set of degencrated h~ percubcs

whcrc every side is either a singlc point or all of U,, i.e.

rP.~f = {R; R = [Io, ho] X r /), hl] X ... X [Id-I' hd 11 where (, h, E (li and
either / = h or I == - 00 and h. = 00 for everv i }

I I I I „

lf /. = h then the i - th coordinate is specificd. otherwisc it is
I '

unspecificd.

191
https://biblioteca-digitala.ro / https://unibuc.ro

c) Exact Match Queries: Here r is the set of singletons, i .e.
rEhJ= {R:R= {x} forsomexE li}.

d) Polygon Queries: Polygon queries are only dcfined for (J = R2 .

Wc have
r = {R: R is a simple polygonal region in R2

}.

There seems tobe no single data structure doing well on all of them
and we thercforc mention three data structures: d - dimensional trces,
polygon trees, and range trees. d - dimensional trees and polygon trccs
usc linear space and solve partial match queries and polygon queries in
timc O(ne) whcre E depends an the type ofthe problem. Range trecs allow
us to solve orthogonal range queries intime O((logn)cl) but they usc non­
linear space O(n(logn)d· 1). In fact they cxhibit a tradeoff between speed
and space. ln onc - dimensional spacc ,,c could sohc a largc number of
problcms in linear space and logarithmic time, in highcr dimensions alt
data structures mentioned above either usc non - linear space or usc
''rootic "timc O(nE) for some E, O< E < I.

Wc present d-dimensional trees that are a straightforward, yct
po\\erful extcnsion of one-dimensional search trees. At every levei of a
dd - trec wc split the set according to one of thc coordinates. Faimess
demands that wc usc the different coordinates with the same frequenc~:
this is most casily achieved if wc go through thc coordinates in cyclic order.

Definition. Let S \:: U
0

x ... x Ud_
1

, iSl = n. A dd-tree for S (starting
at coordinatei) is defined as follows:

I) If n = d = l then it consist of a single /eqflabcllcd by the uniquc
clement x E S.

2) lf d > l or n > l then it consists of a root labelled by some
clement d; E U; and thrce subtrees T, , T~, and T> . Hcre T, is a dd-trec
starting at coordinate (i + l)(mod d) for set s. == { x E S : x = (xr" ... , x d

1
)

and x, < dJ T> is a dd - trec starting at coordinate (i + I)(mod d) for set
S, - {x c S: x =- (x0, ... , xd_1) and x, > d.} and T_ is a (d-1)-dirnensional
trec starting at coordinate i (mod d-l) for set S" = { (x,,. .. , x, 1, x, .1, . ,

xd J x = (x0, ... , x,_ 1, d;, x„r ... , x) E S}.

Thc figurc below shows a 2d - tree for set S = { (1.11). (I ,III). (2.1),
(2. Ill), (3,1), (3.11)} starting at coordinate O. Here Uu = U

1
= { I, 2. 3}

Arabic and roman numerals arc uscd to distinguish coordinatcs

192
https://biblioteca-digitala.ro / https://unibuc.ro

< >

>

(I, II) (~,-~1 (2, I) ~ (3, I)

lt is ,·ery help ful to visualize 2d- trecs as subdi,isions of thc plane.
Thc root node splits the plane by vertical line x

0
= 2 into three parts:

(I ,III)
o

(I ,II)

(2,1)

(2,111)

o (3,II)

U-------\.__r--------

(3,1)

left halfplane, right halfplanc and the line itself. The lefi son of thc root
thcn splits the lefi halfplane by horizontal line x

1
= 2, the right son splits

thc right halfplanc by horizontal line x
1
= I.

ln many cases it is more convenient to represent two-dimensional
(2d) trees as binary trees that are d~namic, adaptable data structurcs,
dividing up the geometric 2 - dimensional space in a manncr convenient
for use in range scarching and other problems. The idea is to build binary
scarch trces with points in the nodes, using the y and x coordinates of thc
points as keys in a strictly alternating sequence. Thc same algorithm can
be used to insert points into 2d trees as in normal binary search trces, but
at the root wc usc the y coordinate (if the point to be insert ed has a smaller
y coordinate than the point at thc root, go lefi; othcnvise go right), thcn at
the next levei we use the x coordinate, then at the next levei thc y coordi­
nate, etc„ alternating until an externai node is encountered.

193

https://biblioteca-digitala.ro / https://unibuc.ro

The significance ofthis technique is that it corresponds to dividing
up the plane in a simple way: all the points below the point at the root go
in the left subtree, all those above in the right subtree, etc. The figure
below show how the plane is subdivided corresponding to the construc­
tion of the tree in the next figure.

µ
F

p
H

0 D V G A
A

y C
E

E

I ~
B cS

a A

First a horizontal line is drawn at the y - coordinate of A, the first
node inserted. Then, since Bis below A, it goes to the lefi subtree of A;
the halfplane below A is divided with a vertical line at the x - coordinate
of B. Then, since C is below A, we go lefi at the root, and since it is to the
lefi of B we go lefi at B, and divide the portion of the plane below A and
to the lefi of B ,vith a horizontal line at the y - coordinate of C. The
insertion of Dis similar, but it goes to the right of A, since it is above it, etc.

Every externai node of the tree corresponds to some rectangle a, ~,
y, ... , A, p in the plane and each region corresponds to an externai node
in the tree; each point lies on a horizontal or vertical line segment that
defines the division roade in the tree at that point.

194
https://biblioteca-digitala.ro / https://unibuc.ro

The algorithm to construct 2d - trees is a straightforward modifi­
cation of standard binary tree search to switch between x and y coordi­
nates at each levei.

The three sons of a node v in a dd-tree do nat all have the same
quality. The root of T= (the son via the = -pointer) represents a set of one
smaller dimension. The roots of T< and T> (the sons via the < - pointer
and the > - pointer) represent sets of the same dimension but generally
smaller size. Thus every edge of a dd-tree reduces the complexity ofthe
set represented: either in dimension or in size. In Id- trees, i.e. ordinar}·
search trees, only reductions in size are required.

lt is clear howto perform exact match queries in dd-trees. Startat
the root, compare the search key with the value stored in the node and
follow the correct pointer. Running time is proportional to the height of
the tree. Our first task is thcrefore to derive bounds on the height of
dd-trees.

Definition : a) Let T be a dd- tree and Jet v be a node of T. Then
S(v) is the set of leaves in the subtree with root v, d(v) is the depth of
node v, and sd(v), the number of< - pointers and > - pointers on the
pathfrom the root to v, is the strong depth ofv. Node x is a proper son of
node v if it is a son via a < - or > - pointer.

b) A dd-tree is ideal if IS(x)I :::; JS(v)J/2 for eve[}· node v and all
proper sons x of v.

Ideal dd-trees are a generalization of perfectly balanced ld-trees.

Lemma 1. Let T be an ideal dd-tree for set S, ISI = n. Then:

a) d(v) :::; d + Iogn for every node v of T;

b) sd(v):::; Iognfor every node v ofT

Proof: a) follows from b) and the fact that at most d = - pointers
can be on the path to any node v. Part b) is immediate from the definition
of an ideal tree.

Theorem 1. Let S r;;;, U = U
0

x ... x Ud_
1

, 151 = n.
a) An exact match query in an ideal dd-tree for S takes time

O(d + logn).
b)An ideal dd-treefor S can be constroctedin time O(n(d + logn)).

Proof: a) is immediate from Lemrna la).
b) We descri he a procedure which constructs ideal dd - trees in

time O(n(d + logn)). Let S0
= {x

0
; (x

0
, ... , xd_

1
) E S} be the multiset of

195
https://biblioteca-digitala.ro / https://unibuc.ro

O - th coordinatcs of S. We use the linear time median algorithm to find
the median d0 of,\. d0 will be the labei ofthe root. Then clcarly ISJ :5 l,Sl/2
and alsa 1.5~1 :s 1.w2 where s<. = {x E S; xu < do} and s> = {x E S: xo >do}·
Wc use the same algorithm recursively to construct dd - trees for S<. and
S> (starting at coordinate l-) and a (d-1)-dimensional trees for S". This
algorithm will clearly construct an ideal dd - trec T for S. The bound on
the running time can be seen as follows. 1n every node v of T we spcnd
O(IS(v)I) steps to compute the median ofa set of size IS(v)I. Furthermore,
S(v)n S(w) = 0 if v and »· are nodes of the same depth and hence

LIS(v)I s; n for every k, Os; k < d + logn. Thus the running time is
d(,·)=k

bounded by

L o(ls(v))}= o[L L)S(v))]= o(n(d + log11)}. r·i
vnodeofT 0:,k:,d+log11 d(v)=k

Insertions into dd-trees are a non-trivial problem. A first idea rs to
usc an analogue to the naive inscrtion algorithm into onc-dimensional
trecs. lf x is to be inserted into trec T, search for x in T until a leaf is
reached and replace that leafby a small subtrce with two leaves. Of course,
the trec will nat be ideal after the insertion in general. We might define
weight - balanced dd- trecs to remedy the situation, i.e. wc choosc some
parameter a, say a = 1/4, and requirc that IS(x)I :5 (1-a)IS(v)I for cvcry
node v and all proper sons x ofv. This is a generalization of BB[a] trecs.
Two problems arisc, that illustrate a major difference between onc­
dimcnsional and multi-dimensional searching. The first problem is that
although theorcm l is true for wcight-balanced dd- trecs, qucry time in
near-idcal dd - trees may have a different order than query time in ideal
trces. More prccisely, partial match in ideal 2d - trces has running time
O(J;,) but it can be shO\m that it has running time O(n°"06

) in weight­
balanced dd- trccs for a= l/4. Thus wcight balanced dd- trccs arc only
uscful for exact match queries. A second problem is that wcight-balanced
dd - trces are hard to rebalance. Rotations arc of no use since splitting is
dane with respect to different coordinates on different lcvels. Thus it is
impossible to changc thc depth of a node as rotations do.

196

https://biblioteca-digitala.ro / https://unibuc.ro

ASSIGNMENTS

LI ST A

A I. Devise a way to represent circular lists insidc a computer in
such a way that the list can be travcrsed efficiently in both directions, yet
only one link field is uscd per node.

Hint: Let the link field of node x, contain LOC(x,,
1
) - LOC(x,).

Two adjacent !ist heads are includcd in the circular !ist, to help get things
started propcrly.

Design algorithms of insertion and deletion such that the !ist can he
used as eithcr a stack or a queue.

Ref D. E. Knuth, The art of computer programming. voi. 1, (Read­
ing, Massachusetts, 1969). ex. 18, p. 277.

A2. Find an optimum binary scarch tree for:

2 2 3 I I
a) n = 4;qo = 17 ,q1 = 17 ,q2 = 17 ,q3 = ·u ,q4 = 17:

2 3 2
Pi= -,p2 = -,pJ = -,p4 = -.

I 7 I 7 I 7 I 7

3 l I 2 2 3
b) n=4;% ='i1'ql =u,q! =l7,q3 =u,q4 =u,Pi =17'

2 2
P2 =-,p3 =-,p4 =-.

17 17 17

1 2 3 I 2 I
c) n=4;% =17,ql =u,q2 =17'q3 =u,q4 =u,Pi =17,

3 2 2
P2 = U, PJ = 17, p 4 = 17 .

Ref D. E. Knuth, Thc art of computer programming (Addison -
Weslcy, 1973), voi. 3, pp. 434 - 435.

197

https://biblioteca-digitala.ro / https://unibuc.ro

A3. Design an algorithm to add two sparse matrices: given matri­
ces A and B, A will retain the sum:

+b '--'t<·< 1<·< aiJ f-- aiJ i.f' v _ 1 _ m; -J _ n.

The two input matrices should be represented as sparse matnces
(circularly linked lists for each row and column; there are special !ist
head nodes, for every row and column).

Ref D. E. Knuth, The art of computer programming (Reading,
Massachusetts, 1969), voi. I, p. 300.

A4. Design an efficient algorithm which replace thc N quant1ties
(R

1
, ••• , R_) by (Rp(1> , .•. , Rp1._,.), respectively, given the values of R1 , •• , RN

and the permutat10n p(I) ... p(N) of { I , N}. Try to avoid using excess
mcmory space. (This problem arises if we ·sish to rcarrange records in
mcmory after an address table sort, without requiring room for storing
2N records).

Propose algorithms in both cases where p(i) is a function of i which
is tabulated and/or is to be computed.

What is expression of p(i) in the case of matrix transposition (sup­
pose that the matrix is M x N) ?

Ref D. E. Knuth, The art of computer programming (Add.ison­
Wesley, 1973), voi. 3, ex. I O, p. 80: answer p. 595.

A5. Let Pn denote the number of possible outcomes when n
elements arc sorted with ties allowed, so that (P

0
, Pl' P

2
, P

3
, P

4
, P

5
, ...) =

= (I, I, 3, 13, 75,541, ...).
For example, when equality between keys is allowed, there are 13

possible outcomes when sorting three elements:

198

Kl = K2 = K3, Kl = K2 < K3, Kl = K3 < K2

K2 = K3 < Kl, Kl < K2 = K3, K2 < Kl = KJ

K3 < Kl = K2, Kl < K2 < K3, Kl < K3 < K2

K2 < Kl < K3, K2 < K3 < Kl' K3 < Kl < K2

and K
3

< K
2

< K
1

•

https://biblioteca-digitala.ro / https://unibuc.ro

Prove that the generating funct1ori

~ p n
~ ,,z

P(z) = L.J-,
O

n.
n=

1
is cqual to --_ .

2-e·

Hint: Show that P,, = 1[: },;-k when n > O.
k>O)

Ref D. E. Knuth, The art of computer programming (Addison -
Wesley, 1973), voi 3, ex. 3, p. I 95: answer p. 627.

A6. Given a file containing N 30 - bit bina~· words x
1

, x
2

, ... , x,v,
how would you find the number of alt pairs (xi, x) such that xi= x. except
inat mast two bit positions? Use an algorithm or'complexity O(NlogN).

Hint: Create a file with 31 N entries, forming 31 entries from each
original word xi by including x, and the 30 words that differ from xi in one
position. Sort this extended file and look for duplicates.

Find a formula counting the looking for number of pairs as a
function of the number of duplicates in the sorted file and propose an
algorithm to do this (after the sorting of the file).

Ref D. Knuth, The art of computer programming (Addison -
Wesley, 1973), voi. 3, ex. 20, p. 9; answer p. 576.

A 7. Given anypermutationp = a
1
a

2
... a„ of { 1, 2, ... , n}, lctxch(p)

be the minimum number of exchanges which will sort p into increasing
order. Express xch(p) in terms of „simpler" characteristics of p, namely
prove that

xch(p) = n - c(p),
where c(p) is the number of cycles of p.

Propose an algorithm that sort p by using this minimum number of
element transpositions.

Ref D. Knuth, The art of computer programming (Addison -
Wesley, 1973), vol.3, ex. 2, p. 134; answer p. 605.

A8. Suppose that, instead of sorting an entire file, we only want to
determine the m-th smallest of a given set of n elements. Show that
,,quicksort" can be adapted to this purpose, avoiding many of the com­
putations required to do a complete sort.

199
https://biblioteca-digitala.ro / https://unibuc.ro

Ref D. Knuth, The art of computer programming (Addison -
Wcsley, I 973), voi. 3, ex. 31, p. 136: answer p. 61 O.

Sec also C.A.R. Hoare, Comm. ACM 4 (1961). pp. 321 - 322.

A9 . a) Prove that evcry positive integer n has a unique representa­

tion as a sum of Fibonacci numbers n = f~, + f: + .. + Fa . where r 2 I.
I l '

a
1

2 a
1
,
1
+ 2 for I '5.j '5. r - l, and a,. 2 2.

b) Pro,·e that in the Fibonacci trec of order k, the path from the root

to node 0) has lcngth k + 1- r - a,

Ref D E. Knuth, 711e art o(computer programming. voi J · ex
34. p. 85: ans,ver p. 493.

D. E. Knuth, The art of computer programming voi. 3. ex. 17. p
42 L ansm;r p. 669.

A10. Binomial heaps.

Ref D. C. Kozen, The design and analysis of algorithms, Springer
- Verlag, New York, 1992.

BI. Splay trees.

ASSIGNMENTS

LI ST B

Ref: D. C. Kozen. The design and analysis of algorithms, Springer­
Ver1ag, New York, 1992, pp. 58- 64.

82. Random search trees.

Ref: D. C. Kozen. The design and ana/ysis of algorithms. Springer
- Vcrlag, New York, 1992, pp. 65 - 70.

B3. Thc Hu:ffman optimum trec in non-binary case + exercisc 7. I,
p. 145 of the reference.

Ref: S. Even, Algorithmic combinaforics. Macmillan. Ne\\ York
and London, 1973,pp 127 - 140

200
https://biblioteca-digitala.ro / https://unibuc.ro

84. Show that wc can find both the maximum and thc minimum of

I- 311 l
a set of n clemcnts, using at most : 2- I -2 comparisons, and the latter

number cannot bc lm\'ered.

(r X l denotes thc smallcst intcgcr greater than or equal to x).

Ref· D. E. Knuth, The ari of computer programming (Addison -
Wcslcy. 1973), voi. 3 , ex 16. p 220: answer p. 16 7: sce alsa I. Pohl.
C'omm. ACM 15(1972). 4(12 - 4(14.

B5 Red - black trces + cxcrcises 14.1 - I to 14.1 - 3 (propertics,
rotations and insertion only).

Ref· T Carmen. C Lciscrson. R. Rivest, !11rrod11ctio11 ro olgo­
rithms. MIT Press/ Mc Gra\\ Hill, 1990, pp. 263 - 272.

86. Determine the average internai path length ofa bina~· trec \\'Îth
n nodes, assuming that each of the

1 [2n]
11 +] 11

tn.:cs is equally probablc Find the asymptotic valuc of this quantity.

Ref: D. E. Knuth, 711eartofcomputerprogramming, voi. I (Read­
ing. Massachusetts, 1969), ex. 5, p. 404; answer p. 590.

For thc generatmg function of the number of bina~· trees with n
nodes see pp. 388 - 389.

87. Algorithm PATRICIA (Practicai Algorithm To Retrieve Infor­
mation Coded ln Alphanumeric) + ex. 7, p. 258 ofthe first reference.

Ref. I. R. Scdgc\\·ick. Al?,orithms. 2nd edition. Addison - Wesle~,
1988, pp. 253 - 257.

2. D. E. Knuth, 1'l1e art of computer programming (Addison -
Wesley. 1973), val. 3. pp. 490 - 493.

88. Algorithm F (Fihonaccian search) + ex. 14. p. 420: ans\\'er
p. 669.

201

https://biblioteca-digitala.ro / https://unibuc.ro

Ref: D. E. Knuth, The art of computer programming (Addison -
Weslcy, 1973), voi. 3, pp. 414 -415.

B9. Find a simple formula for an, the number ofperrnutations on n
elements that can be obtained with a stack like that in ex. 2 of the refer­
encc. Show that this problem is equivalent to many other combinatorial
problems, such as the enurneration ofbinary trees, the number of ways to
insert parentheses into a product of factors, and the number of ways to
divide a polygon into triangles by non-intersecting diagonals (Euler).

Ref: D. E. Knuth, The art of computer programming, voi. 1 (Read­
ing, Massachusetts, 1969), ex. 4, p. 239, answer p. 531.

See also pp. 388 - 389 for the number of binary trees with n nodes.

BI O. Fibonacci heaps and their applications to the implementation
of Dijkstra's sigle-source shortest-path algorithm and of Prim's algorithm
for minimum spanning trees.

Ref: D. C. Kozen, The design and analysis of algorithms, Springer
- Verlag, New York, 1992, pp. 25 - 26, 44 - 47, 222, 250.

https://biblioteca-digitala.ro / https://unibuc.ro

Test 1

Answer four questions: I. 2. (3A or 3B), (4A or 4B).

I. Design an algorithm \\·hich takcs a circular list such as in Fig.
and reverses the direction of all the arrows. PTR

LINK !

Figure 1

2. A tree is said to he k-ary if every internai vertex has exactly k sons.
Find the number of leaves of a k-ary tree ,,ith n internai verti­
ces. Justify your answer.

3A. Design an algorithm for a binary tree traversai in sym~rtric
order using an auxilia~· stack A. T is a pointer to the root ofthc . ,
tree and all vertices ofthe binary tree have fields: LLINK, RLINK ·
and CONTENT.

3B. Design an algorithm for tree search and insertion for a given key
K. ROOT points to the root ofthe tree (ROOT* A) and each
node NODE(P) contains at least the following fields: KEY (P),
LLINK(P) and RLINK(P).

4A. Apply Huffinan's algorithm to get an optimum prefix bi~, code
for weights: I, I, 2, 2, 2, 2, 3, 4, 5, 6.

4B. Find all optimum binary search trees for n = 4, % = 3, p 1 = O, q1

= 2, P2 = 3, q2 = I, p) = 4, q3 = I, p4 = 2, q4 = 1.

Note: Each problem is worth 2.5 points.

203

https://biblioteca-digitala.ro / https://unibuc.ro

Test 2

Answer faur questions: l, 2, (3A or 3B), (4A or 4B).
1. Find the cyclomatic number (thc number of independent cycles)

for thc graph în Fig. l.

Fig 1

2. Illustrate the binary decision tree associated to the binary search
algorithm of a given key K în a table of records R1 , •.• , R1, whose kcys are
in increasing ordcr K1 < K2 < ... < K17 .

JA. Design an algorithm to add two pol) nomials P, Q such that Q
f-- P + Q and P, Q are represented as circular simply linked lists having a
)ist head, în the decreasing lexicographic ordcr of their monomials.

3B. lf S(n) = ~n h(1), where T ranges ovcr all decision trecs for
sorting n elements (or the minimum worst case complexity of any sorting
algorithm), prove that

S(n)
lim---=l
n➔-nlog 2 n

4A. Consider a linear simply linkcd list having a list hcad HEAD
like that în Fig. 2.

204

https://biblioteca-digitala.ro / https://unibuc.ro

Design an inscrtion and a delction algorithm such that list becomcs
a queue. Try to avoid an extensive search into the list.

LINK

HEAD

Fig. 2

Caution: The list may consist only of list head.

4B. Consider two linear simply link.ed lists having !ist heads HEAD I
and HEAD2, respectively. Design an algorithm to concatenate these two
lists into a single !ist having list head HEAD I.

Caution: The same as for the problem 4A.
NOTE: Each problem is worth 2.5 points.

https://biblioteca-digitala.ro / https://unibuc.ro

. I ..

BIBLIOGRAPHY

1. R. K. AHUJA, T. L'. MAGNANTI, J. B. ORLIN, Networkjlows: Theory, algorithms

and applications, Prentice Hali , Englewood Cliffs, New Jersey, 1993.

2. T. CORMEN, C. LEISERSON, R. RIVEST, lntroduction to algorithms, MIT Press

/ Mc Graw Hill, 1990.

3. S. EVEN, Algorithmic combinatorics, Macmillan, Ne,v York and London, 1973.

4 . D . E. KNUTH, The art of computer programming: voi. 1, Reading, Massachusetts,

1969; voi. 3, Addison-Wesley, 1973. r

5. D . C. KOZEN, The design and analysis of algorithms, Springer - Verlag, New York,

1992.

6. K. MEHLHORN, Data strnctures and algorithms: voi. 1: Sorting and searching;

voi. 3: A-1ulti -dimensional searching and computational geometry, Springer -

Verlag, Berlin - Heidelberg - New York - Tokyo, 1984.

7. R. SEDGEWICK, Algorithms, 2nd edition, Addison - Wesley, 1988.

8. R. E. TARJAN, Data strnctures and network algorithms, SIAM, Philadelphia, Penn­

sylvania, 1983.

https://biblioteca-digitala.ro / https://unibuc.ro

.........
~ i~'t .•
,,., f&

Tiparul s-a executat sub cda 235/1996 la
Tipografia Editurii Universităţii din Bucureşti

https://biblioteca-digitala.ro / https://unibuc.ro

This bl ik d1-;cu ::-es so111e el1ic1ent techniques for
data organi1ation It lo~u,-es 011 fout main tt pic,
structured dau, types (queues and stacks ura\ s
tra\ersing bin,Hy trees lfolfman trees , multilinked
structure:, dynamic -,tora!.!,c allocation) :,orting
techniques (,orting by countmg insertll 1. selection.
pa11itioning. merging distribution. anci'lcm-er bounds),
searchin1:; techniques (self-orgamzing linear lists ,
serching 0rde1 ed sets. binan· seaich ,rnd search trees,
balanced bmaf) trees ,, eighted trees. ,vcight-balanced
free. hashmg \\ ith chain1ng and openu~ addressing.
perfect hash1ng. d-heaps Fibonacci heaps. splay
trees, randl 111 search trees) and an i·1troduct1on to
multidimens1oi"ial data structurcs

The clear '.I et I igorous treatrnent oft he topics 1s
illustrate.d b\· nÎany e ·amples and algorithms ancl the
tex1 ncludes man\' tigures

T he naterial is based on a one-semestcr graduate
course in data -;tructures taught at the L'niversity of
13ucharest. Romania ancl at the L ni, ersîtv of \uckland.
Ne,~ Zealand /)ata Structures is suitable. as a text
Cor a gaduate levei course it îs aimed primarily at
computer sc1ence students .

LSBN 973 575 1-17 X Lei 18000

https://biblioteca-digitala.ro / https://unibuc.ro

	!00000001
	!00000002
	!00000002_i0000
	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0045_i0001
	0045_i0002
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0202_i0000
	0203

