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Diatonicism and Farey Series 

Consider the following series of fractions: 

0 1 1 1 2 1 3 2 3 4 1  
1 " 5 '  4 '  3 ' 5  · 2 · 5 · 3 · 4 · 5 · 1 ·  

ln this series, known in number theory as the Farey series of order 5 (Fs), we 
have in ascending order every irreducible fraction between O and 1 (inclusive) of 
which the denominator does not exceed 5. Fs, of course, is a special case. For 
any integer n>0 there exists a Farey series Fn , namely, the ascending series of 
irreducible fractions between O and 1 with a denominator not exceeding n. Farey 
series have a number of interesting properties. A particularly well-known property is 
the following: if � immediately follows { in some Farey series Fn, then the relation 
ad - bc =-1 holds ( for example, in Fs we have 0 , 5 - 1 • 1 = -1 , 1• 4 -5 • 1 = -1, 
1 , 3 - 4 • 1 = -1, 1 • 5 - 3 • 2 = -1,  2 · 2 - 5 • 1 = -1, and so forth); conversely, if a, b, c, 
and d are integers satisfying the relation ad-bc=-1, then � immediately follows { in 
a Farey series whose order is the larger of the two denominators. 

One area of musical research where Farey series may be encountered is 
diatonic intonation. A problem that often arises in the theory of diatonic intonation is 
approximating rationally the irrational pure intervals, for example, the pure "fifth" 
10921 .5. Approximating irrationals by rationals îs a classic problem în number 
theory. As îs well known, there îs no !imit to how closely one may approximate 
rationally a given irrational µ. ln particular, if µ îs between O and 1, one can write an 
infinite series of fractions beginning with 1/2 where each successive fraction îs a 
more accurate approximation of µ. Since the denominator can only increase from 
one such fraction to the next, any two successive fractions in the series, say ! and 
� , are by definition adjacent terms in Fd. The following is an example of such a 
series, where µ=log21 .5 (the pure "fifth"); the reader may easily verify that the 
relation ad-bc=±1 is satisfied for any two adjacent terms: 

1 2 3 4 7 17 24 
2 ·  3 •  5 ·  1 ·  12 · 29 ·  4"î ·  · · ·  

The appearance of  Farey series in connection with diatonic intonation îs  far 
from surprising ,  given the nature of the problem involved (i.e. , approximating 
irrationals by rationals). ln the present article, however, quite a different connection 
between diatonicism and Farey series shall be considered. As this connection 
concerns a leve! of diatonic reality other than the familiar level of log frequency 
ratios, some preliminary discussion is necessary. 

lt is readily demonstrated that log frequency ratios do not suffice in order to 
capture the intuitive sense of the notion "diatonic interval" (e.g., "minor third," 
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"perfect fifth," etc.). A dramatic example of this insufficiency is the interval of the 
octave. lt is plainly evident that the number log2 fails to capture the crucial sense of 
"equivalence" inherent in the octave, as well as the intuitively significant sense by 
which the term "octave" is derived from the number 8. lt follows that in order to 
describe diatonic intervals adequately it is necessary to invoke a leve! of diatonic 
reality other than the familiar leve! of log frequency ratios; the term "cognitive" shall 
be used to refer to this additional level (Agmon, 1 990). 

ln Agmon ( 1 989) it has been suggested that the cognitive levei of diatonic 
reality consists of integer-pairs (s,t) mod (1 2,7), s=O, 1, . . .  , 1 1 ,  and t=O, 1 ,  . . .  , 6. The 
integer-pair representation of the thirteen diatonic intervals {P1 , m2, M2, . .. , M7} is 
given in Fig. 1 .  1 The reader may readily verify that these integer pairs convey 
crucial information conceming diatonic intervals, information nat available in the 
corresponding log frequency ratios. 2 

Perfect prime ( Pl ) ---- ( 0 , 0 )  

Minor second (m2 ) ----- ( l , l )  

Ma jor second (M2 J ----- ( 2 , 1 )  

Minor third (m3 ) ------ ( 3 , 2 ) 

Major third (MJ J ------ ( 4 , 2 ) 

Perfect fourth ( P4 ) --- ( 5 , 3 )  

Augmented fourth ( A4 ) - ( 6 , 3 )  
Diminished f ifth ( d5 ) - ( 6 , 4 )  

Perfect fifth ( P5 ) ---- ( 7 , 4 )  
Minor sixth ( m6 ) ------ ( B , 5 )  

Major sixth ( M6 ) ------ ( 9 , 5 )  
Minor seventh ( m7 ) ---- ( 10 , 6 )  

Major seventh (M7 ) ---- ( 11 , 6 )  

Figure 1 .  The "cognitive," integer-pair representation of diatonic intervals 

As shown in Fig. 2, any diatonic interval (s,t) can be written as a product, mod 
(12,7), of the "perfect fourth" (5,3) and an integer n=O, ±1 ,  . . .  , ±6, where n ,  (5,3) mod 
(12,7) is the integer pair (5n mod 1 2,3n mod 7) ; clearly, in this cyclic representation 
(familiar from the traditional "cycle of fifths") the perfect fifth (7,4) can be substituted 
for the perfect fourth to yield the same thirteen intervals. ln other words, the set of 

1 A similar representation of diatonic intervals is offered in Brinkman ( 1 986). 
2 For example. the integer pairs (3,2) and (4,2) convey exactly the sense in which the diatonic intervals 

"minor third" and "major third" are two qualitatively different species of the same type. 

69 
https://biblioteca-digitala.ro



MUZICA Nr. 1/1995 
thirteen diatonic intervals which constitutes the familiar diatonic system is defined 
by a quintuple of integers (12,7;5,3;6) consisting of the octave (12,7), the fourth 
(5,3) (equivalently, the fifth 7,4), and the number 6, which defines the range from -6 
to 6 through which the integer n runs. Writing the quadruple (12,7;5,3) as two 
fractions namely � and _:i_ one sees that we have successive terms in F12, since ' 12'  7 

5 • 7-12•3=-1. 

d5=(6 , 4 )  • 6 • ( 5 , 3 )  ■od ( 1 2 , 7 )  

m2= ( 1 , l )  • 5 · ( 5 , J )  ■od ( 1 2 , 7 )  

m6=( 8 , 5 )  • 4 • ( 5 , J )  mod ( 12 , 7 )  

■3=( 3 , 2 )  � 3 • ( 5 , 3 )  ■od ( 1 2 , 7 )  

m7= ( 10 , 6 )• 2 · ( 5 , 3 )  mod ( 1 2 , 7 )  

P4=( 5 , 3 )  a 1 • ( 5 , 3 )  mod ( 1 2 , 7 )  

Pl= ( O , O )  • 0 • ( 5 ; 3 )  mod ( 1 2 , 7 )  

P5=( 7 , 4 )  =-1 • ( 5 , 3 )  mod ( 1 2 , 7 )  

M2•( 2 , l )  =-2 • ( 5 , 3 )  mod ( 1 2 , 7 )  

M6=( 9 , 5 )  �-3 • ( 5 , 3 )  mod ( 1 2 , 7 )  

MJ= ( 4 , 2 )  m-4 • ( 5 , 3 )  mod ( 1 2 , 7 )  

M7� ( 11 , 6 )•-5 • ( 5 , 3 )  mod ( 12 , 7 )  

A4=( 6 , 3 )  a-6 • ( 5 , 3 )  mod ( 12 , 7 )  

Figure 2 .  Diatonic intervals as the set {(s,t)}={n(5.3) mod (1 2,7), n=O, ± 1 ,  . . . .  ±6, Osss1 1 ,  Osts6} 

Before one can inquire further into the nature of this surprising connection 
between diatonicism and Farey series, it is necessary to bring the presen!, 
"cognitive" notion of diatonicism into sharper focus. 

Suppose that instead of the specific quintuple of integers (12, 7;5,3;6) which 
defines the familiar diatonic system we have an arbitrary quintuple (a,b;q,r;N); 
would {(s,t)} = {n(q,r) mod (a,b), n=O, ± 1 ,  . . . , ±N}, where N is a natural number, 
Osssa -1, Ostsb -1, 1 sqsa -1, 1 srsb -1 , and a>b, satisfy aur intuitions concerning 
what a "diatonic interval" is? lt should not take too much effort to demonstrate that 
the answer is "no." The familiar diatonic system (1 2,7;5,3;6) has two intuitively 
indispensible properties which are by no means necessary properties în some 
arbitrary "diatonic system" (a,b;q,r;N); in Agmon (1989) these properties are termed 
"efficiency" and "coherence." 

Efficiency is a property by which the set {(s,t)} of diatonic intervals is the 
smallest such set which contains each s=O, 1, . . .  , a-1 at least once. Since we have 
an odd number (2N+ 1) of diatonic intervals, it follows that if a is even, one (and only 
one) s must appear twice în {(s,t)}; indeed, in the familiar diatonic system (a=12) we 
have one pair of "enharmonically equivalent" diatonic intervals satisfying this 
requirement, namely the inversionally related (6,3) and (6,4) ( A4/d5).3 

3 The relationship between the number 2N+1 and the integer a described above is only one of two 
relationships which constitute the property of efficiency; the other relationship is b=N+1 . Jn the presen! 
context one may ignore the later relationship, the necessity of which emerges only when "scale steps" 
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The second property, coherence, states that if (s,t) and (s',t') are two diatonic 
intervals, and if s>s', the relation t�t' holds. Fig. 3 illustrates the property as it 
applies in the familiar case. The twelve integers O, 1 ,  . . .  , 1 1  in the left hand column 
are integers s mod 1 2, and the seven integers O, 1 ,  . . .  , 6 in the right-hand column 
are integers t mod 7. The arrows connecting the two columns establish thirteen 
integer-pairs (s,t) mod ( 12,7); these integer pairs are exactly the thirteen diatonic 
intervals depicted in Fig. 1 .  

0 - 0 

1
-----.. --- 1 

2 

, _____ _.---l 2 

• 

5 ----­
_____. 3 6 ----­

-- · 
·----­_____. s 
• 

10
----.... 6 

1 1 �  

Figure 3 .  The correspondence s..t within th e  familiar set of diatonic intervals 

As may be seen, when the numerica! values in the left-hand column increase, 
the corresponding values in the right-hand column either remain the same or also 
increase--but never decrease. (To appreciate the non-triviality of this property recall 
that diatonic intervals are defined cyclically; with a cyclic definition there is no 
guarantee that the monotonie relationship just described between integers {s} and 
corresponding integers {t} be satisfied.) lf one interprets an integer s as 
representing s semitones, and an integer t as representing the diatonic interval-type 
" (t+ 1)th" (i.e. O="prime," 1 ="second," ... , 6="seventh") , the property of coherence 
makes the obvious claim that interval type inc·reases monotonically (that is, either 
increases or stays the same, but never decreases) with the number of semitones.4 

(and noi only diatonic intervals) are taken into account. See Agmon (1 989), pp. 1 1- 13. 
4 The property of coherence was first described and discussed in Balzano (1982); the term "coherence" 

is also borrowed from Balzano. 
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(The property of efficiency may also be nicely visualized in Fig. 3; note that to each 
integer s mod 12 except 6 there corresponds exactly one integer t mod 7.) 

lt has been proven formally that in order to generate an efficient and coherent 
diatonic system, a, b, q, r, and N cannot be arbitrary (Agmon, 1989). ln particular, if 
a is odd it is both necessary and sufficient not only that b =";1 

, but also ţhat (q,r) 
equal either (2, 1) or its inverse, (a-2,b-1 ); if a is even it is necessary and sufficient 
that b = ; +1, and (q,r) equal either ( 1 +1, b;1 ), or its inverse, ( ; -1, �, ).5 lt is 
not difficult to see that, in either case, we have ar - bq = ± 1, and therefore ; and i 
are adjacent terms in Fa. ln other words, there is a necessary connection between 
efficient and coherent diatonic systems and Farey series; we shall say henceforth 
that any diatonic system (a,b;q,r ;N) satisfying efficiency and coherence has the 
"Farey property"--FP--in the sense that a, b, q, and r satisfy the relationship 
ar-bq=±1. 

Why do efficient and coherent diatonic systems have FP? On the basis of 
Agmon (1989) one can only say that while FP is a necessary property of efficient 
and coherent diatonic systems, it is not a necessary property of efficient (but not 
coherent) diatonic systems. Yet whether coherence is by itself a sufficient condition 
for FP to hold is impossible to say; in the above-mentioned source the necessary 
and sufficient conditions for coherence are not considered independently of those of 
efficiency. 

As it turns out, the mathematics of coherent scale systems is quite interesting.6 
Here it is only necessary to state the following 

THEOREM. Let DS(a,b;q,r;N) be a coherent diafonie system defined by 

parameters a, b, q, r, and N, where (a,q) = 1 and (b,r) = 1. lf the re/afion b>� ţJ 
holds, then the system has FP and ar-bq= ± 1. 

From the theorem one leams that coherence by itself is not a sufficient 
condition for the Farey property to hold; but neither is it necessary that the system 
be efficient as well. As we have seen, efficiency requires that 2N+1 be the 
smallest number equaling at least a, that is, 2N+1 =a if a is odd, or 2N+1 =a+1 if a is 
even; this is a much stronger requirement than 2N+ 12:a, which appears in the 
theorem. 

BIBLIOGRAPHICAL CONSIDERA TIONS 

To the best of my knowledge, the relevance of Farey series to diatonic music in 
a context other than intonation was first observed by Eric Regener, in his 1973 
monograph Pitch Notation and Equal Temperament. Following a unique yel 
remarkably consistent approach, Regener develops the idea of "interval space' 

5 ln order to arrive at these results the relationship b=N+1 must be assumed; see note 3. 
6 I intend to discuss this topic in detail în a separate study. 
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I--an infinite, two dimensional lattice of intervals defined by two "generators," each 
of which is also defined by two integers. Regener proves {Theorem 3, p. 77) that a 
connection exists between any two generators of I and the Farey relationship 
ad-bc=-1 .  Since Regener's formalism derives from a combination of the mod-7 
properties of staff notation with the cycle of fifths, it is my conjecture that his "Farey 
property" and the present FP are logically equivalent; this conjecture, however, is 
yet to be formally proven. 

ln two other studies of . diatonic and related scale systems the Farey 
relationship ad-bc=-1 makes a passing appearance; these studies are Clough and 
Meyerson's 1985 article "Variety and Multiplicity în Diatonic Systems," and Clough 
and Douthett's 1 991 article "Maximally Even Sets. "7 Although these two works are 
based on assumptions which differ somewhat from the assumptions in Agmon 
{1 989) and the present work, some striking correspondences between respective 
results nonetheless exist, as has been already noted in Agmon (1 989) and Clough 
and Douthett { 1991 ). As it tums aut, from the mathematics of coherent scale 
systems one leams that the appearance of the Farey relationship in both Clough 
and Myerson ( 1 985) and Clough and Douthett ( 1 991 )  is equivalent to the following 

CLAIM. Let a and b be two relatively prime integers, a>b> 1; Jet q be an integer 
1:sq:sa- 1 satisfying the re/afion qbs± 1 (mod a); and Jet N be an integer satisfying the 
re/afion N=b- 1. Then there exists a coherent diafonie system DS(a,b;q,r;N) uniquely 
determined by the re/afion r= �-

a 

MUSICAL CONSIDERATIONS 

The Farey property of diatonicism is perhaps nothing but a mathematical 
curiosity ; nonetheless, certain consequences of FP are familiar to all musicians. lf 
FP holds and ar-bq=- 1 ,  we have immediately the following corollaries: 

(1)  

(2) 

ara-1 {mod b); 

bqa 1 {mod a). 

From bqa1 {mod a) it immediately follows that b(q,r)a(1 ,0) mod {a,b). To take 
the familiar diatonic system as a specific example, we have 7{7,4)a{1 ,0) mod { 12 ,7), 
that is, a cycle of seven perfect fifths yields an augmented prime (0,0 is a perfect 
prime, and therefore 1 ,0 is an augmented prime). Taking "C," for example, as a 
point of departure, after a cycle of seven fifths we land on a "C#." Although this 

7 ln Clough and Myerson 1985 {Lemma 4 on p. 263) we have d'=(cc'+1 )/d; in Clough and Douthett 1 991  
{proof of Theorem 3.1  on p. 1 48) we have cl=dg1+1 . 
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chromatic property of a cycle of seven fifths is wellknown, it is probably not so 
wellknown that it follows from FP. 

From araa-1 (mod b) it immediately follows that a(q,r)aa(O,b-1) mod (a,b). Again, 
taking the familiar diatonic system as an example, we have 12(7 .4)=(0,6) mod 
(12,7), that is, a cycle of twelve fifths yields an augmented seventh (11,6 is a major 
seventh, and therefore 0,6 is an augmented seventh). Starting from "C" once 
again, the note twelve fifths away is the enharmonically equivalent "B#." 

Note that the relation 12(7.4)=(0,6) mod (12,7) says nothing concerning the 
relationship between C and B# in terms of log frequency ratios. lt is, of course, not 
a mere coincidence that a cycle of twelve pure "perfect fifths" in the sense of 
12 , 10921.5 modulo the "perfect octave" (that is, mod 1) gives a very good 
approximation of the pure "perfect prime" (that îs, of O). lndeed, as has been shown 
în Agmon (1989, pp. 20-21), the familiar diatonic system, mod ( 12,7), is specifically 
selected among all possible diatonic systems, cognitively defined, precisely for the 
sake of this remarkable correspondence between the "perfect fifth" in its cognitive 
sense and the "perfect fifth" în its perceptual sense (i.e. , the log frequency-ratio 
3/2). Unfortunately, it is still very common to assume that the two kinds of fifths are 
identica!, rather than to see them as essentially different, albeit related, diatonic 
phenomena. 

CONCLUSION 
John Farey wrote several articles on systems of intonation (Farey 1 807; 1 81 0; 1 81 1 ;  cited în 

Regener 1 973), yet apparently did noi see a connection between his work on music and lhe numerica! 
series that bear his name (Farey, 1816).  The relevance of Farey series to music, however, transcends 
the limited question of diatonic intonation. As we have seen, there exists a necessary connection 
between diatonicism and Farey series at a more abstract, "cognitive" levei. This connection îs în a 
sense a by- product of certain other properties of diatonicism, notably the intuitively essential property of 
"coherence." However, as we have also seen, the "Farey property" of diatonicism has musical 
consequences all of its own, which concern the theory of chromaticism and enharmonicism. 
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Supplementary Sets - Theory and Algorithms 
Dan Tudor Vuza 
The Institute of Mathematics of the Romanian Academy 

O .  Introduction 

One of the moet intereetina eituatione encountered in the etudy 
of pitch claee eete ie repreeented by the exietence of partitione of 
the eet of all pitch claeeee into eubeete which belona to the eame 
tranepoeitional claee. For inetance, there exiete:  

a)  a partition into four auamented trichorde; 
b) a partition into three diminiehed-eeventh tetrachorde; 
c) a partition into three tetrachorde {B ,  C ,  F, Gb } ,  { C# , , D,  G ,  

/,b } , {Dl ,  E,  A ,  � } ; 
d) a partition into three minor tetrachorde {C ,  D, E� . F} , {E, 

FI , G ,  A} , {GI ,  A# , B, CI} ; 
e) a partition into four trichorde {B ,  CI , D# } ,  {C ,  D, E} , {F ,  

G ,  A } ,  {Gb , A!, , � } . 
The theory of euch partitione wae examined by the author in hie 

paper [4) . A tranepoeitional claee ( or type ) with the property that 
there ie a partition of the eet of all twelve pitch claeeee into eub­
eete belonaina to that claee wae called there a part1 t1on1n6 claea. A 
alance at examplee a) - e) miaht leave the impreeeion that there ie 
not an apparent relation between the phenomenon of partitionina clae­
eee and the phenomenon of tranepoeitional el(Dlletry: examplee a) - c) 
involve claeeee with tranepoeitional eyaietry, while the claeeee in 
examplee d) - e) do not poeeeee euch a eymmetry. It wae demonetrated 
in [ 4 )  that there ie however a cloee connection between the two pheno­
mena . To thie end the notione of eupplementary eete and of eupplemen­
tary claeeee were introduced . Two pitch-claee eete M and N have been 
called 1!111ppletDtJntary if the product of their nUDlber of elemente equale 
12 and the intereection between the eet of intervale epanned by the 
elemente in H and the eet of intervale epanned by the elemente in N ie· 
reduced to the null interval . Equivalently, the collection of all 
tranepoeitione of H by the intervale from, eay, the pitch-claee C to 

75 
https://biblioteca-digitala.ro




