FUNERARY ARCHITECTURE IN ALBURNUS MAIOR (ROSIA MONTANĂ): THE CIRCULAR MONUMENT*

VIRGIL APOSTOL

To this date, a rich lithic material, attributed to funerary monuments, ${ }^{1}$ has been uncovered in the area of Roşia Montană (Alburnus Maior). The most recent archaeological salvage research ${ }^{2}$ from 2002, has unveiled necropolises that are modest as to their constructive extent, ${ }^{3}$ as well as necropolises with funerary ensembles distinguished by size and layout ${ }^{4}$ to which category the Tăul Găuri Necropolis ${ }^{5}$ belongs.

Defined by a very particular location this funerary ensemble requires a few specifications. The toponym "Tăul Găuri" denotes an alveolar depression, ${ }^{6}$ which is surrounded on three sides by a hill (north), ${ }^{7}$ a ridge (east) ${ }^{8}$ and two high promontories (west), with the fourth side opening towards the Coma Valley (south) (fig. la, b).
a) At the Tăul Găuri site, to which the Circular Monument belongs, the tombs are disposed in a manner that covers in its entirety the hill's plateau ${ }^{9}$ as well as the south slope in its steep section, which was purposely terraced through specific rock-cutting operations. In what concerns the manner of marking the funerary area, be it individual or collective, unlike the Tăul Comei Necropolis, the Tăul Găuri Necropolis, shows at least two different patterns of architectural solutions: small "precincts" (enclosures) made of earth-bound stone or perishable materials (wood), ${ }^{10}$ and funerary micro-ensembles without precincts, signalled out but by funerary stelae.

The series of funerary monuments that take up the south slope, inevitably adapted to the particular shape of the terrain, has gained, on the whole, the spectacular image of an amphitheatric patterned necropolis: ${ }^{11}$ it unfolds between the plateau and the two south promontories, which act as a spatial limit

[^0]to the funerary ensemble besides creating a natural protection. Between the two natural promontories and the south limit of the necropolis, the surface of the "amphitheatre" exceeds the limit of the necropolis as it is known to date ${ }^{12}$ (figs. la, b).

Fig. 1. Aerial view of the Găuri point to north (a) and south (b).
${ }^{12}$ The archaeological research has not reached the area between the south promontories and the higher area of the "amphitheatre" yet (stretching linearly around 150 m).

Pl. XVIII. Densuş: Hand mill - Corinthian capital (cat. no. 28).

PI. XIX. Densuş: Corinthian capital (cat. no. 29).

a.

c.

d.

Fig. 4. The Circular Funerary Monument: a) plan; b) cross-sectionA-A; c) cross-section B-B; d) cross-section C-C.
The foundation depth reaches 30 cm in the eastern area. As previously described, part of the irregular stone foundation (Fa) can no more be identified. It is possible that in this area the first foundation was taken apart (fig. 6d) at the time when the second monument was erected - as suggested by the traces of a possible imprint of the dismantled wall ${ }^{16}$ (fig. 4 b) - while some of the stones from the old foundation, from the lower area towards the slope, was reused.

Within the circular perimeters, there are two funerary chambers, with brick walls, overlapped by larger cavities dug into the soil, corresponding to two distinct burial times. ${ }^{17}$

The architectural expression of the first burial (Ta) is the Monument A, the traces of which can be read in situ by the irregular stone foundation (Fa); the andesite blocks foundation (Fb) belongs to the Circular Monument B, corresponding to the second burial (Tb). As shown, this new foundation does not fully match the traces of the first one. This shift of the foundation was identified with relative accuracy due to the restitution of its precise contour. The restitution was possible due to the tracing marks preserved in situ: blocks B5, B1 and B15 that were preserved in the original position, bear on their upper surfaces tracing incisions, which allowed the restitution of the initial location of the walls of the second circular monument. ${ }^{18}$ The existence of two distinct "edification" phases is also reflected by the presence of a course of yellow soil (around 20 cm thick) used to level the older, abandoned foundation ${ }^{19}(\mathrm{Fa})$ (fig.7)

[^1]

Fig. 5. The restitution of monument's contour: a) first alternative - following the tracing marks preserved in situ; b) second alternative - ideal restitution.

e.

Fig. 6. Hypothesis about the evolution of the monuments: a) natural plateau; b) leveling of natural slope; c) first monument; d) leveling of old tumulus; e) second monument.
in order to erect the ring of andesite blocks (fig. $4 \mathrm{~b}, \mathrm{~d}$). These two phases are discernible by reading the construction levels corresponding to the two burial spaces (fig. $4 \mathrm{~b}, \mathrm{c}, \mathrm{d}$). It is the place to note that the two brick funerary chambers lie at different, but very close levels (the older chamber is only approx. 5 cm lower than the other one), while between the upper cavities the difference grows (reaching 35 cm) (fig. 4b, c).
c) Monument A. In order to build the monument, the surrounding terrain supported specific site improvement works that implied levelling the natural slope as well as its delimitation and consolidation by building the circular wall, $\sim 7.5 \mathrm{~m}$ in diameter (fig. $6 \mathrm{a}, \mathrm{b}, \mathrm{c}$).

The first burial, corresponding to this wall (Fa), took place in a rectangular cavity (Ta; $180 \mathrm{~cm} /$ $46 \mathrm{~cm} / 59 \mathrm{~cm}$), with the walls clad in clay-bound brick masonry (the bricks, $5.4-5.5 \mathrm{~cm}$ thick, are derived from tegula bipedales ${ }^{20}$ - tables 2, 3). The horizontal joints vary in thickness between 1.5 and 3 cm , while the vertical ones are approx. 1 cm wide. The bricks are laid with the long side showing, excepting the bricks of the upper course, laid with the short side exposed. The same material was used for the paving of the funerary chamber as well: a strip of six bricks, analogous in type to the ones in the wall facing, is laid adjacent to the walls. ${ }^{21}$ Above the brick-faced chamber the cavity grows much larger and is deprived of brick facings. Unlike the lower chamber, this cavity seems to widen towards its upper limit. The space generated by the two cavities - the chamber with brick-clad walls, much narrower, and the wider cavity with bare-earth walls - is the expression of a unique ensemble. This vertical sequence ${ }^{22}$ layout of the funerary space, which implied the initial excavation of the upper cavity in order to reach the moment of building the walls of a smaller scale loculus - dug at a depth larger than its own height, reveals, among other possible explanations, ${ }^{23}$ a specific modality of defining the place of the sepulchral chamber, providing at the same time a "container" for the ashes resulted from the burial of the funerary pyre. ${ }^{24}$

Fig. 7. Stratigraphic view of north zone: a) B8; b) yellow soil; c) sandy soil; d) first foundation - Fa.
${ }^{20}$ The manner of cutting the brick corresponds to the type of division of the tegula bipedales into eight triangles (type E-G. Lugli, La tecnica edilizia romana, Roma, 1936, p. 5 85). The dimensions of the sides show a cutting manner expressed as $1: 3 / 4$ (where the unit (1) represents the diagonal of the ideal pedales brick) (fig. 14b).
${ }_{21}$ None of the floor paving bricks was laid under the wall brick cladding.
${ }^{22}$ This sequence of cavities was interpreted as a layout meant to ensure the air flow for the cremation process (M. Babeş, Zu den Bestattungsarten im Flachgräberfeld von Romula. Ein Beitrag zur Grabtypologie des römischen Dazien, Dacia N.S. 14, 1970, p. 177, Abb. 5, P. Alexandrescu, Histria II, 1966, p. 263).
${ }_{23}^{23}$ Other explanation can be the intent to protect the funerary remains and offerings.
${ }^{24}$ We note that the upper cavities of both tombs are "lined" with a continuous redish course of compact burnt yellow clay, probably resulting from the ritual (purifying) burning of the walls. These cavities also contain a considerable amount of carbonized debris (black ashes) resulted from the buming of the pyre.

The chamber, designed to incorporate the ashes and the ritual inventory, was covered with three andesite slabs, ${ }^{25}$ with dimensions ranging between $150-160 \mathrm{~cm} / 80-90 \mathrm{~cm} / 17-20 \mathrm{~cm}$. The covering was laid in a manner similar to the "half" joint ${ }^{26}$ mounting. The only slab with a regular shape is the middle one, ${ }^{27}$ while the shape of the other two (except the adjoining lines) is roughly finished, by breaking the stone, with no care for details (fig. 8a).

The ensemble of the two sequenced cavities was integrated, by covering, to an earth mound (fig. 6c), generating the tumular shape of the funerary monument. The volume of the earthen tumulus was surrounded and retained by the circular wall with rubble stone foundations (Fa).
d) Monument \boldsymbol{B} is represented by the wall Fb (fig. 4a), of which the foundation and part of the elevation, erected above the wall Fa , are preserved.

The wall, now ruined, of this monument was made of blocks that were tied exclusively with wood clamps, the mounting grooves of which can still be seen on most of the blocks. No grooves for the blocks' vertical fastening ${ }^{28}$ were found. The blocks are adapted to the circular outline of the plan by their cutting into a form analogous to voussoirs, ${ }^{29}$ the contact of the lateral surfaces of adjoining blocks was provided but towards their exterior edges. ${ }^{30}$ In these contact areas the lateral surfaces bear anathyrosis with irregular frame and recessed core. The two stone courses of the façade, composed of the blocks laid en carreau, ${ }^{31}$ have different heights (57 cm the lower course; 44.8 cm the upper course). Above them the crowning, approx. 30 cm high, is represented by a cornice whose strong saillie reaches 15 cm .

The low foundation (20 cm deep) is made of blocks 15 cm outset from the face of the wall. The tracing incisions, meant for positioning the blocks of the first course, are still visible on most of the blocks of the foundation (see Catalogue). The tracings noticed on the blocks still lying in the original position (B5, B1, B15) define a circle with a diameter comprised in the interval $7.44-7.52 \mathrm{~m} .{ }^{32}$

Tomb Tb , corresponding to this monument, resembles the first tomb (Ta): the chamber ($179 \mathrm{~cm} /$ $58.5 \mathrm{~cm} / 63.5 \mathrm{~cm}$) is clad with nine courses of clay-bound bricks, laid with the long side exposed. Unlike the other tomb, the pavement is made of two strips of six bricks each; these extend beneath the wall facings of the chamber. Similar to the case of the older tomb, the vertical sequence layout of the tomb, as well as the slight widening of the upper cavity towards its limits were followed. The upper cavity, however, is not as wide, but grows deeper (95 cm) than in the case of the older tomb (52 cm). The covering is made of only two andesite slabs (approx. $170 \mathrm{~cm} / 110 \mathrm{~cm} / 20 \mathrm{~cm}$), which have the adjoining sides worked at half joint (fig. 8b). Except for these two sides, the slabs are irregularly shaped, as a result, in this case as well, of coarse work.

[^2]

Fig. 8. The andesite covering slabs of tomb Ta (a), and tomb $\mathrm{Tb}(\mathrm{b})$.

Fig. 9. Overturned blocks of elevation.
e) The restitution of monument B (hypothesis)

1) The restitution of the original appearance of the elevation is facilitated by the preservation, on the original location, of the eight blocks of the first course and by the position in situ of the overturned blocks, which accounts for the way they were disposed within the courses (fig. 9). Therefore, the circular wall was composed of two courses of blocks, above which unfolded the crowning, represented by the cornice blocks (fig. 10). The cohesion of the wall, built with no bond (mortar or earth), was ensured exclusively in the horizontal plane, by wood clamps laid similar to the dovetail system, the grooves of which could be noticed on the upper surfaces of the blocks. These clamps held together the cornice blocks as well, staying thus apparent if these blocks had indeed formed the uppermost course (fig. $11 \mathrm{a}, 11 \mathrm{hl}$). Though no other fragments were recovered apart from those previously described, the presence above the cornice of an attic ${ }^{33}$ (fig. $11 \mathrm{~b}, 11 \mathrm{~h} 2$) - meant to protect the wall - or of a different type of detail, adapted to carry off rain water (fig. 11 h 3), may be however supposed. ${ }^{34}$
2) The location of the commemorative monument is indicated by the traces of the foundation (F) and by the preserved bottom support block (slab B12). The purpose of slab B12, as support for this monument, is attested both by its much increased dimensions compared to the other foundation slabs, and by the presence of the foundation F , which incorporates the support block on the inside, increasing the founding surface to the limits required by the monument.
${ }^{33}$ Variants with attic in P.Gros, L'Architecture romaine 2, Paris, 2000, p. 424-434.
${ }^{34}$ Suggestions on such ending and protecting elements can be drawn from the very walls - precincts of the tombs located in the neighbouring necropolis (Hop Găuri). Above those walls "coping" stones were laid; an analogous type can be found at the wall of the monument from Bill (J. M. C. Toynbee, Death and Burial in the Roman World, 1982, Thames and Hudson, p. 185, fig. 17). We note, though, that a scheme with no attic is possible as well; see for instance the restitution model of the monument from Nickenich, where no element rises above the crowning comice, surmounted directly on its upper surface by the earthen cone (M. Amand, Nos tumulus splendeur imperiales, Bruxelles, 1969, p. 30, fig. 23). Hypotheses of ending for a much older monument, but similar as architectural structure, in W. Königs, Ein archaischer Rundbau, Kerameikos, XII, 1980, p. 17, fig. 6.

Fig. 10. The restitution of layers: a) foundation, b) first course.

Fig. 10. The restitution of layers: c) second course, d) crownig elements.

Fig. 11. Hypothesis of reconstruction: e) position of commemorative monument; f) plan; g) cross-section; h) link of drum and cone.

Fig. 12. Tău! Găuri Necropolis and the Circular Funerary Monument. Site plan.

The bottom support (B12) is the only block that allows the identification of a possible iron pin groove, ${ }^{35}$ its eccentric position as to the tracing incision ${ }^{36}$ (see Catalogue) leads us to believe that it was meant to hold a particularized base of the commemorative monument, projecting en saillie approx. 15 cm from the face of the wall (fig. $11 \mathrm{e}, \mathrm{f}, \mathrm{g}$); this groove was used to vertically fasten the base of the commemorative monument.

Of the monument, are conserved only the cornice (Mca) - smaller and differently moulded as to the perimeter cornice of the ensemble of the tumular monument - and the block bearing the two back-to-back lions (Mcb). The cornice (Mca) formed the crowning of a block - laid above the level of the circular cornice - and sustained the sculptural representation of the two funerary lions ${ }^{37}$ (fig. $11 \mathrm{c}, \mathrm{d}$). The two grooves situated on the upper surface of the lions' block suggest the existence of another decorative element, probably a medallion, ${ }^{38}$ which unfortunately was not found in situ.
3) The correlation between the position of the commemorative monument in the general ensemble, with the orientation of the two tombs incorporated by the tumulus, may indicate not only a trait specific to an isolated architectural ensemble, but an important feature of the neighbouring necropolis altogether. It becomes clear that the position of the commemorative monument was thus chosen as to conclude towards the valley the axis perpendicular to the long sides of the tombs within the funerary tumular monument. Therefore, the issue of the "orientation" of the two tombs occurs as fundamentally correlated to the precinct tombs of the necropolis, beyond the simple ascertainment of their lining up, with no exception, along the curve of the "amphitheatre" of the valley. One may notice that the axes of some funerary nuclei, defined by the location of the stelae bases, "aim", to a large extent, towards the east side of the depression, just like the diameter that shows the orientation of the tumular monument. It may be said that the tumular funerary monument integrates in its double substance, funeral and architectural, the "presence" of the other funerary ensembles of the necropolis. On the other hand, the fact that the orientation of the funerary ensembles, manifold by the "move" of the tombs' axes along the valley, subsumes to preferential directions toward the eastern edge of the depression, may bear a concrete significance. Following this track, the beholder had the monuments - signals of memory unfolding in front of him, in that "swing between extroversion and introversion" ${ }^{39}$ which accompanied the image of monumenta designed for the living rather than for the departed. ${ }^{40}$ The road, whose traces were tracked on the north-eastern side of the depression ${ }^{41}$, turned hence into a possible course of contemplation (fig. 12).
f) Unit of measurement ${ }^{42}$

Table 1 shows that the dimensions of the two tombs $(\mathrm{Ta}, \mathrm{Tb})$, the diameter of ring (B) and the distance between the two tombs have a particular character ${ }^{43}$. Their reading in digits may be understood as an expression of a numerology, with probably symbolic values, decoded with some frequency in Roman architecture: ${ }^{44}$ the diagonal of the funerary chamber measures $100 \mathrm{~d},{ }^{45}$ the diagonal of the upper

[^3]cavity is 200 d , the distance between the tombs is $10 \mathrm{~F} / 2^{46}$ and the diameter $25 \mathrm{~F}(5 \times 5)=4 \times 100 \mathrm{~d}$ (fig. 13 a , b). To the same family belong some dimensions of the funerary circular monument from Ulpia Traiana Sarmizegetusa, where a multiple of 10 governs the fundamental dimension. ${ }^{47}$

Table 1

	Dim. cm	$\begin{aligned} & \text { Dim } \\ & \text { 1d } \\ & \hline \end{aligned}$	Control cm	Difference cm/\%
TA				
L	180	97	179.45	0.5
		96	177.6	2.4/1.3\%
		6F		
w*	46	25	46.25	0.2
		24	44.4	1.6
		1 C		
Lc*	$\min 345.9$	187	345.9	0.0
		186	344.1	1.8
	max 357.9	194	358.9	1.0
		192	355.2	2.7
		12F		
wc*	min 239.9	130	240.5	0.6
	max 251.9	136	251.6	0.3
TB				
$\mathrm{D}_{1}{ }^{\text {* }}$	$\min 744.1$	402	743.7	0.5
		400	740	4.1/ 0.55\%
		25F		1/0.13\%
	$\max 752.1$	406	751.1	
$\mathrm{L}_{1}{ }^{*}$	179	96	177,6	1.4
		6F		
d_{1}	187	100	185	2.0
w_{1}	58.5	32	59,2	0,7
		2F		
Lc ${ }^{*}$	max 312.7	169	312.65	0.05
		10.5		
	$\min 297.7$	160	296.0	1.7
		10F		
$\mathrm{wc}_{1}{ }^{*}$	$\min 207.6$	112	207.2	0.4
		7 F		
	max 222.6	120	222.0	0.6
		7.5F		
H_{LI}	57	31	57,35	0.35
		32	59.2	2.2
		2F		
$\mathrm{H}_{\text {LII }}$	44,8	24	44,4	0,4
		1 C		
H_{c}	29,5	16	29.6	0.1
		1 F		
Dc	149.7	80	148	1.7
		5F		

[^4]The characteristics expressed by the invocated numerology have a geometric support ${ }^{48}$ into the virtual interiority of the architecture project. At tomb Mb both the loculus and the upper cavity are geometrically contained by the decagon and pentagon inscribed in the circles of 100 , respectively $200 \mathrm{~d}^{49}$ diameter, which comprise their fundamental rectangles ${ }^{50}$. The shape of the first grave is geometrically mediated by the pentagon (the upper cavity) and the dodecagon (the walled chamber). (fig. 13c)
g) The earth mound surrounded by a stone ring, which must have been the "temporary" solution for the ensemble A, represented a funerary practice often found in the necropolis from the mining areas of Roman Dacia. ${ }^{\text {st }}$ It is nevertheless possible that the two burials, even though conducted at different times, may have been involved in a unique architectural-funeral scenario, whose final expression was to be the second edifice: this latter developed the previous scheme, transforming it into a genuine architectural monument.

Monument B from Alburnus Maior may be regarded as a commemorative heroon which - by means of its earthen cone, clothed or not by blocks en grand appareil - conveyed, according to ancient traditions ${ }^{52}$, the presence of an important individual or familial tomb.

Unlike the case of the first monument (A), where the stone ring must have had more of a delimitation role, within the second monument the circular wall gains a conspicuous authority not only by means of the constructive traits, but mostly due to its architectural expressivity. The rubble stone enclosure, "primitive" in appearance, of the first ensemble was given up to a wall of carefully squared blocks, which defines a true basis - façade, sustainment for the earthen "cone" that covers it. ${ }^{53}$ The façade concludes with a moulded crowning, the comice, whose remarkable sculptural presence within the architecture of the stone "drum" is chiefly determined by dimensional ratios to this latter: the strong saillie exceeds $1 / 10$ and the height takes more than $1 / 5$ of the total height of the drum. As opposed to the jutted cornice, the base of the wall restrains inside the perimeter of the wall, bearing no moulding and resting straight on the foundation slabs. Even if a small part of these slabs stayed visible, giving thus a vague suggestion of a footing, the absence of a true base of the wall must be pointed out. Generally, not excepting the small scale circular monuments, the wall rises over a base, more or less moulded, as one can see at the mausoleum of Saepinum, ${ }^{54}$ at the funerary monument from Nickenich ${ }^{\text {S5 }}$ or at the one from Bülbüldag. ${ }^{\text {S6 }}$

The absence, from the repertoire of shapes, of the moulded base seems to be a local stylistic preference: the wall, built of regulated limestone blocks, belonging to the circular funerary monument (the mausoleum of the Aurelii) from Ulpia Traiana Sarmizegetusa ${ }^{57}$ shows no moulded footing ${ }^{58}$: whatsoever.

[^5]

Fig. 13. Geometric support: a) geometric connection between tombs; b) second tomb.

Fig. 13. Geometric support: c) first tomb.

Fig. 14. Cutting manner of brick: a) according to G. Lugli; b) hypothetical division of a bipedales type brick; c) division of resulting brick.

Fig. 15. Identification of blocks.
Due to its circular structure and to the grand appareil suggestion of its façade, the monument from Alburnus Major may be considered as part of the Roman tradition of tumulus-shaped monuments, derived from the paradigm of the Mausoleum of Augustus. Nevertheless, some constructive peculiarities suggest a building conception still indebted to the habitude of the "ring". ${ }^{59}$ in other words, regarded from outside the façade expresses the features of a wall, while in plan it gives the appearance of a mere stone enclosure, though a more elaborate one. In Alburnus Major, just like in the case of the funerary monuments from Bill (Luxembourg) or Ulpia Traiana Sarmizegetusa, ${ }^{60}$ the ambivalent character of a stone enclosure, developed into a wall with attributes of façade, ${ }^{61}$ might express a particular provincial answer to the imperial model. Thus, the stone "ring", as survival of much older funerary habitudes, merges with the Roman conception of edification, turning into a noteworthy accent of a phenomenon regarded by some researchers as a renaissance of the tumular monument type at the contact with Romanization. ${ }^{62}$

[^6]

Fig. 16. Mounting grooves: a) L 1 1-L 8 I-L 7 I; b) B $11-\mathrm{B}$ 12; c) L 1 II-L 2 II-L 3 Il.

ANNEX

1) Brick types. Hypothesis on the division.

Variant l: The base (theoretical) brick is dimensioned according to Cubit unit (tegula sesquipedales) (table 2).
Variant 2: The base (theoretical) brick is dimensioned according to Foot unit (tegula bipedales) (fig. 14 and table 3).
Comparing the tables 2 and 3 follows that the unit - base brick was tegula bipedales, the variant with differences to the theoretical dimension comprised within acceptable limits ${ }^{63}$.

[^7]Table 2
Dimensioning arcording to Cubit unit $\mathrm{IF}=29.6 \mathrm{~cm} ; \mathrm{IC}=1.5 \mathrm{~F}=44.4 \mathrm{~cm} ; \mathrm{L}=$ lengh; $\mathrm{w}=$ width

	Dimensions cm	Dim. C	Contro cm	Diff. cm	
Ma					
$\begin{array}{cc} \mathrm{c} \\| & \mathrm{L} \\ \mathrm{w} \end{array}$	$\begin{aligned} & 41.0 \\ & 33 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 \\ & 3 / 4 \end{aligned}\right.$	$\begin{aligned} & 44.4 \\ & 33,3 \end{aligned}$	$\left\lvert\, \begin{aligned} & -3.8 \\ & -0.1 \end{aligned}\right.$	
$\mathrm{c} 2 \mathrm{~L} \quad \mathrm{~L}$	41.0	$1 \begin{aligned} & 1 \\ & 2 / 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 44.4 \\ 29,4 \end{array}$	$\begin{aligned} & -3.8 \\ & +0.9 \end{aligned}$	
$\begin{array}{cc}\text { c } 3 & \mathrm{~L} \\ \\ \\ \mathrm{w}\end{array}$	$\begin{aligned} & 41.4 \\ & 33,0 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 3 / 4 \end{array}$	$\begin{aligned} & 44.4 \\ & 33,3 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -0.3 \\ & \hline \end{aligned}$	
c 4 L	40.5	1	44.4	-3.9	
c 5 L	41.5	1	44.4	-2.9	
c 6 L	41.3	1	44.4	-3.1	
c 7 L	40.7	1	44.4	-3.7	
c 8 L	42.2	1	44.4	-2.2	
Mb					
c 9 L	41.6	1	44.4	-2.8	
w	31.2	2/3	29,4	+0.8	
c 10 L	41.4	1	44.4	-3.0	
w	32.0	3/4	33,3	-1.3	
c 11 L	41.0	1	44.4	-3.4	
c 12 L	41.3	1	44.4	-3.1	

Table 3
Dimensioning according to Foot unit

2) Catalogue ${ }^{64}$

Material: The blocks of the façade are carved in a shelly limestone with gravel, sand and large pieces of hard stone, easily exfoliative, tied in the calcareous mass during the sedimentation process. A single block of the façade is made of andesite (Lla I). The foundation blocks are made of andesite.
Preservation status: Except the andesite ones, the blocks are highly eroded or delaminated preserving, however, with only a few exceptions, most of their original shape.
The upper faces: most of the blocks preserve mounting grooves of the wooden clamps with dimensions ranging between: $\mathrm{L}=7.5-17 \mathrm{~cm}, \mathrm{~h}=4-5 \mathrm{~cm}, \mathrm{w}_{\text {max }}=8-10 \mathrm{~cm}, \mathrm{w}_{\text {min }}=5-6 \mathrm{~cm}^{65}$ (fig.16). The crowning elements (the cornice) show a frame, max. 20 cm wide. The blocks of the foundation bear tracing incisions.
The lower faces: smooth, with no preserved traces of connecting systems or other special contact treatments.
The side surfaces: all the blocks bear traces similar to those of anathyrosis (frame width $\sim 10 \mathrm{~cm}$, concavity $2-3 \mathrm{~cm}$); the frame follows but the exterior edge (fig.17).
The back surfaces: roughly treated, generally hammered.
The crowning blocks: only one block (C3) is preserved well enough to allow the restitution of the moulding. The moulding of the other blocks is eroded, but explicit enough to be considered identical to that of block C3. The moulding: above a flattened half-round moulding, a narrow and flat listel leads to the doucine-cut cyma; the upper listel is inclined (fig. 18).
Traces of tools (fig. 19) are mainly visible on the harder material of the foundation blocks and occasionally on the limestone blocks (mostly close to the natural "accidents" defined by insertions of harder rock): hammer, pick (at the mounting grooves and partially at the tracings), chisel (on anathyrosis frames, at some mounting grooves, partially at tracings), and indented chisel (cover slabs of chamber Ta, Lla I) traces.

[^8]
a.

Fig. 17. Contact treatments with anathyrosis: a) L 1211 ; b) L 1111.

Fig. 18. Comices: a) C 1; b) C 3; c) C 13.

The foundation

B1 Dim.: Lci=69; H=25; S~71.
A segment of the tracing and the mounting groove are visible in the proximity of the vertical joint of blocks A7 I and A8 I.
B2 Dim.: Lci=84; H=24.
B3 Dim.: Lci=105*; S=52.5; H=30.
B4 Dim.: Lci=99; S~50; H=22.
B5 Dim.: Lci=104.5; H=19; S~47.
Tracing length 16 cm ; a mounting groove is visible.
B6 Dim.: Lce $=105$; Lci=94; H~20; $\mathrm{S}=62.5$.
B7 Dim.: Lce=174.5; Lci~143; H=21.5; S=60.
Tracing length 14 cm ; approx. 47 cm away from the tracing there is a resembling incision, 7 cm long.
B8 Dim.: Lci=96.6; $\mathrm{H}=28 ; \mathrm{S}=57$.
Tracing length 22.5 cm .
B9 Dim.: Lce=227; Lci~206; H=27.3; S=64.
Two tracings, 35 and 25 cm long;
B10 Dim.: Lce=129.5; Lci~103*; $\mathrm{H}=37.5$; $\mathrm{S}=69.5$.
Tracing length 15 cm .
B11 Dim.: Lce=122; $\mathrm{S}=63$; $\mathrm{H}=32.5$.
B12 Dim.: Lce viz.106; S=83.5; H=47; (fig. 20b).
Tracing length 19.5 cm ; only a mounting groove visible; from the tracing outwards there is a rectangular outline (2.3 12.6 cm), 4.5 cm deep; a low ditch, approx. 3 cm deep, runs across the block; (fig. 16b).

B13 Dim.: Lce viz=116.5; $S=66 ; H=41$.
Tracing length 27 cm .
B14 Dim.: Lce~91; H=26; $\mathrm{S}=48.5$.
B15 Dim.: Lce=159; Lci=141; S~57; H=20.
B16 Dim.: Lce~166.5; Lci=135; S~67; H~24.
First course
L1a I Dim.: Lce~104.5; Lci=89; S~50; H~27.
It has no mounting grooves.
L1b I Dim.: Lce~96; Lci=87; S=35; H~23.2.
L2 I Dim.: Lce=112.6; Lci~101; $\mathrm{S}=33 ; \mathrm{H}=56$.
L3 I Dim.: Lce=83; Lci~70; $\mathrm{S}=36$; $\mathrm{H}=54.4$.
The left side surface is oblique.
L4 I Dim.: Lce~132; Lci~122; S~38.5; H=57.
The left side surface is oblique.
L5 I Dim.: Lce=119; Lci=110; $\mathrm{S}=38$; $\mathrm{H}=54.4$.
L6 I Dim.: Lce=97.5; Lci=92; S 35; H =56.
L7a IDim.: Lce=104.5; Lci=99; S~38; H~27.
The block has no mounting grooves.
L7b I Dim.: Lce=111; Lci=94; S*~41; H~29.
L8 I Dim.: Lce=21.7; Lci=20.3; S~35; H=54.5.
The mounting groove of block A8 I is shaped like a ditch.
Remarks: Each of the two pairs of overlapped blocks Lla I - Llb I and L7a I - L7b I take up the height of the first course. Between them is inserted block L8 I, crossed by a wooden holdfast that fastened into the adjacent blocks (Llb I and L7b I). Consequently, the length of the wooden clamp reached approx. 40 cm (fig. 16a). We can assume that these blocks may be a repair of the face of the wall or another type of intervention. ${ }^{66}$

[^9]

Fig. 19. Traces of tools: a) hammer; b) pick; c) indented chisel.

Second course

L1 II Dim.: Lce=103.5; Lci=87; S~36; H~42.
The side surfaces are oblique; the anathyrosis frame is conserved on the right side surface, close to the back surface; concavity 3 cm .
L2 II Dim.: Lce=23.8; Lci=22.9; S~30; H=35.5.
The mounting grooves are joined; (fig. 16c).
L3 II Dim.: Lce*~147; S=34; H=41.
The block is seriously damaged - broken into eight fragments; a segment of the anathyrosis frame is conserved on the right side surface, close to the rear surface; (fig. 20a).
L4 II Dim.: Lce=51; Lci=44.8; S=29.4; H=43.

Fig. 20. a) L3II; b) B12

The side surfaces are oblique.
L5 II Dim.: Lce=114.4; Lci=107.8; S=31.5; H~44.
L6 II Dim.: Lce=87; Lci=80; $\mathrm{S}=34.5$; $\mathrm{H} \sim 44.8$.
L7 II Dim.: L~23; S=33; H=44.
L8 II Dim.: Lci~99; S~31; H~45.4.
The left side surface is oblique.
L9 II Dim.: Lce~105; Lci~103; S~34; H~42.8.
L10 II Dim.: Lce~76.5; Lci~73; S~36.5; H~40.6.
L11 II Dim.: Lce~83.6; Lci~77; S~38; H~41.3.
The side surfaces are oblique; anathyrosis frame, 5 cm wide, conserved on the upper surface, close to the front surface, which it borders; the anathyrosis frame of the left side surface, close to the rear surface, is conserved along the full height of the block (fig. 17b).
L12 II Dim.: Lce=106.8; Lci~98; S~36; H~41.
Side surfaces are oblique; on the upper surface an anathyrosis frame, 9 cm wide is conserved.
L13 II Dim.: Lce=86.2; Lci~78; S~33; H~42.
On the upper surface there is a 5 cm wide anathyrosis frame.
L14 II Dim.: Lce=108.6; Lci~103; S~34; H~42.6.
Side surfaces are oblique.
Crowning elements (cornices)
C1 Dim. ${ }^{67}$: $\mathrm{Lce} \sim 84 ; \mathrm{Lci}=72.2 ; \mathrm{H}=29.2 ; \mathrm{Sa}=53.8 ; \mathrm{Sp}=40.5 ; \mathrm{Hp} \sim 28.2 ; \mathrm{Hd}=11.8 ; \mathrm{Hs}=8.2 ; \mathrm{Hi}=8.3 ; \mathrm{As}=10.8 ; \mathrm{Ap}=15$ (fig. 18 a).
The erosions developed by expelling the hard rock off the upper surface reach $3-4 \mathrm{~cm}$ in depth; the side surfaces are oblique.
C2 Dim.: Lci*~71.5; H~27; $A^{*} \sim 52.5$.
The block is seriously damaged - broken into six main fragments that fit together (C2a, C2b, C2c, C2d, C2e, C2f) and other debris resulted from breaking; the side surfaces are conserved 30 cm in length; only one fragment (C2c) partially conserves the doucine.

[^10]C3 Dim.: Lce~62; Lci~58; $\mathrm{H}=29.5 ; \mathrm{Sa}=57.8 ; \mathrm{Sp}=40.8 ; \mathrm{Hp}=28.8 ; \mathrm{Hd}=12.2 ; \mathrm{Hdl}=14.4 ; \mathrm{Hs}=8.2 ; \mathrm{Hi}=8.0 ; \mathrm{As}=9.7$; $\mathrm{Ap}=14.6$; (fig. 18 b).
The side surfaces are oblique; in the proximity of the rear and of the lower surfaces a segment of the anathyrosis frame is conserved.
C4 Dim.: Lce=96; Lci~74; H~24; Sa=46.8.
The upper register is not inclined as to the upper surface.
C5 Dim.: Lce=158.5; Lci~130; H~27; Sa=54.
C6 Dim.: Lce*=163; Lci~152; H~29; Sa=63.
C7 Dim.: Lce~108; Lci=85; H~26; Sa~49.5.
C8 Dim.: Lce~164.5; Lci=140.3; H=30.5; Sa=59; Sp~42.
C9 Dim.: Lce~121; Lci=102.5; H~27; Sa=52.5; Sp~39.
C10 Dim.: Lce=109.5; Lci=87.5; H~28; Sa=59.5; Sp=44.5cm.
The upper surface is level, with no side frame, while the upper register of the moulding is not inclined; the left side surface is oblique; close to the and lower surfaces a fragment of the anathyrosis frame is still conserved.
C11 Dim.: Lce~97; Lci=92.5; H=29.6; Sa=51.
Side surfaces are oblique.
C12 Dim.: Lce=84.5; Lci=73; H=30.2; $\mathrm{Sa}=57$; $\mathrm{Sp} \sim 45$.
C13 Dim.: Lce=99.7; Lci~87.5; H=28.4; $\mathrm{Sa}=48.5 ; \mathrm{Sp}=36.4 \mathrm{~cm} ; \mathrm{Hd}=12.4 ; \mathrm{Hdl}=14.7 ; \mathrm{Hi}=8 ; \mathrm{Ap}=13.7 ; \mathrm{As}=10$ (fig. 18 c).
C14 Dim.: Lce=85.5; Lci=71; H~27; Sa=49.

Fig. 21. Cornice block of the votive monument.

Fig. 22. Block with funerary lions.

Mca Cornice block of the votive monument (fig. 21)
Dim^{68} : $\mathrm{La}=108.2 ; \mathrm{Sa}=90.4 ; \mathrm{Lp}=82.6 ; \mathrm{Sp}=59.5 ; \mathrm{H}=26.5$
Conjoinable out of two pieces; highly eroded. The moulding: elongated, upside down talon, surmounted by an astragal with pearls, an ionic kymation with very distanced egg and tongue moulding ${ }^{69}$, superimposed by a talon moulding bordered upwards by a narrow listel. The remains of the decoration that covered the cyma, on its concave surface only, are badly eroded. The ornament, composed of a rudimentary interpretation of waterleaves with bent tips or anthemiai, accompanied by other types of leaves (?), seems to be the work of (local ?) craftsmen less acquainted to the manifestation in lithic material of architectural language.
The moulding turns on the side faces as well; the rear surface is flat and inclined to a 45° angle from the vertical. The upper surface, with side frame following the three moulded sides, slant (8 cm wide); in the proximity of the rear face there are two eroded protuberances ($\mathrm{h}=5 \mathrm{~cm}$). ${ }^{70}$
Rough finishing traces, with the bush hammer, on the lower surface. On the surface of the cyma there are traces of decoration.

Mcb Block with funerary lions (fig. 22)
Dim.: La~80; Lp=84.5; $\mathrm{Sa} \sim 60 ; \mathrm{Sp}=66.4 ; \mathrm{H}=42.5$;
Fully preserved. The main face and the rear one are made of two funerary lions each, carved in relief, placed back to back, and a central, indecipherable motif; the two lions of the rear surface are shown schematically. The lower surface bears traces of anathyrosis, with quite regular frame, worked with the chisel (6 cm wide) and core carved out ($0.5-0.2 \mathrm{~cm}$) using the bush hammer and the pick. On the upper surface, in the central area, there are two irregular grooves ($5 / 5 / 4.5 ; 3 / 3 / 3.3 \mathrm{~cm}$).

[^11]
[^0]: * My thanks are due particularly to Mrs. Monica Mărgineanu Cârstoiu, whose suggestions were most useful. The surveys presented in this study have been drawn by the author, with the help of Claudia Muşter, student at the "Ion Mincu" University of Architecture, Bucureşti. Translation by Stefan Bâlici and Ciprian Capțan.
 ${ }^{1}$ V. Wollman, Mineritul metalifer, extragerea sării şi carierele de piatră in Dacia romană, Cluj Napoca, 1996, p. 222.
 ${ }^{2}$ Developed within the «Alburnus Maior National Research Program», initiated in the year 2001.
 ${ }^{3}$ Among the 315 tombs discovered at Tăul Cornei point, only eleven show relatively complex forms: five ring tombs and six "covered with stones". However, it should be noted that between 1983 and 1984, two funerary sphinxes and the base of a funerary stele were discovered in the specified area, to which two more funerary lions were added during the 2002 campaign. It is quite possible that these monuments might belong to more complex funerary ensembles, undiscovered yet. (V. Wollman, op.cit., p. 229-230; Cronica Cercetărilor Arheologice -campania 2002 (CCA), Bucureşti, 2003, p. 92-93, no. 61).
 ${ }^{4}$ In Corna, Roşia Montană District, Tăul Gǎuri Point (P. Damian, M. Simion, G. Bălan, D. Vleja, E. Dumitraşcu, C. Neagu, CCA, p.104, no.62; the architecture research was carried out by the author of this study).
 ${ }^{5}$ Situated south of nowadays Roşia Montană.
 ${ }^{6}$ Where the artificial lake Tăul Găuri lies.
 ${ }^{7}$ Hop - Găuri Hill, where the Roman necropolis is located.
 ${ }^{8}$ This ridge rises $\sim 80 \mathrm{~m}$ above the lake's surface.
 ${ }^{9}$ This area (Hop Point) was investigated during the 2001 archaeological campaign (V. Moga, C. Inel, A. Gligor, A. Dragotă, Necropola de incineratie din punctul Hop (Alburnus Maior I), Bucureşti, 2003, p. 193-251).
 ${ }^{10}$ Their traces read in situ due to the narrow ditches (max. 20 cm wide), where the wooden enclosures were embedded. These "precincts", as the conserved ditches show, followed rectangular perimeters: the corners were strengthened by wooden poles, as attested by the square holes (with approx. 30 cm edges) that are deeper than the ditches.
 ${ }^{11}$ The amphitheatre shape is generated by the natural relief: the slope surrounds as a horseshoe a deep depression, to which belongs the artificial lake that named the place (Tăul Găuri).

[^1]: ${ }^{16}$ A continuous course of yellow, sandy soil, identical to the one used as bond for the rest of the foundation, was noticed, however, in the area where the foundation blocks are not preserved.
 ${ }^{17}$ The two graves were referred to as M2 and M3 by the authors of the archaeological research. The second grave (M3) was considered the oldest. M. Simion, D. Vleja, op.cit. p. 106.
 ${ }^{18}$ It is the place to mention that this shift is distinct from the one generated by the general slide to the east of the ensemble. For instance, the sliding traces of the old foundation (Fa) can be quite easily noticed given the conserved disconnected imprints of its original position, read in the traces of the yellow sandy soil that bound the stones of the foundation (fig. 4b).
 ${ }^{19}$ We note that under the yellow soil levelling course there is the same yellow, sandy soil course used as bond for the foundation of the older monument (see supra, n. 16)

[^2]: ${ }^{25}$ Similar coverings, with roughly finished slabs, are well known on the territory of Roman Dacia; for instance at Ampelum, Cinciş - the necropolis, tomb XV - and Sarmizegetusa (V. Moga, R. Pop, Descoperiri arheologice la Ampelum, ActaMN 15, 1978, p. 213-218, O. Floca, M. Valea, Villa rustica şi necropola daco-romană de la Cinciş, ActaMN 2, 1965, p. 163-192, O. Floca, Sisteme de înmormântare din Dacia Superioară romană, Sargetia, II, 1941, p.32).
 ${ }^{26}$ J.P. Adam, La construction romaine 2, Paris, 1989; p. 104, fig. 230-6.
 ${ }^{27}$ This rectangular slab is 165 cm long and max. 83 cm wide.
 ${ }^{28}$ While the horizontal bonds are required in order to answer the radial forces, the absence of vertical strengtheners - specific bonds - may be the consequence of a low height elevation.
 ${ }^{29}$ Blocks B1 land B13 have been cut in a particular fashion: the side surface is not plane but is cut to match the shape in plan of the adjacent block ($\mathrm{B} 11-\mathrm{B} 12$).
 ${ }^{30}$ On the inside the vertical joints can grow as much as 8 cm wide.
 ${ }^{31}$ J. P. Adam, op. cit., p. 117, fig. 246 (D). Only one block of the first course is analogous to a header (L8 I).
 ${ }^{32}$ In order to evaluate the circumstances of approximating the diametre of the circle we note: the field data recordings were carried out using a Sokkia Set 600 total station, that performs measurements with errors below 0.5 cm ; the tracing incisions are coarse, V -shaped slits, $\sim 0.5 \mathrm{~cm}$ wide, cut with a pick, irregularly handled; the surfaces that bear the tracings are roughly finished (beforehand) by hammering.

[^3]: ${ }^{35}$ The reading of this groove is rendered difficult by the state of erosion of the upper surface of the support block.
 ${ }^{36}$ The groove is placed 10 cm away from the incision and $\sim 5 \mathrm{~cm}$ from the external edge of the base.
 ${ }^{37}$ Such representations are known in the area of Alburnus Major: a monumental funerary stele discovered in Roşia Montană is concluded with back-to-back funerary lions (V. Moga, R. Manta, SCIV A 29, 1978, p. 438-440).
 ${ }^{38}$ Theoretically, this decordtive element could belong to the funerary pine cone type. (V. Wollman, op. cit., p. 223). In this case we believe it was a medallion, given the appearance of the mounting groove.
 ${ }^{39}$ P. Gros, op.cit., p. 382.
 ${ }^{40}$ On the funerary monument as monument of commemoration, rather than place of the dead, see P . Gros. loc.cit.
 ${ }^{41}$ V. Moga, M. Drâmbăreanu, R. Ciobanu, Forme de habitat în punctul Găuri, in Alburnus Maior I, p. 45-79.
 ${ }^{42}$ Notations: ${ }^{*}=$ reconstructed dimension; $\mathrm{D}_{1}=$ exterior diameter; for the burial chambers: $\mathrm{L}=$ length; $w=$ width; $d_{1}=$ diagonal of the funerary chamber rectangle; for the upper cavities: $L c, L c_{1}=$ length; $w c, w c_{1}=$ width; $\mathrm{Dc}=$ distance from west side of Ta to the center of Tb funerary chamber; $\mathrm{H} \mathrm{LI}=$ height of first course; H LII $=$ height of second course; $\mathrm{HC}=$ height of cornice course.
 ${ }^{43}$ On "critical dimensions" in M. W. Jones, Principles of Roman Architecture, Yale University Press, New Haven and London, 2000, p. 71-84.
 ${ }^{44}$ Ibidem, p. 82-83.
 ${ }^{45}$,... some of the buildings that the Greeks called Hekatompeda (literally' 'one hundred footed') incorporated this dimension in a tangible way." (Ibidem. p. 80).

[^4]: ${ }^{46}$ The circle with 10 F diameter has a fundamental meaning in the geometric support of the project: besides the correlation of the tombs, by means of the inscribed pentagon it sets the length of the loculus corresponding to the tomb Mb . Similar expressions of number 10 can be found in the case of the Tomb of the Servili, where the side of the square of the funerary chamber equals 10 F (Ibidem., p. 75, fig. 4.7b).
 ${ }^{47}$ In the expression according to Cubit (44.5 cm) the diameter of the elevation (as can be deduced from the dimensions offered by the authors) measures 22.3 m , which means 50 C , or (5×10) C. The same dimension expressed in Feet is $\left(3 \times 5^{2}\right)$ F. (Dimensions from C. Daicoviciu, O. Floca, Mausoleul Aureliilor de Sarmizegetusa, Sargetia 1, 1937, p. 2-4).

[^5]: ${ }^{48}$ For the geometric support we used the ideal restitution (fig. 5b) which does not imply the transformation of the dimensions comprised in Table 1. This restitution relies on the following observations: 1) the centre of the circle of the first monument lies close to the centre of the funerary chamber Mb , while the centre of the circle of the second monument lies in the vicinity of the western side of the chamber; 2) the two funerary chambers show a minute difference in orientation; 3) the tracing of the second monument was conducted while the funerary space (the chamber and the wider cavity above it) remained unseen; it is possible that the starting point of the tracing - the centre of the circle - was approximated following the contour of wall Fa .
 ${ }^{49}$ A geometric coordination similar in type might have governed the location of the commemorative monument (the decagon inscribed in the 400 d circle which comprises the monument) (fig. 14b).
 ${ }^{50}$ The width of the clad chamber is given by the decagon side, while the width of the upper cavity represents the side of the pentagon.
 ${ }^{51}$ Tumuli, restrained by stone rings or not, have been discovered at Boteş-Corabia (150 tumulus-shaped tombs), Cinciş (14 tombs surrounded by a rubble stone circle) (O. Floca, Sargetia II, 1941, p. 93-95; O. Floca, M. Valea, op.cit, p. 163-192).
 ${ }^{52}$ See for instance the heroon of Aeneas, from Latium (P. Gros, op. cit., p. 423) or circular monument of Kerameikos (W.Königs, op.cit., p. 36-43)
 ${ }^{53}$ At the same time such façades offer the background for funerary inscriptions and often incorporate commemorative monuments (P. Gros, op.cit., passim).
 ${ }^{54}$ P. Gros, op.cit., fig. 521, p. 431.
 ${ }^{55}$ M. Amand, op. cit., fig. 23, p. 30.
 ${ }_{56}^{56}$ W. Alzinger, Augusteische Architekture in Efesos, JǑA1 16, 1974, fig. 50, p. 30.
 ${ }_{58}^{57}$ C. Daicoviciu, O. Floca, op. cit., p. 5, fig. 3.
 ${ }^{58}$ It is though the place to note that the socle course, from the basis of the wall of this monument, has the same structural role as a moulded footing.

[^6]: ${ }^{59}$ The remote origin of the type of tumulus-shaped funerary monument can be traced back to the old habit of marking the important tombs with an artificial earthen mound, delimited by ditches or wooden posts, or by stone "rings". (We use the notion "ring" as designating a more or less primitive stone enclosure of the funerary area.)
 ${ }^{60}$ The monuments, while large in size ($24 \mathrm{~m}, 22.3 \mathrm{~m}$), seem to make use of a similar configuration of the retaining wall (Antiquity 43, 1969, p. 259; C. Daicoviciu, O. Floca, op. cit.).
 ${ }^{61}$ Devised according to architectural criteria.
 ${ }^{62}$ W. Alzinger, note (5), p. 626 in M. Amand, Les tumulus d'époque romaine dans le Noricum et en Pannonie, Latomus 1965, p. 614-628. The history of this renaissance does not extend much in time. Resuscitated, out of political

[^7]: reasons, by Emperor Hadrian (P. Gros, op.cit., p. 434), the tumulus-type of funerary monument does not, however, reach an extent to match the predecessors. But the tumulus, more or less enclosed by retaining walls or defined by ampler structures continues to reflect older habits. The monument from Bill was dated to the beginning of the 3rd century (J.M.C. Toynbee, op.cit. note 569), the one at Capua (Le Carceri Vecchie) during the 2nd-3rd centuries (J.M.C. Toynbee, op. cit., p. 150), while the common tumuli spread over nearly all provinces to the end of the 2 nd century (A. Audin, Inhumation et incineration, Latomus 19, 1960, p. 518-532). The monument from Alburnus Maior and the one from Sarmisegetuza are dated after Hadrian (Mihai Dima, CCA 2002, p. 106 - terminus ante quem for its existence during Antoninus Pius' reign; C. Daicoviciu, O. Floca, op. cit., p. 18 - mid. 2nd century).
 ${ }^{6.3}$ The dimensional variations of the bricks (as to the theoretical dimensions) may reach up to 3 cm (cf. G. Lugli, La tecnica edilizia romana, Roma, 1936, p. 585).

[^8]: ${ }^{64}$ The blocks belonging to the foundation of the monument were given the denomination B , the blocks of the first course LI, the ones of the second course LII, the blocks of the cornice C and the two decorated blocks Mc and MI. The numbering of the blocks was carried on starting with the eastern area and continuing clockwise on the circumference (fig. 15).
 ${ }^{65} \mathrm{~L}=$ length; $\mathrm{w}=\mathrm{width} ; \mathrm{h}=$ height of mounting grooves.

[^9]: ${ }^{66}$ For instance, the proof of an opening, an entrance that was later obstructed.

[^10]: ${ }^{67}$ For the cornices: exterior chord length $=$ Lce; interior chord length $=$ Lci; height $=\mathrm{H}$; upper surface depth $=$ Sa ; lower surface depth $=\mathrm{Sp}$; moulding height $=\mathrm{Hp}$; doucine height $=\mathrm{Hd}$; doucine height + listel height $=\mathrm{Hdl}$; upper register height $=\mathrm{Hrs}$; lower register height $=\mathrm{Hri}$; cyma saillie $=\mathrm{As}$; moulding saillie $=$ Ap. For the other blocks: depth $=\mathrm{S}$; restituted dimensions with*.

[^11]: ${ }^{68}$ Upper surface length=La; upper surface depth=Sa; lower surface length=Lp; lower surface depth=Sp.
 ${ }^{69}$ There is no correspondence between the axes of the egg and tongue moulding and those of the astragal.
 ${ }^{70}$ Probably meant to prevent the lions block from sliding.

